We apply the intertwining operators theory and the method of the Riesz kernels for the construction of the isohuygens deformations for the invariant differential operators. We established that strong Huygens principle holds for the Cayley–Laplaces differential operator on the space of the real rectangular matrixes. We constructed the fundamental solutions for this operator and its isohuygens deformations. The similar problem is solved for Gindikins differential operators associated with linear homogeneous cones.
Main publications:
Khekalo S. P., “Potentsialy Rissa v prostranstve pryamougolnykh matrits i izogyuigensova deformatsiya opertora Keli–Laplasa”, DAN, 376:2 (2001), 168–170
Khekalo S. P., “Fundamentalnoe reshenie iterirovannogo operatora tipa Keli–Gordinga”, UMN, 55:3 (2000), 191–192
Khekalo S. P., “Izogyuigensovy deformatsii odnorodnykh differentsialnykh operatorov, svyazannykh so spetsialnym konusom ranga tri”, Matematicheskie zametki, 70:6 (2001), 927–940
Khekalo S. P., “Funktsiya Besselya na konechnom pole”, Izvestiya vuzov, 2001, № 2(465), 79–82