
Глава 1

Векторные поля Киллинга

В разделе ?? были рассмотрены геометрические структуры на многообразии, кото-
рые инвариантны относительно действия некоторой группы преобразований. Вопрос
ставился так. Пусть задана группа преобразований (M,G), и требуется найти та-
кие структуры, например, тензорные поля, которые инвариантны относительно этих
преобразований. Обратная задача нахождения группы преобразований, которую до-
пускает заданная геометрическая структура на многообразии M также очень важна.

Изучение преобразований, которые сохраняют метрику пространства-времени иг-
рает исключительно важную роль в математической физике. Достаточно сказать,
что с такими преобразованиями связаны наиболее важные законы сохранения. В
настоящей главе мы рассмотрим (псевдо-)риманово многообразие (M, 𝑔) и найдем
условия, при которых метрика инвариантна относительно действия группы преоб-
разований (M,G). Дадим определение векторных полей Киллинга, которые являют-
ся генераторами локальных симметрий метрики, а также изучим некоторые из их
свойств. Будет доказана теорема о том, что, если (псевдо-)риманово многообразие
обладает максимально возможной группой симметрии, то это – пространство посто-
янной кривизны.

1.1 Изометрии и инфинитезимальные изометрии

Рассмотрим 𝑛-мерное (псевдо-)риманово многообразие (M, 𝑔) с метрикой 𝑔(𝑥) =
𝑔𝛼𝛽(𝑥)𝑑𝑥𝛼 ⊗ 𝑑𝑥𝛽, 𝛼, 𝛽 = 0, 1, . . . , 𝑛 − 1, и соответствующей связностью Леви-Чивиты
Γ.

Определение. Диффеоморфизм

𝚤 : M ∋ 𝑥 ↦→ 𝑥′ = 𝚤(𝑥) ∈ M

называется изометрией или движением многообразия M, если он сохраняет метрику,

𝑔(𝑥) = 𝚤*𝑔(𝑥′), (1.1)

где 𝚤* – возврат отображения 𝚤.

В настоящей главе, для простоты, мы не будем использовать знак тильды для
обозначения компонент связности Леви–Чивиты, т.к. аффинная связность общего
вида с кручением и неметричностью использоваться не будет.
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Из условия инвариантности метрики (1.1) следует инвариантность скалярного
произведения векторов. Пусть 𝑋, 𝑌 ∈ T𝑥(M) – два произвольных вектора из каса-
тельного пространства в точке 𝑥 ∈ M. Тогда справедливы равенства:

𝑔(𝑋, 𝑌 )|𝑥 = (𝚤*𝑔)(𝑋, 𝑌 )|𝑥 = 𝑔(𝚤*𝑋, 𝚤*𝑌 )|𝚤(𝑥),

которое эквивалентно определению (1.1). Первое равенство следует из определения
(1.1), а второе вытекает из определения возврата отображения (??).

Поскольку изометрия сохраняет метрику, то она сохраняет также связность Леви-
Чивиты, соответствующий тензор кривизны, экстремали и, вообще, все геометриче-
ские объекты, которые определяются только метрикой.

Запишем отображение (1.1) в координатах. Пусть обе точки 𝑥 и 𝑥′ принадлежат
одной координатной окрестности и имеют, соответственно, координаты 𝑥𝛼 и 𝑥′𝛼. То-
гда изометрия 𝚤 в координатах запишется в виде условия

𝑔𝛼𝛽(𝑥) =
𝜕𝑥′𝛾

𝜕𝑥𝛼
𝜕𝑥′𝛿

𝜕𝑥𝛽
𝑔𝛾𝛿(𝑥

′), (1.2)

связывающего компоненты метрики в различных точках многообразия. Это усло-
вие по виду совпадает с правилом преобразования компонент метрики при преоб-
разовании координат (??). Разница заключается в следующем. При преобразовании
координат мы считаем, что одной и той же точке 𝑥 ∈ M соответствует два набора
координат {𝑥𝛼} и {𝑥𝛼′

:= 𝑥′𝛼} в двух различных системах координат. При рассмот-
рении изометрий 𝑥 и 𝑥′ – это две различные точки одного и того же многообразия
M, и равенство (1.2) связывает значения компонент метрики в этих точках.

Предложение 1.1.1. Множество всех изометрий данного (псевдо-)риманова мно-
гообразия (M, 𝑔) является группой, которую обозначим I(M) ∋ 𝚤.

Доказательство. Две последовательных изометрии также являются изометрией. Тож-
дественное отображение многообразия M является изометрией и представляет собой
единицу группы. У каждого диффеоморфизма 𝚤 есть обратной диффеоморфизм 𝚤−1,
который является обратной изометрией.

Если метрика на многообразии задана, т.е. определены значения ее компонент во
всех точках 𝑥, то соотношение (1.2) представляет собой уравнение на функции 𝑥′(𝑥),
которые определяют изометрию. В общем случае это уравнение не имеет решений
и у соответствующего (псевдо-)риманова многообразия нет никаких нетривиальных
изометрий. В этом случае группа изометрий состоит из одного единичного элемента.
Чем шире группа изометрий, тем уже класс соответствующих (псевдо-)римановых
многообразий.

Пример 1.1.1. Евклидово пространство R𝑛 с евклидовой метрикой 𝛿𝛼𝛽 допускает
группу изометрий, которая состоит из преобразований неоднородной группы враще-
ний IO(𝑛,R), dim IO(𝑛,R) = 1

2
𝑛(𝑛 + 1), состоящей из вращений, сдвигов и отраже-

ний.

Группа изометрий I(M) может быть дискретной или группой Ли.

Определение. Если группа изометрий I(M) является группой Ли, то имеет смысл
говорить об инфинитезимальных преобразованиях (см. раздел ??). В этом случае мы
говорим об инфинитезимальных изометриях. Каждая инфинитезимальная изомет-
рия генерируется некоторым достаточно гладким векторным полем, которое назы-
вается векторным полем Киллинга.
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Замечание. Дискретные изометрии (псевдо-)риманова многообразия, например, от-
ражения, не генерируются никакими векторными полями.

Запишем условие инвариантности метрики относительно инфинитезимальных пре-
образований из группы изометрий в координатах. В разделе ?? было показано, что
каждое векторное поле генерирует однопараметрическую группу преобразований,
которая называется экспоненциальным отображением. Формально условие инвари-
антности метрики записывается в виде равенства нулю производной Ли вдоль век-
торного поля Киллинга 𝐾 = 𝐾𝛼𝜕𝛼 от метрики [?]

L𝐾𝑔 = 0. (1.3)

Используя явное выражение для производной Ли (??), это уравнение в локальной
системе координат принимает вид

∇𝛼𝐾𝛽 + ∇𝛽𝐾𝛼 = 0, (1.4)

где 𝐾𝛼 := 𝐾𝛽𝑔𝛽𝛼, а ковариантная производная

∇𝛼𝐾𝛽 = 𝜕𝛼𝐾𝛽 − Γ𝛼𝛽
𝛾𝐾𝛾

строится по символам Кристоффеля Γ𝛼𝛽
𝛾.

Определение. Уравнение (1.4) называется уравнением Киллинга, а интегральные
кривые полей Киллинга называются траекториями Киллинга. Если 𝐾 = 𝐾𝛼𝜕𝛼 –
векторное поле Киллинга, то ему соответствует 1-форма 𝐾 = 𝑑𝑥𝛼𝐾𝛼, где 𝐾𝛼 :=
𝐾𝛽𝑔𝛽𝛼, которая называется формой Киллинга, и для которой мы сохранили то же
обозначение.

На любом (псевдо-)римановом многообразии (M, 𝑔) уравнения Киллинга (1.3) все-
гда имеют тривиальное решение 𝐾 = 0. Если уравнения Киллинга имеют только
тривиальное решение, то в этом случае нетривиальные непрерывные изометрии от-
сутствуют.

Траектории Киллинга {𝑥𝛼(𝑡)} ∈ M, где 𝑡 ∈ R, определяются системой обыкно-
венных дифференциальных уравнений

𝑥̇𝛼 = 𝐾𝛼. (1.5)

Если траектория Киллинга при 𝑡 = 0 проходит через точку 𝑝 = {𝑝𝛼} ∈ M, то при
малых 𝑡 она имеет вид

𝑥𝛼(𝑡) = 𝑝𝛼 + 𝑡𝐾𝛼(𝑝) + o(𝑡). (1.6)

Если в некоторой точке векторное поле Киллинга равно нулю, то эта точка остает-
ся неподвижной, т.е. является стационарной точкой группы изометрий. Поскольку
изометрии определены для всего многообразия M и образуют группу, то векторные
поля Киллинга обязаны быть полными, т.е. параметр 𝑡 должен меняться на всей
вещественной прямой R.

Если для (псевдо-)риманова многообразия (M, 𝑔) известно векторное поле Кил-
линга, то оно определяет не только инфинитезимальные изометрии, но и всю одно-
параметрическую группу диффеоморфизмов. Для этого нужно найти интегральные
кривые 𝑥(𝑡), проходящие, через все точки многообразия 𝑝 ∈ M. Если 𝑥(0) = 𝑝, то
каждому значению 𝑡 ∈ R соответствует диффеоморфизм

𝚤 : M ∋ 𝑝 ↦→ 𝑥(𝑡) ∈ M.
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Уравнения для векторных полей Киллинга в ковариантной форме (1.4) можно
переписать в частных производных,

𝜕𝛼𝐾𝛽 + 𝜕𝛽𝐾𝛼 − 2Γ𝛼𝛽
𝛾𝐾𝛾 = 0.

В моделях математической физики часто ставится задача нахождения векторов Кил-
линга для заданной метрики на многообразии. Для решения этой задачи бывает удоб-
нее использовать контравариантные компоненты векторов Киллинга, для которых
уравнение Киллинга принимает вид

𝑔𝛼𝛾𝜕𝛽𝐾
𝛾 + 𝑔𝛽𝛾𝜕𝛼𝐾

𝛾 +𝐾𝛾𝜕𝛾𝑔𝛼𝛽 = 0. (1.7)

Полученное уравнение линейно по компонентам метрики и компонентам векторов
Киллинга. Отсюда сразу следует, что две метрики, которые отличаются постоянным
множителем, имеют один и тот же набор векторов Киллинга. Кроме того, векторное
поле Киллинга определено с точностью до умножения на произвольную постоянную,
отличную от нуля. В частности, если 𝐾𝛼 – векторное поле Киллинга, то и −𝐾𝛼 также
является полем Киллинга. Если независимых векторных полей Киллинга несколько,
то любая линейная комбинация этих полей также является полем Киллинга. То есть
множество векторных полей Киллинга образует линейное пространство над полем
вещественных чисел, которое является подпространством в множестве всех вектор-
ных полей 𝒳 (M).

Замечание. Векторные поля Киллинга не выдерживает умножения на функцию.
Поэтому они не образуют 𝒞∞(M)-модуль в отличие от множества всех векторных
полей 𝒳 (M).

Уравнения Киллинга (1.4) линейны по векторам Киллинга, но не линейны по
метрике. Допустим, что метрика 𝑔𝛼𝛽(𝑥, 𝑡) зависит от некоторого параметра 𝑡 ∈ R, и
для каждого значения 𝑡 уравнения Киллинга выполнены при фиксированном век-
торном поле Киллинга. Тогда разность метрик для различных значений параметра,
𝑔𝛼𝛽(𝑥, 𝑡2) − 𝑔𝛼𝛽(𝑥, 𝑡1), в общем случае не будет удовлетворять уравнениям Киллинга.
Отсюда следует, что производная 𝜕𝑡𝑔𝛼𝛽, как правило, не будет симметричной метри-
кой, даже если метрика 𝑔𝛼𝛽(𝑥, 𝑡) симметрична для всех значений 𝑡.

С каждым полем Киллинга как и с произвольным векторным полем связана
однопараметрическая группа преобразований, которая в данном случае сохраняет
метрику. Произвольная линейная комбинация векторов Киллинга ввиду линейности
уравнения Киллинга (1.4) снова дает вектор Киллинга. То есть поля Киллинга об-
разуют векторное пространство над полем вещественных чисел. В этом векторном
пространстве можно ввести билинейную операцию. Простые вычисления показыва-
ют, что коммутатор двух векторных полей Киллинга 𝐾1 и 𝐾2 снова дает поле Кил-
линга:

L[𝐾1,𝐾2]𝑔 = L𝐾1 ∘ L𝐾2𝑔 − L𝐾2 ∘ L𝐾1𝑔 = 0,

Отсюда следует, что векторные поля Киллинга образуют алгебру Ли i(M) над полем
вещественных чисел, которая является подалгеброй алгебры Ли множества всех век-
торных полей, i(M) ⊂ 𝒳 (M). Эта алгебра является алгеброй Ли группы изометрий
I(M).

Предложение 1.1.2. Пусть (псевдо-)риманово многообразие (M, 𝑔) имеет n ≤
dimM отличных от нуля коммутирующих между собой и линейно независимых
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векторных полей Киллинга 𝐾𝑖, 𝑖 = 1, . . . ,n. Тогда существует такая система ко-
ординат, в которой все компоненты метрики не зависят от n координат, соот-
ветствующих траекториям Киллинга. Обратно. Если в некоторой системе коор-
динат компоненты метрики не зависят от n координат, то метрика 𝑔 допускает
по крайней мере n коммутирующих между собой векторных полей Киллинга.

Доказательство. В разделе ?? была построена специальная система координат, свя-
занная с произвольным векторным полем, отличным от нуля. Применительно к век-
торным полям Киллинга 𝐾𝑖 это означает, что существует такая система координат
(𝑥1, . . . , 𝑥𝑛), в которой каждое поле Киллинга имеет только одну постоянную компо-
ненту,𝐾𝑖 = 𝜕𝑖. В этой системе координат уравнение (1.7) для каждого поля Киллинга
принимает особенно простой вид

𝜕𝑖𝑔𝛼𝛽 = 0, 𝑖 = 1, . . . , 𝑘.

Это значит, что все компоненты метрики не зависят от координат 𝑥𝑖. В этой системе
координат траектории Киллинга определяются уравнениями

𝑥̇𝑖 = 1, 𝑥̇𝜇 = 0, 𝜇 ̸= 𝑖.

Отсюда следует, что координатные линии 𝑥𝑖 являются траекториями Киллинга.

Согласно сформулированной теореме, в предельном случае, когда количество
коммутирующих полей Киллинга равно размерности многообразия, n = 𝑛, суще-
ствует такая система координат, в которой все компоненты метрики постоянны.

Пример 1.1.2. В евклидовом пространстве R𝑛 в декартовой системе координат 𝑥𝛼,
𝛼 = 1, . . . , 𝑛, компоненты метрики постоянны, 𝑔𝛼𝛽 = 𝛿𝛼𝛽. Эта метрика допускает
𝑛 векторных полей Киллинга 𝐾𝛼 := 𝜕𝛼, которые соответствуют трансляциям. Все
координатные оси являются траекториями Киллинга.

Если риманово многообразие (M, 𝑔) имеет два или более некоммутирующих век-
торных полей Киллинга, то это отнюдь не означает, что существует такая система
координат, в которой компоненты метрики не зависят от двух или более координат.

Пример 1.1.3. Рассмотрим двумерную сферу S2 →˓ R3. Пусть метрика 𝑔 на сфере
индуцирована вложением. Риманово пространство (S2, 𝑔) имеет три векторных по-
ля Киллинга, соответствующих SO(3) вращениям евклидова пространства R3. Легко
понять, что на сфере не существует локальной системы координат, в которой ком-
поненты метрики не зависели бы от двух координат. Действительно, это означает,
что в данной системе координат компоненты метрики постоянны, и, следовательно,
кривизна равна нулю. Но это невозможно, поскольку кривизна сферы постоянна и
отлична от нуля.

В общей теории относительности мы предполагаем, что пространство-время явля-
ется псевдоримановым многообразием с метрикой лоренцевой сигнатуры. Используя
понятие векторного поля Киллинга, можно дать инвариантное

Определение. Пространство-время или его область называются статическими, ес-
ли на них существует времениподобное векторное поле Киллинга.

Векторные поля Киллинга определены глобально и удовлетворяют уравнениям
Киллинга на всем M. В то же время уравнения Киллинга – это локальный объект, в
том смысле, что они определены в каждой окрестности и могут иметь нетривиальные
решения только на некотором подмногообразии U ⊂ M.
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Пример 1.1.4. Рассмотрим гладкую замкнутую двумерную поверхность M, вло-
женную в трехмерное евклидово пространство R3, как показано на рис. 1.1. Отличи-
тельной особенностью этой поверхности является то, что ее нижняя часть является
плоской. Пусть метрика на M индуцирована вложением M →˓ R3. Тогда уравне-
ния Киллинга в нижней части поверхности легко интегрируются, как и на евклидо-
вой плоскости. Однако найденные нетривиальные решения не будут в общем случае
нетривиальными во всех точках M. Действительно, верхняя часть поверхности мо-
жет быть искривлена так, что уравнения Киллинга на ней имеют только тривиальное
решение. Следовательно, векторные поля Киллинга могут быть нетривиальны толь-
ко на части многообразия M. Заметим, что в рассматриваемом примере траектории
Киллинга не являются полными.

Рис. 1.1: Двумерная поверхность, вложенная в трехмерное евклидово пространство.
Нижняя часть поверхности является плоской.

1.2 Свойства векторных полей Киллинга
Векторные поля Киллинга обладают рядом замечательных свойств. Начнем с про-
стейших.

Предложение 1.2.1. Длина вектора Киллинга остается постоянной вдоль тра-
ектории Киллинга:

L𝐾𝐾
2 = ∇𝐾𝐾

2 = 𝐾𝛼𝜕𝛼𝐾
2 = 0. (1.8)

Доказательство. Свернем уравнения Киллинга (1.4) с 𝐾𝛼𝐾𝛽:

2𝐾𝛼𝐾𝛽∇𝛼𝐾𝛽 = 𝐾𝛼∇𝛼𝐾
2 = 𝐾𝛼𝜕𝛼𝐾

2 = 0.

Следствие. Если векторные поля Киллинга существуют на лоренцевом многообра-
зии, то они имеют определенную ориентацию: времениподобную, светоподобную или
пространственноподобную.

Сравним траектории Киллинга с экстремалями [?].

Предложение 1.2.2. Пусть (M, 𝑔) – (псевдо-)риманово многообразие с векторным
полем Киллинга 𝐾. Траектории Киллинга являются экстремалями тогда и только
тогда, когда их длина постоянна на M, 𝐾2 = const.

Доказательство. Рассмотрим траектории Киллинга 𝑥𝛼(𝑡), которые определяются
системой уравнений

𝑥̇𝛼 = 𝐾𝛼. (1.9)
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Длина дуги траектории Киллинга

𝑑𝑠2 = 𝑔𝛼𝛽𝑥̇
𝛼𝑥̇𝛽𝑑𝑡2 = 𝐾2𝑑𝑡2

постоянна вдоль траектории, т.е. параметр 𝑡 пропорционален длине и, следовательно,
является каноническим. Дифференцируя уравнение (1.9) по параметру 𝑡, получим
равенство

𝑥̈𝛼 = 𝜕𝛽𝐾
𝛼𝑥̇𝛽 = (∇𝛽𝐾

𝛼 − Γ𝛽𝛾
𝛼𝐾𝛾)𝑥̇𝛽,

которое перепишем в виде

𝑥̈𝛼 = 𝐾𝛽∇𝛽𝐾
𝛼 − Γ𝛽𝛾

𝛼𝑥̇𝛽𝑥̇𝛾. (1.10)

Уравнения Киллинга позволяют переписать первое слагаемое в правой части в виде

𝐾𝛽∇𝛽𝐾
𝛼 = −1

2
𝑔𝛼𝛽𝜕𝛽𝐾

2.

Тогда уравнения (1.10) примут вид

𝑥̈𝛼 = −1

2
𝑔𝛼𝛽𝜕𝛽𝐾

2 − Γ𝛽𝛾
𝛼𝑥̇𝛽𝑥̇𝛾.

Это уравнение совпадает с уравнением для экстремалей (??) тогда и только тогда,
когда 𝐾2 = const.

Доказанное утверждение показывает, что далеко не каждая траектория Киллинга
является экстремалью.

Пример 1.2.1. Рассмотрим евклидову плоскость R2 с евклидовой метрикой. Эта
метрика инвариантна относительно трехпараметрической неоднородной группы вра-
щений IO(2). Обозначим декартовы и полярные координаты на плоскости соответ-
ственно 𝑥, 𝑦 и 𝑟, 𝜙. Тогда векторные поля Киллинга имеют вид 𝐾1 = 𝜕𝜙 для вращений
и 𝐾2 = 𝜕𝑥, 𝐾3 = 𝜕𝑦 для сдвигов. Квадраты длин векторов Киллинга равны:

𝐾2
1 = 𝑟2, 𝐾2

2 = 𝐾2
3 = 1.

Векторы Киллинга 𝐾2 и 𝐾3 имеют постоянную длину, их траекториями Киллинга
являются прямые линии, которые являются экстремалями. Это согласуется с предло-
жением 1.2.2. Траекториями Киллинга для вращений 𝐾1 являются концентрические
окружности с центром в начале координат. Длина вектора Киллинга 𝐾1 постоянна
на траекториях в соответствии с предложением 1.2.1, однако непостоянна на всей
плоскости R2. Соответствующие траектории Киллинга – окружности – не являются
экстремалями.

Пример 1.2.2. Рассмотри полупростую группу Ли G, как (псевдо-)риманово про-
странство с формой Киллинга–Картана в качестве метрики (см. раздел ??). Это –
пространство постоянной кривизны. Левоинвариантные векторные поля генерируют
групповые преобразования справа, а правоинвариантные – слева. Групповые преоб-
разования слева и справа сохраняют метрику, и, следовательно, лево- и правоинва-
риантные векторные поля являются полями Киллинга. Длина этих полей Киллинга
равна ±1. Поэтому соответствующие траектории Киллинга являются экстремаля-
ми.
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Свертывая уравнения Киллинга (1.4) с метрикой, получаем, что дивергенция по-
ля Киллинга равна нулю:

∇𝛼𝐾
𝛼 = 0. (1.11)

Ковариантная производная ∇𝛽 со связностью Леви–Чивита от уравнения Кил-
линга (1.4) с учетом уравнения (??) для перестановки ковариантных производных и
уравнения (1.11) приводит к уравнению

∇𝛽(∇𝛽𝐾𝛼 + ∇𝛼𝐾𝛽) = △𝐾𝛼 + (∇𝛽∇𝛼 −∇𝛼∇𝛽)𝐾𝛽 = 0,

где △ := ∇𝛽∇𝛽 – оператор Лапласа–Бельтрами на многообразии M, и учтено равен-
ство (1.11). Отсюда вытекает уравнение на компоненты векторов Киллинга

△𝐾𝛼 = 𝑅𝛼𝛽𝐾
𝛽, (1.12)

Для пространства постоянной кривизны тензор Риччи выражается через скалярную
кривизну (1.23), и уравнение (1.12) принимает вид

△𝐾𝛼 =
𝑅

𝑛
𝐾𝛼, 𝑅 = const.

То есть каждая компонента формы Киллинга является собственным вектором опе-
ратора Лапласа–Бельтрами.

Предложение 1.2.3. Пусть 𝑋, 𝑌 ∈ 𝒳 (M) – два произвольных векторных поля
на (псевдо-)римановом многообразии (M, 𝑔) и 𝐾 – векторное поле Киллинга. Тогда
справедливо равенство

𝑔
(︀
( L𝐾 −∇𝐾)𝑋, 𝑌

)︀
+ 𝑔

(︀
𝑋, ( L𝐾 −∇𝐾)𝑌

)︀
= 0,

где L𝐾𝑋 = [𝐾,𝑋] – производная Ли и ∇𝐾𝑋 = 𝐾𝛼(𝜕𝛼𝑋
𝛽+Γ𝛼𝛾

𝛽𝑋𝛾)𝜕𝛽 – ковариантная
производная векторного поля 𝑋 вдоль поля Киллинга 𝐾.

Доказательство. Прямая проверка с учетом явного выражения для символов Кри-
стоффеля (??) и уравнения Киллинга (1.4).

1.3 Однородные и изотропные многообразия
Уравнения Киллинга (1.4) накладывают сильные ограничения на векторные поля
Киллинга, которые мы сейчас обсудим. Воспользовавшись тождеством для комму-
татора ковариантных производных (??), получаем равенство

∇𝛼∇𝛽𝐾𝛾 −∇𝛽∇𝛼𝐾𝛾 = −𝑅𝛼𝛽𝛾
𝛿𝐾𝛿. (1.13)

Теперь воспользуемся тождеством (??) для тензора кривизны и уравнениями Кил-
линга (1.4). В результате получим тождество для векторных полей Киллинга:

∇𝛼∇𝛽𝐾𝛾 + ∇𝛽∇𝛾𝐾𝛼 + ∇𝛾∇𝛼𝐾𝛽 = 0,

где слагаемые отличаются циклической перестановкой индексов. Это равенство поз-
воляет переписать уравнение (1.13) в виде

∇𝛾∇𝛼𝐾𝛽 = 𝑅𝛼𝛽𝛾
𝛿𝐾𝛿. (1.14)
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Если свернуть это уравнение по индексам 𝛾, 𝛼, то получим в точности уравнение
(1.12) из предыдущего раздела.

Полученное равенство (1.12)является следствием уравнений Киллинга, но не эк-
вивалентно им. Оно позволяет сделать важные выводы. Предположим, что в окрест-
ности произвольной точки многообразия 𝑝 ∈ M компоненты векторного поля Кил-
линга разлагаются в ряд Тейлора, который сходится в некоторой окрестности U𝑝.
Допустим, что в точке 𝑝 ∈ M нам заданы компоненты формы Киллинга 𝐾𝛼(𝑝) и их
первых производных 𝜕𝛽𝐾𝛼(𝑝). Тогда соотношения (1.14) позволяют вычислить все
вторые производные от компонент формы Киллинга 𝜕2𝛽𝛾𝐾𝛼. Теперь возьмем ковари-
антную производную от равенства (1.14) и получим некоторое соотношение, линейное
по третьим производным. Из него можно найти все третьи производные от вектора
Киллинга и т.д. до бесконечности. Важно отметить, что все соотношения линейны
по компонентам формы Киллинга и их производным. Это значит, что в окрестности
U𝑝 компоненты формы Киллинга имеют вид

𝐾𝛼(𝑥, 𝑝) = 𝐴𝛼
𝛽(𝑥, 𝑝)𝐾𝛽(𝑝) +𝐵𝛼

𝛽𝛾(𝑥, 𝑝)
[︀
𝜕𝛽𝐾𝛾(𝑝) − 𝜕𝛽𝐾𝛼(𝑝)

]︀
, (1.15)

где 𝐴𝛼
𝛽(𝑥, 𝑝) и 𝐵𝛼

𝛽𝛾(𝑥, 𝑝) – некоторые функции. Антисимметрия последнего слага-
емого по индексам 𝛽, 𝛾 связана с тем, что симметризованная частная производная
выражается через компоненты формы Киллинга в силу уравнения Киллинга (1.4).
Таким образом, компоненты формы Киллинга в окрестности U𝑝 являются линейны-
ми функциями от компонент формы Киллинга в точке 𝑝 и ее внешней производной
в той же точке.

У формы Киллинга 𝐾𝛼(𝑥, 𝑝) второй аргумент 𝑝 означает, что эта форма имеет
определенные свойства в точке 𝑝 ∈ M. По предположению, представление (1.15)
справедливо для всех точек многообразия 𝑝 ∈ M, необходимо только задать значения
𝐾(𝑝) и 𝑑𝐾(𝑝). Мы предполагаем, что эти значения выбраны достаточно гладкими
функциями от 𝑝. Тогда форма Киллинга будет достаточно гладкой функцией и от 𝑥,
и от 𝑝.

Мы предположили, что компоненты формы Киллинга разлагаются в ряды Тей-
лора в окрестности каждой точки 𝑝 ∈ M. Обозначим через U𝑝 окрестность точки 𝑝,
в которой разложение (1.15) справедливо и обратимо, т.е. аргументы 𝑥 и 𝑝 можно
поменять местами для некоторых новых матриц 𝐴 и 𝐵. Рассмотрим точку 𝑞, кото-
рая лежит вне U𝑝. Для этой точки также справедливо обратимое разложение вида
(1.15) в некоторой окрестности U𝑞. Предположим, что точка 𝑞 лежит достаточно
близко к U𝑝 так, что окрестности пересекаются, U𝑝 ∩ U𝑞 ̸= ∅. Тогда для всех точек
из пересечения 𝑥 ∈ U𝑝 ∩ U𝑞 справедливо разложение (1.15) по компонентам форм
Киллинга 𝐾(𝑝) и 𝐾(𝑞) и их внешним производным. Отсюда следует, что компонен-
ты формы Киллинга и ее внешней производной в точке 𝑞 линейно выражаются через
компоненты формы Киллинга и ее внешней производной в точке 𝑝. Таким образом,
разложение (1.15) справедливо также в объединении U𝑝 ∪ U𝑞. Это построение мож-
но продолжить на все многообразие M. Поэтому разложение (1.15) справедливо для
всех точек 𝑥, 𝑝 ∈ M.

Теперь предположим, что (псевдо-)риманово многообразие (M, 𝑔) имеет несколь-
ко векторных полей Киллинга 𝐾𝑖, 𝑖 = 1, . . . ,n. Тогда для каждого векторного поля
Киллинга справедливо разложение (1.15)

𝐾𝑖𝛼(𝑥, 𝑝) = 𝐴𝛼
𝛽(𝑥, 𝑝)𝐾𝑖𝛽(𝑝) +𝐵𝛼

𝛽𝛾(𝑥, 𝑝)
[︀
𝜕𝛽𝐾𝑖𝛾(𝑝) − 𝜕𝛾𝐾𝑖𝛽(𝑝)

]︀
. (1.16)

Функции 𝐴𝛼
𝛽(𝑥, 𝑝) и 𝐵𝛼

𝛽𝛾(𝑥, 𝑝) одинаковы для всех форм Киллинга, потому что опре-
деляются соотношениями (1.14), которые линейны по компонентам форм Киллинга
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и их производным. Они полностью определяются метрикой, тензором кривизны и их
ковариантными производными. В полученном разложении точка 𝑝 ∈ M произвольна,
но фиксирована, а точка 𝑥 ∈ M пробегает все многообразие.

Соотношение (1.14) представляет собой систему уравнений в частных производ-
ных на компоненты формы Киллинга, у которой есть нетривиальные условия разре-
шимости. Одно из этих условий в ковариантной форме имеет вид

[∇𝛾∇𝛿]∇𝛼𝐾𝛽 = −𝑅𝛾𝛿𝛼
𝜖∇𝜖𝐾𝛽 −𝑅𝛾𝛿𝛽

𝜖∇𝛼𝐾𝜖,

где квадратные скобки обозначают коммутатор ковариантных производных. Подста-
новка в левую часть этого уравнения исходного выражения для вторых производных
от формы Киллинга (1.14) после несложных алгебраических преобразований приво-
дит к равенству(︁

𝑅𝛼𝛽𝛾
𝜖𝛿𝜁𝛿 −𝑅𝛼𝛽𝛿

𝜖𝛿𝜁𝛾 +𝑅𝛾𝛿𝛼
𝜖𝛿𝜁𝛽 −𝑅𝛾𝛿𝛽

𝜖𝛿𝜁𝛼

)︁
∇𝜁𝐾𝜖 = (∇𝛾𝑅𝛼𝛽𝛿

𝜖 −∇𝛿𝑅𝛼𝛽𝛾
𝜖)𝐾𝜖. (1.17)

Если кривизна нетривиальна, то это уравнение дает некоторые линейные соотноше-
ния между компонентами формы Киллинга 𝐾𝛼 и их ковариантными производными
∇𝛽𝐾𝛼. Наоборот, если существует некоторая информация в формах Киллинга, то
полученное уравнение может определить структуру тензора кривизны. В теореме
1.3.1, которая сформулирована ниже, соотношение (1.17) использовано для доказа-
тельства того, что однородное и изотропное многообразие является пространством
постоянной кривизны.

Перейдем к определениям.

Определение. (Псевдо-)риманово многообразие (M, 𝑔) размерности dimM = 𝑛 на-
зывается однородным в точке 𝑝 ∈ M, если существуют инфинитезимальные изомет-
рии, которые переводят эту точку в любую другую точку из некоторой окрестности
U𝑝. Другими словами, метрика должна допускать такие векторные поля Киллинга,
которые в точке 𝑝 имеют все возможные направления. Поскольку векторы Киллинга
образуют линейное пространство, то в сопряженном пространстве достаточно суще-
ствования такого набора из 𝑛 форм Киллинга 𝐾(𝛾) = 𝑑𝑥𝛼𝐾𝛼

(𝛾)(𝑥, 𝑝), где индекс 𝛾 в
скобках нумерует формы Киллинга, что выполнены условия:

𝐾𝛼
(𝛾)(𝑝, 𝑝) = 𝛿𝛾𝛼. (1.18)

Если (псевдо-)риманово многообразие (M, 𝑔) однородно в каждой своей точке, то
оно называется однородным. Другими словами, группа изометрий действует на M
транзитивно.

(Псевдо-)риманово многообразие (M, 𝑔) называется изотропным в точке 𝑝 ∈ M,
если существуют такие инфинитезимальные изометрии с формами Киллинга𝐾(𝑥, 𝑝),
которые оставляют эту точку на месте, т.е. 𝐾(𝑝, 𝑝) = 0, и для которых внешняя
производная 𝑑𝐾(𝑝, 𝑝) в точке 𝑝 принимает любое значение в пространстве 2-форм
Λ2(M)|𝑝 в точке 𝑝. Для этого достаточно существования такого набора из 1

2
𝑛(𝑛 − 1)

форм Киллинга 𝐾 [𝛾𝛿] = −𝐾 [𝛿𝛾] = 𝑑𝑥𝛼𝐾𝛼
[𝛾𝛿](𝑥, 𝑝), где индексы 𝛾, 𝛿 нумеруют формы

Киллинга, что выполнены условия:

𝐾𝛼
[𝛾𝛿](𝑝, 𝑝) = 0,

𝜕𝐾𝛽
[𝛾𝛿](𝑥, 𝑝)

𝜕𝑥𝛼

⃒⃒⃒⃒
𝑥=𝑝

= 𝛿𝛾𝛿𝛼𝛽 − 𝛿𝛿𝛾𝛼𝛽.
(1.19)

Если (псевдо-)риманово многообразие (M, 𝑔) изотропно в каждой своей точке, то оно
называется изотропным.
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Замечание. В разделе ?? было дано определение однородного пространства, как
произвольной транзитивной группы преобразований (M,G). При этом наличие мет-
рики на многообразии M не предполагалось. Поскольку группа изометрий является
группой преобразований, то данное выше определение согласуется с тем, что было
дано в разделе ??. В обратную сторону утверждение следующее. Пусть дано одно-
родное пространство (M,G) в смысле группы преобразований. Тогда многообразие
M нетрудно превратить в (псевдо-)риманово многообразие с метрикой, инвариант-
ной относительно действия группы G. Для этого достаточно в произвольной точке
𝑝 ∈ M выбрать симметричную невырожденную матрицу и “разнести” ее по всему мно-
гообразию при помощи действия группы G. По построению группа G будет группой
изометрий для полученной метрики.

В силу непрерывности, наборы форм𝐾(𝛾) и𝐾 [𝛾𝛿] линейно независимы в некоторой
окрестности точки 𝑝.

Предложение 1.3.1. Любое изотропное (псевдо-)риманово многообразие (M, 𝑔) яв-
ляется также однородным.

Доказательство. Если многообразие изотропно, то формы Киллинга 𝐾 [𝛾,𝛿](𝑥, 𝑝) и
𝐾 [𝛾,𝛿](𝑥, 𝑝+ 𝑑𝑝) удовлетворяют условиям (1.19) в близких точках 𝑝 и 𝑝+ 𝑑𝑝 соответ-
ственно. Любая их линейная комбинация будет формой Киллинга и, следовательно,
произвольная линейная комбинация производных

𝑐𝛼
𝜕𝐾𝛽

[𝛾𝛿](𝑥, 𝑝)

𝜕𝑝𝛼
:= 𝑐𝛼 lim

𝑑𝑝𝛼→0

𝐾𝛽
[𝛾,𝛿](𝑥, 𝑝+ 𝑑𝑝) −𝐾𝛽

[𝛾,𝛿](𝑥, 𝑝)

𝑑𝑝𝛼

также будет формой Киллинга для любого набора постоянных 𝑐𝛼. Вычислим произ-
водную по 𝑥 формы Киллинга 𝐾 [𝛾𝛿] в точке 𝑝. Из первого условия в (1.19) следует
равенство

𝜕

𝜕𝑝𝛼
𝐾𝛽

[𝛾𝛿](𝑝, 𝑝) =
𝜕𝐾𝛽

[𝛾𝛿](𝑥, 𝑝)

𝜕𝑥𝛼

⃒⃒⃒⃒
𝑥=𝑝

+
𝜕𝐾𝛽

[𝛾𝛿](𝑥, 𝑝)

𝜕𝑝𝛼

⃒⃒⃒⃒
𝑥=𝑝

= 0.

Откуда, с учетом второго условия в (1.19), получаем равенство

𝜕𝐾𝛽
[𝛾𝛿](𝑥, 𝑝)

𝜕𝑝𝛼

⃒⃒⃒⃒
𝑥=𝑝

= −𝛿𝛾𝛿𝛼𝛽 + 𝛿𝛿𝛾𝛼𝛽.

Отсюда следует, что из форм Киллинга 𝐾 [𝛾𝛿] можно построить форму Киллинга,
которая в точке 𝑝 принимает любое заданное значение 𝑑𝑥𝛼𝑎𝛼, где 𝑎𝛼 ∈ R. Для этого
достаточно положить

𝐾𝛼 =
𝑎𝛾

𝑛− 1

𝜕𝐾𝛼
[𝛾𝛿](𝑥, 𝑝)

𝜕𝑝𝛿
.

Выбрав соответствующим образом постоянные 𝑎𝛾, получим набор форм Киллинга,
который удовлетворяет условиям (1.18).

Теорема 1.3.1. Алгебра Ли i(M) инфинитезимальных изометрий связного (псев-
до-)риманова многообразия M имеет размерность не более, чем 1

2
𝑛(𝑛 + 1), где 𝑛 =

dimM. Если размерность максимальна, dim i(M) = 1
2
𝑛(𝑛 + 1), то многообразие M

является однородным и изотропным и представляет собой пространство посто-
янной кривизны.
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Доказательство. Размерность алгебры Ли i(M) равна максимальному числу ли-
нейно независимых векторных полей Киллинга на многообразии M. Из равенства
(1.16) следует, что число независимых векторных полей Киллинга n не может пре-
вышать числа независимых компонент формы {𝐾𝛼(𝑝)} и ее внешней производной
{𝜕𝛽𝐾𝛼(𝑝) − 𝜕𝛼𝐾𝛽(𝑝)} в фиксированной точке 𝑝 ∈ M. Число независимых компонент
любой 1-формы в фиксированной точке не превосходит 𝑛, а число независимых ком-
понент внешней производной не может превышать 1

2
𝑛(𝑛 − 1). Поэтому справедливо

следующее ограничение на размерность алгебры Ли векторных полей Киллинга:

dim i(M) ≤ 𝑛+
1

2
𝑛(𝑛− 1) =

1

2
𝑛(𝑛+ 1).

Это доказывает первое утверждение теоремы.
Однородные и изотропные многообразия имеют максимальное число 1

2
𝑛(𝑛 + 1)

векторных полей Киллинга и, в силу разложения (1.16), определяют все возможные
векторы Киллинга на многообразии M. Следовательно, если некоторое многообразие
имеет максимальное число независимых полей Киллинга, то оно с необходимостью
должно быть однородным и изотропным.

Теперь докажем, что любое однородное и изотропное пространство является про-
странством постоянной кривизны. Если пространство однородно и изотропно, то для
каждой точки 𝑥 ∈ M найдутся такие формы Киллинга, для которых 𝐾𝛼(𝑥) = 0, а
∇𝛽𝐾𝛼(𝑥) является произвольной антисимметричной матрицей. Отсюда следует, что
антисимметризированный коэффициент при ∇𝜁𝐾𝜖 в уравнении (1.17) должен быть
равен нулю, что приводит к равенству

𝑅𝛼𝛽𝛾
𝜖𝛿𝜁𝛿 −𝑅𝛼𝛽𝛿

𝜖𝛿𝜁𝛾 +𝑅𝛾𝛿𝛼
𝜖𝛿𝜁𝛽 −𝑅𝛾𝛿𝛽

𝜖𝛿𝜁𝛼 = 𝑅𝛼𝛽𝛾
𝜁𝛿𝜖𝛿 −𝑅𝛼𝛽𝛿

𝜁𝛿𝜖𝛾 +𝑅𝛾𝛿𝛼
𝜁𝛿𝜖𝛽 −𝑅𝛾𝛿𝛽

𝜁𝛿𝜖𝛼. (1.20)

Если пространство однородно и изотропно, то для произвольной точки 𝑥 ∈ M суще-
ствуют также такие формы Киллинга, которые принимают в этой точке произволь-
ные значения. Следовательно, из уравнений (1.17) и (1.20) вытекает равенство

∇𝛾𝑅𝛼𝛽𝛿
𝜖 = ∇𝛿𝑅𝛼𝛽𝛾

𝜖. (1.21)

Теперь свернем уравнение (1.20) по индексам 𝛿, 𝜁 и опустим верхний индекс. В ре-
зультате получим выражение тензора кривизны через тензор Риччи и метрику:

(𝑛− 1)𝑅𝛼𝛽𝛾𝛿 = 𝑅𝛽𝛿𝑔𝛼𝛾 −𝑅𝛼𝛿𝑔𝛽𝛾. (1.22)

Правая часть этой формулы должна быть антисимметрична по индексам 𝛿, 𝛾. По-
этому возникает дополнительное ограничение

𝑅𝛽𝛿𝑔𝛼𝛾 −𝑅𝛼𝛿𝑔𝛽𝛾 = −𝑅𝛽𝛾𝑔𝛼𝛿 +𝑅𝛼𝛾𝑔𝛽𝛿.

Свертка полученного равенства по индексам 𝛽, 𝛾 дает связь между тензором Риччи
и скалярной кривизной:

𝑅𝛼𝛿 =
1

𝑛
𝑅𝑔𝛼𝛿. (1.23)

Подстановка этого выражения в (1.22) приводит к следующему выражению для тен-
зора кривизны

𝑅𝛼𝛽𝛾𝛿 =
𝑅

𝑛(𝑛− 1)
(𝑔𝛼𝛾𝑔𝛽𝛿 − 𝑔𝛼𝛿𝑔𝛽𝛾) . (1.24)
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Теперь осталось доказать, что скалярная кривизна 𝑅 однородного и изотропного
пространства постоянна. Для этой цели используем свернутые тождества Бианки

2∇𝛽𝑅𝛼
𝛽 −∇𝛼𝑅 = 0.

Подставляя в это тождество выражение для тензора Риччи (1.23), получаем условие(︂
2

𝑛
− 1

)︂
𝜕𝛼𝑅 = 0.

При 𝑛 ≥ 3 отсюда следует 𝑅 = const.
Случай 𝑛 = 2 требует особого рассмотрения. Свертка равенства (1.21) по индек-

сам 𝛽, 𝜖 приводит к равенству

∇𝛾𝑅𝛼𝛿 −∇𝛿𝑅𝛼𝛾 = 0.

дальнейшая свертка с 𝑔𝛼𝛿 с учетом уравнения (1.23) приводит к условию 𝜕𝛾𝑅 = 0,
т.е. 𝑅 = const и при 𝑛 = 2.

Таким образом, скалярная кривизна в выражении для полного тензора кривизны
(1.24) равна константе, 𝑅 = const, и максимально симметричное (псевдо-)риманово
многообразие является пространством постоянной кривизны.

Замечание. Если тензор кривизны имеет вид (1.24), где 𝑅 = const, то соответствую-
щее многообразие является пространством постоянной кривизны, т.к. ковариантная
производная от метрики в римановой геометрии равна нулю, ∇𝜖𝑅𝛼𝛽𝛾𝛿 = 0. Обратное,
вообще говоря, неверно. У пространства постоянной кривизны тензор кривизны не
обязательно имеет вид (1.24). Примером является полупростая группа Ли (см. раз-
дел ??). Отсюда следует, что не всякое пространство постоянной кривизны является
максимально симметричным.

Пример 1.3.1. Рассмотрим евклидово пространство R𝑛, на котором задана метрика
нулевой кривизны, т.е. 𝑅𝛼𝛽𝛾𝛿 = 0. Ясно, что это пространство постоянной нулевой
кривизны. Тогда в R𝑛 существует такая система координат 𝑥𝛼, 𝛼 = 1, . . . , 𝑛 в которой
все компоненты метрики постоянны. В этой системе координат символы Кристоф-
феля равны нулю и уравнение для векторов Киллинга (1.14) принимает простой вид:

𝜕2𝛽𝛾𝐾𝛼 = 0.

Общее решение этого уравнения линейно по координатам

𝐾𝛼(𝑥) = 𝑎𝛼 + 𝑏𝛼𝛽𝑥
𝛽,

где 𝑎𝛼 и 𝑏𝛼𝛽 – некоторые постоянные. Из уравнения Киллинга (1.4) следует, что
это выражение задает форму Киллинга тогда и только тогда, когда матрица 𝑏𝛼𝛽
антисимметрична, т.е. 𝑏𝛼𝛽 = −𝑏𝛽𝛼. Следовательно, можно задать 1

2
𝑛(𝑛 + 1) линейно

независимых форм Киллинга:

𝐾𝛼
(𝛾)(𝑥) = 𝛿𝛾𝛼,

𝐾𝛼
[𝛾𝛿](𝑥) = 𝛿𝛿𝛼𝑥

𝛾 − 𝛿𝛾𝛼𝑥
𝛿.

Тогда произвольная форма Киллинга выражается в виде линейной комбинации

𝐾𝛼 = 𝑎𝛾𝐾𝛼
(𝛾) +

1

2
𝑏𝛿𝛾𝐾𝛼

[𝛾𝛿].
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В полученном выражении 𝑛 векторов Киллинга 𝐾(𝛾) генерируют трансляции в R𝑛

вдоль осей координат, а 1
2
𝑛(𝑛−1) векторов𝐾 [𝛾𝛿] – вращения вокруг начала координат.

Таким образом, метрика пространства нулевой кривизны допускает максимальное
число 1

2
𝑛(𝑛 + 1) векторов Киллинга и поэтому является однородным и изотропным

пространством.
Известно, что линейным преобразованием координат 𝑥𝛼 метрику можно преобра-

зовать к диагональному виду, когда на диагонали будут стоять ±1, в зависимости
от сигнатуры исходной метрики. Если метрика риманова, то после преобразования
координат, она примет стандартный вид 𝑔𝛼𝛽 = 𝛿𝛼𝛽. Эта метрика инвариантна отно-
сительно неоднородной группы вращений IO(𝑛).

1.4 Симметричные тензоры на пространстве посто-
янной кривизны

В разделе 1.3 мы выяснили, что однородные и изотропные 𝑛-мерные многообразия
с необходимостью являются пространствами постоянной кривизны, которое имеют
максимальное число 𝑛(𝑛+1)/2 линейно независимых векторных полей Киллинга. Бо-
лее того, если под пространством постоянной кривизны понимать (псевдо-)риманово
многообразие с метрикой, удовлетворяющей условию (1.24), где скалярная кривиз-
на 𝑅 постоянна, то пространство постоянной кривизны определяется, по-существу,
единственным образом сигнатурой метрики и знаком скалярной кривизны. Такие
пространства часто встречаются в приложениях, причем помимо метрики на таких
многообразиях, как правило, задаются дополнительные тензорные поля, например,
поля материи. Для того, чтобы вся модель была максимально симметричной необхо-
димо потребовать симметрию не только от метрики, но и от всех остальных полей.
В настоящем разделе мы получим условия, которые налагают требования однород-
ности и изотропии на простейшие тензорные поля, заданные на пространстве посто-
янной кривизны.

Пусть на 𝑛-мерном пространстве постоянной кривизны S помимо метрики 𝑔𝛼𝛽
задано произвольное тензорное поле

𝑇 = 𝑑𝑥𝛼 ⊗ . . .⊗ 𝑑𝑥𝛽 𝑇𝛼...𝛽.

Для определенности мы рассмотрим ковариантные тензорные поля. Пусть задана
изометрия 𝚤 : 𝑥 ↦→ 𝑥′. Тогда условие симметрии тензорного поля относительно дей-
ствия данной изометрии имеет тот же вид, что и для метрики (1.1):

𝑇 (𝑥) = 𝚤*𝑇 (𝑥′),

где 𝚤* – возврат отображения. В компонентах это условие принимает вид

𝑇𝛼...𝛽(𝑥) =
𝜕𝑥′𝛾

𝜕𝑥𝛼
. . .

𝜕𝑥′𝛿

𝜕𝑥𝛽
𝑇𝛾...𝛿(𝑥

′). (1.25)

Пусть инфинитезимальные изометрии генерируются векторными полями Киллин-
га 𝐾 = 𝐾𝛼𝜕𝛼. Тогда условие симметрии (1.25) запишется в виде равенства нулю
производной Ли:

L𝐾𝑇 = 0. (1.26)

Такое же условие инвариантности должно выполняться и для произвольных тен-
зорных полей, содержащих как ковариантные, так и контравариантные индексы.
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Теперь рассмотрим простейшие случаи, которые часто встречаются в приложе-
ниях.

Пример 1.4.1. Пусть на пространстве постоянной кривизны S задано дифференци-
руемое скалярное поле 𝜙(𝑥) ∈ 𝒞∞(S). Тогда равенство нулю производной Ли примет
вид

𝐾𝛼(𝑥)𝜕𝛼𝜙(𝑥).

Поскольку для пространства постоянной кривизны векторное поле Киллинга мож-
но выбрать таким образом, что компоненты 𝐾𝛼(𝑥) будут принимать произвольные
значения в любой точке 𝑥 ∈ S, то отсюда вытекает условие постоянства скалярного
поля 𝜙 = const на всем S. Таким образом, однородное и изотропное скалярное поле
(функция) на пространстве постоянной кривизны S – это постоянная: 𝜙(𝑥) = const,
∀𝑥 ∈ S.

Пример 1.4.2. В качестве второго примера выберем дифференцируемое ковектор-
ное поле 𝐴 = 𝑑𝑥𝛼𝐴𝛼. Производная Ли для него была вычислена в разделе ??, и
условие инвариантности (1.26) принимает вид

𝐾𝛽𝜕𝛽𝐴𝛼 + 𝜕𝛼𝐾
𝛽𝐴𝛽 = 0.

Выберем векторное поле Киллинга таким образом, что 𝐾𝛽(𝑥) = 0 в произвольной,
но фиксированной точке 𝑥 ∈ S. Кроме этого, векторное поле Киллинга можно вы-
брать так, что частная производная 𝜕𝛽𝐾𝛼 будет антисимметрична и произвольна.
Поскольку в выбранной точке 𝜕𝛼𝐾𝛽 = ∇𝛼𝐾

𝛽, то справедливо равенство

𝜕𝛼𝐾
𝛽𝐴𝛽 = 𝜕𝛼𝐾𝛽𝐴

𝛽 = 𝜕𝛾𝐾𝛽(𝛿𝛾𝛼𝐴
𝛽),

и данное построение можно провести в произвольной точке многообразия S, то от-
сюда вытекает равенство

𝛿𝛾𝛼𝐴
𝛽 = 𝛿𝛽𝛼𝐴

𝛾.

После свертки по индексам 𝛼 и 𝛾 возникает соотношение

𝑛𝐴𝛽 = 𝐴𝛽.

Поэтому, исключая тривиальный случай 𝑛 = 1, после опускания индекса получаем
равенство 𝐴𝛼 = 0. Следовательно, если ковекторное поле однородно и изотропно, то
оно тождественно равно нулю.

Это же относится и к векторному полю 𝑋 = 𝑋𝛼𝜕𝛼: однородное и изотропное
векторное поле на пространстве постоянной кривизны S тождественно равно нулю.

Пример 1.4.3. В качестве третьего примера рассмотрим дифференцируемый кова-
риантный тензор второго ранга с компонентами 𝑇𝛼𝛽. Мы не предполагаем наличия
какой либо симметрии по индексам 𝛼, 𝛽. Производная Ли от тензора второго ранга
имеет вид

L𝐾𝑇𝛼𝛽 = 𝐾𝛾𝜕𝛾𝑇𝛼𝛽 + 𝜕𝛼𝐾
𝛾𝑇𝛾𝛽 + 𝜕𝛽𝐾

𝛾𝑇𝛼𝛾.

Как и в предыдущем примере выберем векторное поле Киллинга таким образом,
чтобы в точке 𝑥 ∈ S было выполнено равенство 𝐾𝛾(𝑥) = 0 и частная производная
𝜕𝛼𝐾𝛽 была антисимметрична и произвольна. Тогда из равенства нулю производной
Ли вытекает равенство

𝛿𝛿𝛼𝑇
𝛾
𝛽 + 𝛿𝛿𝛽𝑇𝛼

𝛾 = 𝛿𝛾𝛼𝑇
𝛿
𝛽 + 𝛿𝛾𝛽𝑇𝛼

𝛿.
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После свертки по индексам 𝛼, 𝛿 и опускания 𝛾 получаем соотношение

(𝑛− 1)𝑇𝛾𝛽 + 𝑇𝛽𝛾 = 𝑔𝛽𝛾𝑇, 𝑇 := 𝑇𝛼
𝛼.

Теперь поменяем индексы 𝛽 и 𝛾 и вычтем полученное равенство:

(𝑛− 2)(𝑇𝛾𝛽 − 𝑇𝛾𝛽) = 0.

Отсюда следует, что при 𝑛 ̸= 2 инвариантный тензор второго ранга должен быть
симметричен. С учетом симметрии получаем выражение для инвариантного тензора
второго ранга:

𝑇𝛼𝛽 =
𝑇

𝑛
𝑔𝛼𝛽.

Поскольку след тензора 𝑇 – скаляр, то из его инвариантности вытекает, что он дол-
жен быть равен постоянной, как в первом примере. Таким образом, однородное и
изотропное ковариантное тензорное поле второго ранга на пространстве постоянной
кривизны имеет вид

𝑇𝛼𝛽 = 𝐶𝑔𝛼𝛽, 𝐶 = const. (1.27)

Эта формула справедлива для 𝑛 ≥ 3 и для симметричной части тензора при
𝑛 = 2.

В двумерном случае инвариантный тензор может иметь антисимметричную часть,
пропорциональную 𝜀𝛼𝛽 – полностью антисимметричному тензору второго ранга:

𝑇𝛼𝛽 = −𝑇𝛽𝛼 = 𝐶𝜀𝛼𝛽,

если мы не учитываем пространственные отражения. При пространственных отраже-
ниях полностью антисимметричный тензор второго ранга меняет знак 𝜀𝛼𝛽 ↦→ −𝜀𝛼𝛽.
Поэтому с учетом пространственных отражений наиболее общий вид симметрично-
го тензора второго ранга при 𝑛 = 2 такой же, как и в более высоких размерностях
(1.27).

Аналогичное построение можно провести для инвариантного контравариантного
тензора второго ранга и тензора со смешанными индексами:

𝑇𝛼𝛽 = 𝐶𝑔𝛼𝛽, 𝑇𝛼
𝛽 = 𝐶𝛿𝛼𝛽 .

Полученные формулы для симметричных тензоров будут использованы при постро-
ении космологических моделей, где роль 𝑇𝛼𝛽 будет играть тензор энергии-импульса
полей материи.

1.5 Пространства с максимально симметричными под-
пространствами

Во многих важных с физической точки зрения случаях, например, в космологии,
(псевдо-)риманово многообразие M, dimM = 𝑛, представляет собой топологическое
произведение двух многообразий, M = R × S, где R – вещественная прямая, кото-
рую мы в дальнейшем отождествим со временем, и S – пространство постоянной
кривизны. При этом каждой точке 𝑡 ∈ R соответствует подмногообразие S ⊂ M.
Поскольку S – пространство постоянной кривизны, то оно однородно и изотропно.
Соответствующая группа изометрий на S генерируется 𝑛(𝑛 − 1)/2 векторными по-
лями Киллинга. В настоящем разделе мы найдем наиболее общий вид метрики на
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M, инвариантной относительно группы симметрий, которая порождается действием
группы симметрии на S.

Обозначим координаты на пространстве постоянной кривизны S через 𝑥𝜇, 𝜇 =
1, . . . , 𝑛 − 1. Тогда метрика на S будет иметь компоненты 𝑔𝜇𝜈(𝑥). По построению,
она инвариантна относительно группы изометрий, генерируемых векторными поля-
ми Киллинга 𝐾𝑖 = 𝐾𝜇

𝑖 (𝑥)𝜕𝜇, 𝑖 = 1, . . . , 𝑛(𝑛− 1)/2.
Предположим, что на M задана метрика лоренцевой сигнатуры такая, что коор-

дината 𝑡 является временем, т.е. 𝑔00 > 0, и все сечения постоянного времени 𝑡 = const
пространственноподобны. Кроме этого, предположим, что сужение этой метрики на
S при каждом значении 𝑡 ∈ R совпадает с 𝑔𝜇𝜈 . Ясно, что такая метрика имеет вид

𝑔𝛼𝛽 =

(︂
𝑔00(𝑡, 𝑥) 𝑔0𝜈(𝑡, 𝑥)

𝑔𝜇0(𝑡, 𝑥)
∘
𝑔𝜇𝜈(𝑡, 𝑥)

)︂
,

где 𝑔00 и 𝑔0𝜇 = 𝑔𝜇0 – произвольные функции от 𝑡 и 𝑥, а ∘
𝑔𝜇𝜈 – метрика постоянной

кривизны, которая зависит от 𝑡 как от параметра. Все компоненты метрики предпо-
лагаются достаточно гладкими и по 𝑡, и по 𝑥. Поскольку метрика имеет лоренцеву
сигнатуру, то согласно предложению ?? матрица

∘
𝑔𝜇𝜈 −

𝑔0𝜇𝑔0𝜈
𝑔00

отрицательно определена. Кроме этого, по-предположению, матрица ∘
𝑔𝜇𝜈 также от-

рицательно определена.
Продолжим действие группы изометрий на все M следующим образом. Будем

считать, что компоненты векторных полей Киллинга 𝐾𝜇
𝑖 (𝑡, 𝑥) зависят от 𝑡 как от

параметра. Определим действие группы инфинитезимальных изометрий на M сле-
дующим образом:

𝑡 ↦→ 𝑡′ = 𝑡,

𝑥𝜇 ↦→ 𝑥′𝜇 = 𝑥𝜇 + 𝜖𝐾𝜇, 𝜖≪ 1,
(1.28)

где 𝐾 – произвольный вектор Киллинга из алгебры Ли, порожденной векторами 𝐾𝑖.
То есть преобразования не сдвигают точки вещественной прямой R ⊂ M. Это означа-
ет, что векторные поля Киллинга продолжаются на все M таким образом, что у них
не возникает дополнительных компонент: 𝐾0𝜕𝑡 = 0. Нетривиальность продолжения
сводится лишь к тому, что пространственные компоненты векторов Киллинга теперь
могут зависеть от 𝑡 как от параметра. Следовательно, алгебра Ли продолженных на
M векторов Киллинга остается прежней.

Пример 1.5.1. В четырехмерном случае векторные поля Киллинга, продолженные
на M, порождают группу преобразований (M,G), где

G =

⎧⎪⎨⎪⎩
SO(4), S = S3 – сфера,
ISO(3), S = R3 – евклидово пространство,
SO(3, 1), S = H3 – двуполостный гиперболоид.

Этот случай важен в космологии.
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Теорема 1.5.1. Если метрика на M = R×S вещественно аналитична и инвариант-
на относительно преобразований (1.28), то существует такая система координат,
в которой метрика имеет блочно диагональный вид

𝑑𝑠2 = 𝑑𝑡2 +
∘
𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 , (1.29)

где
∘
𝑔𝜇𝜈(𝑡, 𝑥) – метрика постоянной кривизны на S при всех 𝑡 ∈ R. В этой системе

координат компоненты векторных полей Киллинга не зависят от времени: 𝐾𝜇 =
𝐾𝜇(𝑥).

Доказательство. Пусть 𝑥𝜇 – координаты на S. Зафиксируем одну из гиперповерхно-
стей 𝑡 = const. Касательный к ней вектор имеет только пространственные компонен-
ты: 𝑋 = 𝑋𝜇𝜕𝜇. Ортогональный к ней вектор 𝑛𝛼𝜕𝛼 должен удовлетворять равенству

𝑛0𝑋𝜈𝑁𝜈 + 𝑛𝜇𝑋𝜈𝑔𝜇𝜈 = 0,

где использована АДМ параметризация метрики, см. раздел ??. Поскольку данное
равенство должно быть выполнено для всех 𝑋, то оно определяет пространственные
компоненты нормальных векторов,

𝑛𝜇 = −𝑛0𝑁𝜇.

Следовательно, квадрат ортогонального вектора положителен:

(𝑛, 𝑛) = (𝑁2 +𝑁𝜌𝑁𝜌)(𝑛
0)2 − 2(𝑛0)2𝑁𝜇𝑁𝜇 + (𝑛0)2𝑁𝜇𝑁 𝜈𝑔𝜇𝜈 = 𝑁2(𝑛0)2 > 0.

Поэтому вектор, ортогональный к пространственноподобной гиперповерхности, яв-
ляется времениподобным.

Выпустим из каждой точки гиперповерхности геодезическую (экстремаль), кото-
рая является времениподобной по построению. Выберем в качестве временно́й ко-
ординаты длину геодезической 𝑠. Не ограничивая общности, можно считать, что
фиксированная гиперповерхность соответствует значению 𝑠 = 0. Тогда в некоторой
окрестности поверхности S можно выбрать систему координат {𝑥0 := 𝑠, 𝑥𝜇}. Соглас-
но предложению ?? в построенной таким образом системе координат метрика имеет
блочно диагональный вид в некоторой окрестности фиксированной поверхности:

𝑔00 = 1, 𝑔0𝜇 = 𝑔𝜇0 = 0,
∘
𝑔𝜇𝜈 =

∘
𝑔𝜇𝜈(𝑠, 𝑥).

На поверхности, по-построению, нулевая компонента вектора Киллинга равна нулю,
𝐾0(0, 𝑥) = 0. Из (0, 0) компоненты уравнения Киллинга, которое удобнее исполь-
зовать в форме (1.7), следует равенство 𝜕𝑠𝐾0(𝑠, 𝑥). Для вещественно аналитических
функций это дифференциальное уравнение с начальным условием 𝐾0(0, 𝑥) = 0 имеет
единственное решение 𝐾0(𝑠, 𝑥) = 0 для всех значений координаты 𝑠, где определена
система координат. Следовательно, все гиперповерхности, определяемые уравнением
𝑠 = const, будут инвариантными многообразиями, т.е. пространствами постоянной
кривизны по крайней мере в некоторой окрестности исходной гиперповерхности.

Если метрика является диагональной (1.29), то (0, 𝜇) компонента уравнения Кил-
линга (1.7) принимает вид 𝜕𝑠𝐾

𝜇 = 0. Отсюда следует, что компоненты векторных
полей Киллинга не зависят от времени.

Пространственные (𝜇, 𝜈) компоненты уравнения Киллинга удовлетворяются, по-
скольку 𝐾 – векторы Киллинга на S.

Возвращаясь к обозначению 𝑠 ↦→ 𝑡, получаем метрику (1.29).
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Если система координат выбрана таким образом, что инвариантная метрика на M
имеет вид (1.29), то координатные линии 𝑡, проходящие через каждую точку 𝑥 ∈ S
являются геодезическими. Это следует из построения данной системы координат.
Данное утверждение уже было доказано с помощью прямой проверки, предложение
??.

1.6 Лоренц-инвариантные вакуумные решения урав-
нений Эйнштейна

Нахождение точных решений уравнений Эйнштейна является одной из основных за-
дач общей теории относительности. Поскольку уравнения Эйнштейна очень сложны,
то решения ищутся, как правило, в предположении наличия какой либо симметрии.
Это упрощает систему уравнений и дает возможность отыскания решений.

Среди точных решений вакуумных уравнений с космологической постоянной ре-
шение де Ситтера [?, ?] и анти-де Ситтера были одними из первых космологических
решений. Решение де Ситтера описывает пространство–время постоянной кривизны
и инвариантно относительно относительно действия группы Лоренца SO(1, 4) (см.
раздел 2.4). Решение анти-де Ситтера также соответствует пространству постоян-
ной кривизны и инвариантно относительно группы SO(2, 3). Обе группы симметрии
содержат подгруппу Лоренца меньшей размерности SO(1, 3). В настоящем разделе
доказано, что все решения вакуумных уравнений Эйнштейна, инвариантные относи-
тельно действия группы Лоренца SO(1, 3), описывают пространство-время постоян-
ной кривизны и, следовательно, сводятся или к решению де Ситтера, или к решению
анти-де Ситтера в зависимости от знака космологической постоянной.

Рассмотрим пространство-время Минковского R1,𝑛−1 произвольной размерности
𝑛. В нем задана метрика Лоренца 𝜂𝛼𝛽 := diag (+ − . . .−) в декартовой системе коор-
динат 𝑥𝛼, 𝛼 = 0, 1, . . . , 𝑛−1. Эта метрика инвариантна относительно преобразований
из группы Пуанкаре, в частности, относительно преобразований Лоренца. Соответ-
ствующие векторные поля Киллинга имеют вид

𝐾𝜖𝛿 =
1

2
(𝑥𝛿𝜕𝜖 − 𝑥𝜖𝜕𝛿) =

1

2
(𝑥𝛿𝛿

𝛾
𝜖 − 𝑥𝜖𝛿

𝛾
𝛿 ) 𝜕𝛾, (1.30)

где индексы 𝜖, 𝛿 нумеруют 𝑛(𝑛 − 1)/2 векторов Киллинга и 𝑥𝛼 := 𝑥𝛽𝜂𝛽𝛼. Пусть в
пространстве Минковского R1,𝑛−1 задана вторая метрика 𝑔𝛼𝛽(𝑥). Поставим следую-
щую задачу: найти все метрики 𝑔𝛼𝛽, инвариантные относительно действия группы
Лоренца SO(1, 𝑛− 1).

Уравнения
∇𝛼𝐾𝛽 + ∇𝛽𝐾𝛼 = 0

для векторных полей Киллинга (1.30) принимают вид

𝑔𝛼𝜖𝜂𝛽𝛿 − 𝑔𝛼𝛿𝜂𝛽𝜖 + 𝑔𝛽𝜖𝜂𝛼𝛿 − 𝑔𝛽𝛿𝜂𝛼𝜖 + 𝑥𝛿𝜕𝜖𝑔𝛼𝛽 − 𝑥𝜖𝜕𝛿𝑔𝛼𝛽 = 0. (1.31)

При преобразованиях Лоренца компоненты метрики 𝑔𝛼𝛽 ведут себя как компо-
ненты ковариантного тензора второго ранга. Их необходимо построить из метрики
Лоренца 𝜂𝛼𝛽 и координат точек 𝑥 = {𝑥𝛼}. Единственная возможность для инвари-
антной метрики – это метрика вида

𝑔𝛼𝛽 = 𝐴𝜂𝛼𝛽 +𝐵𝑥𝛼𝑥𝛽,
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где 𝐴(𝑥) и 𝐵(𝑥) – некоторые функции на R1,𝑛−1. Мы не требуем инвариантности
метрики 𝑔𝛼𝛽 относительно трансляций. Поэтому функция 𝐵 в общем случае отлична
от нуля. Подстановка этой метрики в уравнение Киллинга (1.31) ограничивает вид
функций 𝐴 и 𝐵. Можно доказать, что они могут быть произвольными функциями
от одной переменной

𝑠 := 𝑥𝛼𝑥𝛽𝜂𝛼𝛽,

которая инвариантна относительно преобразований Лоренца. Таким образом, мет-
рика, инвариантная относительно преобразований Лоренца, параметризуется двумя
произвольными функциями 𝐴(𝑠) и 𝐵(𝑠). Ее удобно записать в несколько другом виде

𝑔𝛼𝛽 = 𝑓(𝑠)Πt
𝛼𝛽 + 𝑔(𝑠)Πl

𝛼𝛽 = 𝑓𝜂𝛼𝛽 + (𝑔 − 𝑓)
𝑥𝛼𝑥𝛽
𝑠

, (1.32)

где Πt и Πl – проекционные операторы:

Πt
𝛼𝛽 := 𝜂𝛼𝛽 −

𝑥𝛼𝑥𝛽
𝑠

, Πl
𝛼𝛽 :=

𝑥𝛼𝑥𝛽
𝑠

,

а 𝑓(𝑠) := 𝐴(𝑠) и 𝑔(𝑠) := 𝐴(𝑠) +𝐵(𝑠)𝑠 – произвольные функции.
Нетрудно вычислить определитель метрики (1.32):

det 𝑔𝛼𝛽 = (−𝑓)𝑛−1𝑔. (1.33)

Таким образом, лоренц инвариантная метрика вырождена тогда и только тогда, ко-
гда 𝑓𝑔 = 0. Мы будем предполагать, что функции 𝑓 и 𝑔 являются достаточно глад-
кими, 𝑓 > 0 и 𝑔 ̸= 0. Кроме этого, предположим также существование предела

lim
𝑠→0

𝑓(𝑠) − 𝑔(𝑠)

𝑠
,

которое необходимо, чтобы метрика была определена при 𝑠 = 0.
Если не оговорено противное, для подъема и опускания индексов будет исполь-

зоваться метрика Лоренца 𝜂𝛼𝛽.
Лоренц инвариантная метрика вида (1.32) при 𝑓 = 𝑔 рассматривалась В. А. Фо-

ком [?].
Метрике (1.32) соответствует инвариантный интервал

𝑑𝑠2 = 𝑓𝑑𝑥𝛼𝑑𝑥
𝛼 + (𝑔 − 𝑓)

(𝑥𝛼𝑑𝑥
𝛼)2

𝑠
.

Метрический тензор (1.32) имеет одинаковый вид во всех системах координат,
связанных между собой преобразованиями Лоренца. Однако его вид меняется при
сдвигах 𝑥𝛼 ↦→ 𝑥𝛼 + 𝑎𝛼, поскольку метрика явно зависит от координат, и начало си-
стемы отсчета выделено.

Запись метрики (1.32) с помощью проекционных операторов удобна, так как об-
ратная метрика имеет простой вид

𝑔𝛼𝛽 =
1

𝑓
Πt𝛼𝛽 +

1

𝑔
Πl𝛼𝛽. (1.34)

При 𝑔 > 0 метрике (1.32) можно поставить в соответствие репер

𝑒𝛼
𝑎 =

√︀
𝑓𝛿𝑎𝛼 + (

√︀
𝑔 −

√︀
𝑓)
𝑥𝛼𝑥

𝑎

𝑠
. (1.35)
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Нетрудно проверить следующие свойства проекционных операторов:

Πt𝛼𝛽𝑥𝛽 = 0, Πt
𝛼
𝛼 = 𝑛− 1, 𝜕𝛼Πt

𝛽𝛾 = −
Πt

𝛼𝛽𝑥𝛾 + Πt
𝛼𝛾𝑥𝛽

𝑠
,

Πl𝛼𝛽𝑥𝛽 = 𝑥𝛼, Πl
𝛼
𝛼 = 1, 𝜕𝛼Πl

𝛽𝛾 =
Πt

𝛼𝛽𝑥𝛾 + Πt
𝛼𝛾𝑥𝛽

𝑠
,

которые будут использоваться при проведении вычислений.
Несложные вычисления приводят к следующему выражению для символов Кри-

стоффеля, соответствующих метрике (1.32),

Γ𝛼𝛽
𝛾 =

𝑓 ′

𝑓
(𝑥𝛼Πt

𝛽
𝛾 + 𝑥𝛽Πt

𝛼
𝛾) +

𝑔′

𝑔
(𝑥𝛼Πl

𝛽
𝛾 + 𝑥𝛽Πl

𝛼
𝛾 − 𝑥𝛾Πl

𝛼𝛽) +
𝑔 − 𝑓 − 𝑓 ′𝑠

𝑠𝑔
𝑥𝛾Πt

𝛼𝛽, (1.36)

где штрих обозначает дифференцирование по аргументу 𝑠. Тензор кривизны для
метрики (1.32) имеет вид

𝑅𝛼𝛽𝛾
𝛿 =Πt

𝛼𝛾Πt
𝛽
𝛿

[︂
(𝑓 + 𝑓 ′𝑠)2

𝑠𝑓𝑔
− 1

𝑠

]︂
+

+ Πl
𝛼𝛾Πt

𝛽
𝛿

[︂
2

(︂
𝑓 + 𝑓 ′𝑠

𝑓

)︂′

+

(︂
𝑓 ′

𝑓
− 𝑔′

𝑔

)︂
𝑓 + 𝑓 ′𝑠

𝑓

]︂
+

+ Πl
𝛼
𝛿Πt

𝛽𝛾

[︂
−2

(︂
𝑓 + 𝑓 ′𝑠

𝑔

)︂′

+

(︂
𝑓 ′

𝑓
− 𝑔′

𝑔

)︂
𝑓 + 𝑓 ′𝑠

𝑔

]︂
− (𝛼 ↔ 𝛽). (1.37)

Свернув это выражение по индексам 𝛽 и 𝛿, получим тензор Риччи

𝑅𝛼𝛽 =Πt
𝛼𝛽

[︂
𝑛− 2

𝑠

(︂
(𝑓 + 𝑓 ′𝑠)2

𝑓𝑔
− 1

)︂
+ 2

(𝑓 + 𝑓 ′𝑠)′

𝑔
−
(︂
𝑓 ′

𝑓
+
𝑔′

𝑔

)︂
𝑓 + 𝑓 ′𝑠

𝑔

]︂
+

+ Πl
𝛼𝛽(𝑛− 1)

[︂
2

(𝑓 + 𝑓 ′𝑠)′

𝑓
−
(︂
𝑓 ′

𝑓
+
𝑔′

𝑔

)︂
𝑓 + 𝑓 ′𝑠

𝑓

]︂
. (1.38)

Дальнейшая свертка с обратной метрикой (1.34) дает скалярную кривизну

𝑅 = (𝑛− 1)

[︂
𝑛− 2

𝑓𝑠

(︂
(𝑓 + 𝑓 ′𝑠)2

𝑓𝑔
− 1

)︂
+ 4

(𝑓 + 𝑓 ′𝑠)′

𝑓𝑔
− 2

(︂
𝑓 ′

𝑓
+
𝑔′

𝑔

)︂
𝑓 + 𝑓 ′𝑠

𝑓𝑔

]︂
. (1.39)

Пространства постоянной кривизны, определяемые уравнением

𝑅𝛼𝛽𝛾𝛿 = − 2𝐾

𝑛(𝑛− 1)
(𝑔𝛼𝛾𝑔𝛽𝛿 − 𝑔𝛼𝛿𝑔𝛽𝛾), (1.40)

с некоторой постоянной 𝐾, автоматически удовлетворяют вакуумным уравнениям
Эйнштейна с космологической постоянной. Решим уравнение (1.40) для лоренц ин-
вариантной метрики (1.32). Для этого опустим последний индекс у тензора кривизны
(1.37) с помощью метрики (1.32)

𝑅𝛼𝛽𝛾𝛿 =Πt
𝛼𝛾Πt

𝛽𝛿

1

𝑠

[︂
(𝑓 + 𝑓 ′𝑠)2

𝑔
− 𝑓

]︂
+ (1.41)

+ (Πl
𝛼𝛾Πt

𝛽𝛿 − Πl
𝛼𝛿Π

t
𝛽𝛾)

[︂
2(𝑓 + 𝑓 ′𝑠)′ −

(︂
𝑓 ′

𝑓
+
𝑔′

𝑔

)︂
(𝑓 + 𝑓 ′𝑠)

]︂
− (𝛼 ↔ 𝛽)
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и подставим в уравнение (1.40). В результате получим систему дифференциальных
уравнений на функции 𝑓 и 𝑔:

(𝑓 + 𝑓 ′𝑠)2

𝑠𝑔
− 𝑓

𝑠
= − 2𝐾

𝑛(𝑛− 1)
𝑓 2, (1.42)

2(𝑓 + 𝑓 ′𝑠)′ −
(︂
𝑓 ′

𝑓
+
𝑔′

𝑔

)︂
(𝑓 + 𝑓 ′𝑠) = − 2𝐾

𝑛(𝑛− 1)
𝑓𝑔. (1.43)

Из первого уравнения получаем решение для функции 𝑔:

𝑔 =
(𝑓 + 𝑓 ′𝑠)2

𝑓
(︁

1 − 2𝐾
𝑛(𝑛−1)

𝑓𝑠
)︁ . (1.44)

Поскольку для невырожденности метрики необходимо, чтобы 𝑔 ̸= 0, то при 𝑠 ̸= 0
функция 𝑓 должна удовлетворять неравенству

𝑓 ̸= 𝑛(𝑛− 1)

2𝐾𝑠
, 𝑠 ̸= 0. (1.45)

Подстановка выражения (1.44) во второе уравнение (1.43) приводит к тождеству.
Таким образом мы доказали следующее утверждение.

Теорема 1.6.1. Лоренц инвариантная метрика

𝑔𝛼𝛽 = 𝑓Πt
𝛼𝛽 +

(𝑓 + 𝑓 ′𝑠)2

𝑓
(︁

1 − 2𝐾
𝑛(𝑛−1)

𝑓𝑠
)︁Πl

𝛼𝛽, (1.46)

где 𝑓(𝑠) – произвольная положительная функция, удовлетворяющая условию (1.45),
является метрикой пространства постоянной кривизны. Обратно. Метрику про-
странства постоянной кривизны можно записать в лоренц инвариантном виде
(1.46) для некоторой функции 𝑓(𝑠).

Доказательство. Нам осталось доказать, что произвольную метрику пространства
постоянной кривизны можно привести к лоренц инвариантному виду (1.32). Чтобы
ответить на этот вопрос, запишем метрику (1.46) в более известной форме. С этой це-
лью зафиксируем функцию 𝑓 , положив 𝑓 = 𝑔. Это равенство с учетом (1.44) сводится
к уравнению

𝑓 ′2𝑠+ 2𝑓 ′𝑓 +
2𝐾

𝑛(𝑛− 1)
𝑓 3 = 0,

общее решение которого имеет вид

𝑓 =
𝐶

(𝐶 + 𝐾
2𝑛(𝑛−1)

𝑠)2
, 𝐶 = const.

Постоянная интегрирования убирается растяжкой координат. Поэтому без ограниче-
ния общности положим 𝐶 = 1. В результате получим метрику постоянной кривизны

𝑔𝛼𝛽 =
𝜂𝛼𝛽

(1 + 𝐾
2𝑛(𝑛−1)

𝑠)2
. (1.47)

То, что метрику пространства постоянной кривизны можно привести к такому виду
– хорошо известный факт. Доказательство этого утверждения нетривиально (см.,
например, [?]).
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Проведенные вычисления просто переносятся на случай метрики в евклидовом
пространстве, которая инвариантна относительно SO(𝑛) вращений. Для этого во всех
формулах метрику Лоренца 𝜂𝛼𝛽 нужно заменить на евклидову метрику 𝛿𝛼𝛽.

Поскольку предел функции (𝑔 − 𝑓)/𝑠 равен

lim
𝑠→0

𝑔 − 𝑓

𝑠
= 2𝑓 ′ +

2𝐾

𝑛(𝑛− 1)
𝑓 2,

то выражение для метрики (1.46) определено и при 𝑠 = 0.
Теперь решим вакуумные уравнения Эйнштейна с космологической постоянной

Λ
𝑅𝛼𝛽 = Λ𝑔𝛼𝛽

для лоренц инвариантной метрики. Поскольку число этих уравнений меньше, чем
число уравнений в условии постоянства кривизны (1.40), то можно было бы ожи-
дать, что они допускают решения не только с постоянной кривизной. Однако для
лоренц инвариантных метрик классы решений совпадают. Действительно, подста-
новка тензора Риччи (1.38) в уравнения Эйнштейна приводит к следующей системе
уравнений:

𝑛− 2

𝑠

[︂
(𝑓 + 𝑓 ′𝑠)2

𝑓𝑔
− 1

]︂
+ 2

(𝑓 + 𝑓 ′𝑠)′

𝑔
−

(︂
𝑓 ′

𝑓
+
𝑔′

𝑔

)︂
𝑓 + 𝑓 ′𝑠

𝑔
= Λ𝑓, (1.48)

(𝑛− 1)

[︂
2

(𝑓 + 𝑓 ′𝑠)′

𝑓
−
(︂
𝑓 ′

𝑓
+
𝑔′

𝑔

)︂
𝑓 + 𝑓 ′𝑠

𝑓

]︂
= Λ𝑔. (1.49)

Второе уравнение при

Λ = −2𝐾

𝑛

совпадает с уравнением (1.43). Линейная комбинация уравнений (1.48)/𝑓−(1.49)/𝑔
эквивалентна уравнению (1.42).

Таким образом, мы доказали, что все лоренц инвариантные решения вакуумных
уравнений Эйнштейна с космологической постоянной исчерпываются пространства-
ми постоянной кривизны. При Λ > 0 мы получаем пространство-время де Ситтера,
а при Λ < 0 – анти-де Ситтера. Эти пространства-времена будут рассмотрены соот-
ветственно в разделах 2.4.2 и 2.4.3.



Глава 2

Космология

В настоящей главе мы рассмотрим простейшие космологические модели однородной
и изотропной вселенной в рамках общей теории относительности. Это направление
исследований составляет классический раздел теории гравитации и в настоящее вре-
мя стало очень актуальным в связи с накоплением большого количества наблюда-
тельных данных.

Модели вселенной, которые рассматриваются в настоящей главе, предполагают,
что вселенная заполнена сплошной средой (жидкостью или газом). В начале главы
мы рассмотрим кинематические свойства сплошной среды в общей теории относи-
тельности. Будет получено, в частности, уравнение Райчаудхури, из которого следу-
ет, что при достаточно общих предположениях космологические решения уравнений
Эйнштейна должны содержать особенности: большой взрыв или большое сжатие.

Кроме того, мы предполагаем, что вселенная однородна и изотропна (вселен-
ная Фридмана). Для математической формулировки требований к таким моделям
необходимо довольно подробное знание свойств трехмерных пространств постоян-
ной кривизны с положительно определенной метрикой. Одно из этих пространств
– это евклидово пространство R3 нулевой кривизны, которое было рассмотрено в
разделе ??. Поэтому в разделах 2.2.1 и 2.2.2 мы рассмотрим трехмерную сферу S3

(пространство положительной кривизны) и двуполостный гиперболоид H3, который
иногда называют псевдосферой, (пространство отрицательной кривизны). Эти све-
дения необходимы для построения моделей, которые рассмотрены в последующих
разделах.

2.1 Сплошная среда в космологии
При построении космологических моделей в рамках общей теории относительности
материя рассматривается как сплошная среда. В настоящем разделе мы рассмотрим
кинематику сплошной среды и получим уравнение Райчаудхури. Из этого уравнения
вытекает, в частности, что если движение материи безвихревое, а плотность энергии
и давление среды положительны, то в космологических моделях неизбежно имеет
место либо большой взрыв, либо большое сжатие. Этот вывод важен и является
довольно общим, т.к. не использует явный вид решений уравнений Эйнштейна.

2.1.1 Сплошная среда в классической механике

Напомним некоторые сведения из кинематики сплошной среды в классической ме-
ханике.

24
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Рассмотрим трехмерное евклидово пространство R3 с декартовой системой коор-
динат 𝑥𝜇, 𝜇 = 1, 2, 3. Основной переменной в механике сплошной среды (жидкости
или газа) является достаточно гладкое векторное поле скорости 𝑢𝜇(𝑡,𝑥), зависящее
от времени 𝑡 ∈ R и точки пространства 𝑥 ∈ R3. Мы предполагаем, что система
уравнений

𝑑𝑥𝜇(𝑡,𝑦)

𝑑𝑡
= 𝑢𝜇(𝑡,𝑥), (2.1)

с начальным условием 𝑥𝜇(𝑡 = 0,𝑦) = 𝑦𝜇 имеет единственное решение при всех вре-
менах 𝑡 и при всех 𝑦 ∈ R3. Каждое решение данной системы уравнений определяет
линию тока 𝑥𝜇(𝑡,𝑦), вдоль которой движется частица среды, которая проходит че-
рез каждую точку пространства 𝑦 в начальный момент времени 𝑡 = 0. Линии то-
ка не могут пересекаться, т.к. это противоречит единственности решений системы
обыкновенных дифференциальных уравнений (3.181). Другими словами, линии тока
заполняют все пространство R3, не имеют лакун и нигде не пересекаются.

Рассмотрим две близкие точки среды

𝑝 = {𝑥𝜇𝑝}, 𝑞 = {𝑥𝜇𝑞 := 𝑥𝜇𝑝 + 𝑑𝑥𝜇𝑞 }.

Скорости в этих точках в момент времени 𝑡 равны

𝑢𝑝 = {𝑢𝜇𝑝}, 𝑢𝑞 = {𝑢𝜇𝑞 = 𝑢𝜇𝑝 + 𝜕𝜈𝑢
𝜇
⃒⃒
𝑝
𝑑𝑥𝜈𝑞 + O(𝑑𝑥2)}.

Если эти точки движутся вдоль линий тока, то через время 𝑑𝑡 они будут иметь новые
координаты

𝑝 ↦→ {𝑥𝜇𝑝 + 𝑢𝜇𝑝𝑑𝑡+ O(𝑑𝑡2, 𝑑𝑥2)},
𝑞 ↦→ {𝑥𝜇𝑝 + 𝑑𝑥𝜇𝑞 + 𝑢𝜇𝑝𝑑𝑡+ 𝜕𝜈𝑢

𝜇
⃒⃒
𝑝
𝑑𝑥𝜈𝑞𝑑𝑡+ O(𝑑𝑡2, 𝑑𝑥2)}.

Разность декартовых координат конечных точек имеет вид

𝑑𝑥𝜇𝑞 (𝑡+ 𝑑𝑡) := 𝑥𝜇𝑞 (𝑡+ 𝑑𝑡) − 𝑥𝜇𝑝(𝑡+ 𝑑𝑡) =
(︁
𝛿𝜇𝜈 + 𝜕𝜈𝑢

𝜇
⃒⃒
𝑝
𝑑𝑡
)︁
𝑑𝑥𝜈𝑞 + O(𝑑𝑡2, 𝑑𝑥2).

Таким образом, частные производные от поля скоростей 𝜕𝜈𝑢
𝜇 имеют смысл относи-

тельной скорости двух соседних частиц среды.
Разложим тензор второго ранга 𝜕𝜇𝑢𝜈 , где 𝑢𝜈 := 𝑢𝜇𝛿𝜈𝜇, на неприводимые компо-

ненты, выделив из него след 𝜃 и антисимметричную часть 𝜔𝜇𝜈 = −𝜔𝜈𝜇:

𝜕𝜇𝑢𝜈 = 𝜎𝜇𝜈 + 𝜔𝜇𝜈 +
1

3
𝛿𝜇𝜈𝜃, (2.2)

где
𝜃 := 𝜕𝜇𝑢

𝜇 − скаляр расширения,

𝜎𝜇𝜈 :=
1

2
(𝜕𝜇𝑢𝜈 + 𝜕𝜈𝑢𝜇) − 1

3
𝛿𝜇𝜈𝜃 − тензор сдвига,

𝜔𝜇𝜈 :=
1

2
(𝜕𝜇𝑢𝜈 − 𝜕𝜈𝑢𝜇) − тензор вращения.

(2.3)

Каждая неприводимая компонента имеет физический смысл и название по следую-
щим причинам.
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∙ Пусть 𝜎𝜇𝜈 = 0 и 𝜔𝜇𝜈 = 0. Тогда смещение точки 𝑞 относительно точки 𝑝 в первом
порядке имеет вид

𝑑𝑥𝜇𝑞 (𝑡+ 𝑑𝑡) =

(︂
1 +

1

3
𝜃𝑑𝑡

)︂
𝑑𝑥𝜇𝑞 (𝑡).

То есть вектор 𝑑𝑥𝜇𝑞 (𝑡 + 𝑑𝑡) имеет то же направление, что и 𝑑𝑥𝜇𝑞 (𝑡), но другую
длину. Такое движение среды является изотропным расширением (𝜃 > 0) или
сжатием (𝜃 < 0).

∙ Пусть 𝜎𝜇𝜈 = 0 и 𝜃 = 0. Тогда

𝑑𝑥𝜇𝑞 (𝑡+ 𝑑𝑡) = 𝑑𝑥𝜇𝑞 (𝑡) + 𝜔𝜈
𝜇𝑑𝑡𝑑𝑥𝜈𝑞 (𝑡).

Ввиду антисимметрии компоненты 𝜔𝜇𝜈 , при таком движении вектор 𝑑𝑥𝜇𝑞 (𝑡) пово-
рачивается, не изменяя своей длины. Такое движение соответствует вращению
линий тока.

∙ Пусть 𝜔𝜇𝜈 = 0 и 𝜃 = 0. Рассмотрим три точки 𝑞1, 𝑞2 и 𝑞3, которые близки к
точке 𝑝:

𝑞1 = 𝑝+ 𝑑𝑥1, 𝑞2 = 𝑝+ 𝑑𝑥2, 𝑞3 = 𝑝+ 𝑑𝑥3.

Объем параллелепипеда со сторонами 𝑑𝑥1, 𝑑𝑥2 и 𝑑𝑥3 равен

𝑑𝑉 = 𝜀𝜇𝜈𝜌𝑑𝑥
𝜇
1𝑑𝑥

𝜈
2𝑑𝑥

𝜌
3,

где 𝜀𝜇𝜈𝜌 – полностью антисимметричный тензор третьего ранга (см. приложение
??). Через время 𝑑𝑡 вершины параллелепипеда сместятся, и его объем в первом
приближении станет равным

𝑑𝑉 ′ = 𝑑𝑉 +𝐷𝑑𝑡,

где
𝐷 = (𝜀𝜇𝜈𝜎𝜎

𝜎
𝜌 + 𝜀𝜇𝜎𝜌𝜎

𝜎
𝜈 + 𝜀𝜎𝜈𝜌𝜎

𝜎
𝜇)𝑑𝑥𝜇1𝑑𝑥

𝜈
2𝑑𝑥

𝜌
3.

Выражение в скобках антисимметрично по индексам 𝜈,𝜌. Поэтому его можно
свернуть с 𝜀𝜆𝜈𝜌. В результате получим нуль, что следует из свойств тензора
деформаций: 𝜎𝜇𝜈 = 𝜎𝜈𝜇 и 𝜎𝜇

𝜇 = 0. Следовательно, 𝐷 = 0. Это означает, что
объем параллелепипеда в первом приближении не меняется. Может измениться
только его форма. Такое движение называется сдвигом.

Заметим, что при вращении линий тока длина сторон параллелепипеда сохра-
няется, и поэтому сохраняется его объем. Более того, при вращении сохраняется
не только объем, но и форма параллелепипеда, поскольку сохраняются также углы
между векторами.

Тензор вращений 𝜔𝜇𝜈 взаимно однозначно параметризуется вектором вращений

𝜔 =

{︂
𝜔𝜇 :=

1

2
𝜀𝜇𝜈𝜌𝜔𝜈𝜌

}︂
. (2.4)

Из свойств полностью антисимметричного тензора третьего ранга следует равенство

𝜔2 := 𝜔𝜇𝜔𝜇 =
1

2
𝜔𝜇𝜈𝜔𝜇𝜈 ≥ 0.

Вектор вращений направлен вдоль оси поворота, и его длина равна углу поворота.
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2.1.2 Сплошная среда в релятивистской механике

В релятивистской механике мы поступаем по аналогии с тем, что было проделано в
предыдущем разделе для сплошной среды в классической механике.

Рассмотрим топологически тривиальное псевдориманово многообразие M ≈ R4,
которое покрыто одной картой 𝑥𝛼, 𝛼 = 0, 1, 2, 3. На нем задана метрика 𝑔𝛼𝛽 лоренце-
вой сигнатуры. Будем считать, что координата 𝑥0 является временем, и все сечения
𝑥0 = const пространственноподобны.

Основной переменной в релятивистской механике сплошной среды является вре-
мениподобное векторное поле скорости 𝑢𝛼(𝑥). Как и в классической механике, будем
считать векторное поле скорости достаточно гладким, и что система уравнений для
линий тока

𝑑𝑥𝛼(𝑠, 𝑦)

𝑑𝑠
= 𝑢𝛼(𝑥)

с начальными условиями 𝑥𝛼(𝑠 = 0, 𝑦) = 𝑦𝛼 имеет единственное решение при всех
𝑦 ∈ M, определенное для всех значений параметра 𝑠 ∈ R. Решение данной системы
уравнений 𝑥𝛼(𝑠, 𝑦) называется линией тока частицы жидкости, проходящей через
точку 𝑦 ∈ M. Как и в случае нерелятивистской среды линии тока заполняют все
многообразие M без каких либо лакун и самопересечений. Предположим также, что
в качестве параметра 𝑠 вдоль линий тока выбрана ее длина:

𝑑𝑠2 = 𝑑𝑥𝛼𝑑𝑥𝛽𝑔𝛼𝛽.

Тогда векторное поле скорости будет иметь единичную длину

𝑢𝛼𝑢𝛽𝑔𝛼𝛽 = 1. (2.5)

Дифференцирование этого равенства приводит к тождеству

𝑢𝛽∇𝛼𝑢𝛽 = 0, (2.6)

где ∇𝛼 – ковариантная производная, построенная по символам Кристоффеля для
метрики 𝑔𝛼𝛽. Если уравнение (2.6) продифференцировать еще раз, то получим ра-
венство

𝑢𝛾∇𝛼∇𝛽𝑢𝛾 + ∇𝛼𝑢
𝛾∇𝛽𝑢𝛾 = 0, (2.7)

которое позволяет выразить вторые производные от вектора скорости через первые
(при суммировании по индексу 𝛾).

Наличие векторного поля скорости позволяет построить проекционные операто-
ры:

Πt
𝛼
𝛽 := 𝛿𝛽𝛼 − 𝑢𝛼𝑢

𝛽, Πl
𝛼
𝛽 := 𝑢𝛼𝑢

𝛽, (2.8)

где 𝑢𝛼 := 𝑢𝛽𝑔𝛽𝛼. Операторы Πt и Πl проектируют тензоры на направления, перпен-
дикулярные и параллельные вектору скорости поскольку справедливы следующие
равенства:

Πt
𝛼
𝛽𝑢𝛽 = 0, Πl

𝛼
𝛽𝑢𝛽 = 𝑢𝛽.

Отметим также формулы

Πt
𝛼𝛽Πt𝛼𝛽 = 3, Πl

𝛼𝛽Πl𝛼𝛽 = 1,

которые будут использованы в дальнейшем.
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Последующие построения аналогичны тем, которые были проделаны в предыду-
щем разделе, но с заменой частных производных на ковариантные, 𝜕𝛼 ↦→ ∇𝛼.

Рассмотрим тензор второго ранга ∇𝛼𝑢𝛽. Если метрика 𝑔𝛼𝛽 близка к метрике Ло-
ренца, и система координат мало отличается от декартовой, то этот тензор имеет тот
же физический смысл, что и в классической механике, как было описано в преды-
дущем разделе.

Спроектируем ковариантные производные векторного поля скорости на перпен-
дикулярную гиперповерхность:

Πt
𝛼
𝛾Πt

𝛽
𝛿∇𝛾𝑢𝛿 = Πt

𝛼
𝛾∇𝛾𝑢𝛽 = ∇𝛼𝑢𝛽 − 𝑢𝛼𝑢̇𝛽, (2.9)

где мы воспользовались равенством (2.6), и точка обозначает дифференцирование
вдоль поля скорости:

𝑢̇𝛽 := 𝑢𝛾∇𝛾𝑢𝛽. (2.10)

Это – компоненты ускорения мировых линий частиц непрерывной среды. Если 𝑢̇ =
0, то частицы непрерывной среды движутся вдоль экстремалей, которые в данном
случае совпадают с геодезическими (см. раздел ??).

Напомним, что если градиент давления 𝒫 в жидкости направлен вдоль линий
тока, т.е.

Πt
𝛼
𝛽𝜕𝛽𝒫 = 0,

то, согласно уравнениям релятивистской гидродинамики (??), (??), частицы жидко-
сти движутся вдоль экстремалей.

Как и ранее, выделим из тензора (2.9) след и антисимметричную часть:

Πt
𝛼
𝛾Πt

𝛽
𝛿∇𝛾𝑢𝛿 = 𝜎𝛼𝛽 + 𝜔𝛼𝛽 +

1

3
Πt

𝛼𝛽𝜃, (2.11)

где

𝜃 := Πt𝛼𝛽∇𝛼𝑢𝛽 = ∇𝛼𝑢
𝛼 − скаляр расширения,

𝜎𝛼𝛽 :=
1

2
(Πt

𝛼
𝛾∇𝛾𝑢𝛽 + Πt

𝛽
𝛾∇𝛾𝑢𝛼) − 1

3
Πt

𝛼𝛽𝜃 − тензор сдвига,

𝜔𝛼𝛽 :=
1

2
(Πt

𝛼
𝛾∇𝛾𝑢𝛽 − Πt

𝛽
𝛾∇𝛾𝑢𝛼) − тензор вращения.

(2.12)

Используя производную вдоль векторного поля скорости (2.10), выражения для тен-
зоров сдвига и вращения можно переписать в виде

𝜎𝛼𝛽 :=
1

2
(∇𝛼𝑢𝛽 + ∇𝛽𝑢𝛼 − 𝑢𝛼𝑢̇𝛽 − 𝑢𝛽𝑢̇𝛼) − 1

3
Πt

𝛼𝛽𝜃,

𝜔𝛼𝛽 :=
1

2
(∇𝛼𝑢𝛽 −∇𝛽𝑢𝛼 − 𝑢𝛼𝑢̇𝛽 + 𝑢𝛽𝑢̇𝛼).

В дальнейшем нам понадобится выражение для полной ковариантной производ-
ной ковекторного поля скорости

∇𝛼𝑢𝛽 = Πt
𝛼
𝛾∇𝛾𝑢𝛽 + Πl

𝛼
𝛾∇𝛾𝑢𝛽 = 𝜎𝛼𝛽 + 𝜔𝛼𝛽 +

1

3
Πt

𝛼𝛽𝜃 + 𝑢𝛼𝑢̇𝛽. (2.13)

Отметим также полезные для вычислений формулы

𝜎𝛼𝛽𝑢
𝛽 = 0, 𝜔𝛼𝛽𝑢

𝛽 = 0,
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которые просто проверяются.
Тензор вращения можно параметризовать псевдовекторным полем

𝜔𝛼 :=
1

2
𝜀𝛼𝛽𝛾𝛿𝑢𝛽𝜔𝛾𝛿, (2.14)

где 𝜀𝛼𝛽𝛾𝛿 – полностью антисимметричный тензор четвертого ранга (см. приложение
??). Квадрат этого псевдовектора имеет вид

𝜔2 := 𝜔𝛼𝜔𝛼 =
1

2
𝜔𝛼𝛽𝜔𝛼𝛽.

Псевдовектор вращения времениподобен или нулевой, т.к. правая часть неотрица-
тельна. Это проще всего увидеть в системе координат, сопутствующей векторному
полю скорости 𝑢 = (1, 0, 0, 0), в которой

Πt00 = Πt0𝜇 = Πt𝜇0 = 0, Πt𝜇𝜈 = 𝑔𝜇𝜈 .

Из равенства
𝜔𝛼𝛽 = Πt𝛼𝛾Πt𝛽𝛿𝜔𝛾𝛿

следует, что в сопутствующей системе координат

𝜔00 = 𝜔0𝜇 = 𝜔𝜇0 = 0.

Поэтому

𝜔2 =
1

2
𝜔𝜇𝜈𝜔𝜇𝜈 ≥ 0

в силу отрицательной определенности пространственной части метрики 𝑔𝜇𝜈 .
Кроме этого введем скаляр деформации 𝜎 > 0 с помощью равенства

𝜎2 :=
1

2
𝜎𝛼𝛽𝜎𝛼𝛽 ≥ 0. (2.15)

Он неотрицателен по той же причине, что и скаляр вращения.
Для того, чтобы оправдать предложенные выше построения, рассмотрим нереля-

тивистский предел. Для этого заменим метрику 𝑔𝛼𝛽 на метрику Лоренца 𝜂𝛼𝛽 и введем
наблюдаемое время 𝑥0 = 𝑐𝑡, где 𝑐 – скорость света. В этом случае ковариантные про-
изводные совпадают с частными. В первом приближении можно считать, что длина
линии тока совпадает с 𝑥0. Тогда

𝑢0 = 𝑢0 = 1, 𝑣𝜇 :=
𝑑𝑥𝜇

𝑑𝑡
= 𝑐𝑢𝜇.

Для отличия трехмерную скорость частицы среды мы обозначили новой буквой 𝑣𝜇 (в
предыдущем разделе она была обозначена через 𝑢𝜇). Кроме того, в нерелятивистском
пределе 𝑣2/𝑐2 → 0 имеют место формулы:

𝜕𝜇𝑢0 → 0, 𝜕0𝑢𝜇 =
1

𝑐2
𝑑𝑣𝜇
𝑑𝑡

→ 0.

Поэтому определение расширения, сдвига и вращения (2.12) в релятивистском случае
сводится к соответствующим нерелятивистским компонентам:

𝑐𝜃 → 𝜃n, 𝑐𝜎𝛼𝛽 → 𝜎n𝜇𝜈 , 𝑐𝜔𝜇𝜈 → 𝜔n𝜇𝜈 ,

𝜎00, 𝜎0𝜇 → 0, 𝜔00, 𝜔0𝜇 → 0,

где неприводимые компоненты в нерелятивистском случае помечены индексом n.
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2.1.3 Уравнение Райчаудхури

Получим эволюционные уравнения вдоль линий тока для скаляра расширения и
тензоров сдвига и вращения. С этой целью два раза продифференцируем вектор
скорости и антисимметризуем:

∇𝜖∇𝛿𝑢𝛾 −∇𝛿∇𝜖𝑢𝛾 = −𝑅𝜖𝛿𝛾𝜁𝑢
𝜁 , (2.16)

где мы воспользовались формулой для коммутатора ковариантных производных
(??). Умножим это уравнение на 𝑢𝜖. Тогда первое и второе слагаемые примут вид

𝑢𝜖∇𝜖∇𝛿𝑢𝑔 :=(∇𝛿𝑢𝛾)·,
−𝑢𝜖∇𝛿∇𝜖𝑢𝛾 = −∇𝛿𝑢̇𝛾 + ∇𝛿𝑢

𝜖∇𝜖𝑢𝛾,

где 𝑢̇𝛾 – компоненты ускорения линий тока (2.10). Теперь спроектируем полученное
уравнение на перпендикулярные направления:

Πt
𝛼
𝛾Πt

𝛽
𝛿(∇𝛿𝑢𝛾)· − Πt

𝛼
𝛾Πt

𝛽
𝛿∇𝛿𝑢̇𝛾 + Πt

𝛼
𝛾Πt

𝛽
𝛿∇𝛿𝑢

𝜖∇𝜖𝑢𝛾 −𝑅𝛼𝜖𝛽𝜁𝑢
𝜖𝑢𝜁 = 0, (2.17)

где мы воспользовались антисимметрией тензора кривизны:

Πt
𝛼
𝛾Πt

𝛽
𝛿𝑅𝛾𝜖𝛿𝜁𝑢

𝜖𝑢𝜁 = 𝑅𝛼𝜖𝛽𝜁𝑢
𝜖𝑢𝜁 .

Эволюционное уравнение (2.17) является кинематическим в том смысле, что при
его получении мы не использовали уравнений Эйнштейна.

Чтобы получить эволюционные уравнения, разложим уравнение (2.17) на непри-
водимые компоненты. Оно представляет собой тензор второго ранга с индексами 𝛼 и
𝛽. Сначала выделим след, свернув его с обратной метрикой 𝑔𝛼𝛽. Тогда первое, второе
и третье слагаемые примут вид:

𝑔𝛼𝛽Πt
𝛼
𝛾Πt

𝛽
𝛿(∇𝛿𝑢𝛾)· = 𝜃 + 𝑢̇𝛾𝑢̇𝛾,

−𝑔𝛼𝛽Πt
𝛼
𝛾Πt

𝛽
𝛿∇𝛿𝑢̇𝛾 = −∇𝛾𝑢̇

𝛾 − 𝑢̇𝛾𝑢̇𝛾,

𝑔𝛼𝛽Πt
𝛼
𝛾Πt

𝛽
𝛿∇𝛿𝑢

𝜖∇𝜖𝑢𝛾 = 2𝜎2 − 2𝜔2 +
1

3
𝜃2.

(2.18)

Для преобразования четвертого слагаемого используем уравнения Эйнштейна, кото-
рые запишем в виде

𝑅𝛼𝛽 = − 1

2𝜅

[︂
(ℰ + 𝒫)𝑢𝛼𝑢𝛽 −

1

2
(ℰ − 𝒫)𝑔𝛼𝛽

]︂
.

Тогда четвертое слагаемое примет вид

𝑅𝛼𝛽𝑢
𝛼𝑢𝛽 = − 1

4𝜅
(ℰ + 3𝒫).

Суммируя все вместе, получаем уравнение Райчаудхури

𝜃 +
1

3
𝜃2 −∇𝛾𝑢̇

𝛾 + 2(𝜎2 − 𝜔2) +
1

4𝜅
(ℰ + 3𝒫) = 0. (2.19)

Это уравнение было получено Райчаудхури [?, ?] для пыли, 𝒫 = 0, без определения
тензоров сдвига и вращений. В форме (2.19) оно было получено позже [?].
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Теперь выделим из уравнения (2.17) антисимметричную часть. Простые вычис-
ления дают следующие выражения для первого, второго и третьего слагаемого:

Πt
[𝛼

𝛾Πt
𝛽]

𝛿(∇𝛿𝑢𝛾)· = Πt
𝛼
𝛾Πt

𝛽
𝛿𝜔̇𝛿𝛾,

−Πt
[𝛼

𝛾Πt
𝛽]

𝛿∇𝛿𝑢̇𝛾 = −Πt
𝛼
𝛾Πt

𝛽
𝛿∇[𝛿𝑢̇𝛾],

Πt
[𝛼

𝛾Πt
𝛽]

𝛿∇𝛿𝑢
𝜖∇𝜖𝑢𝛾 = 2𝜔[𝛽

𝛾𝜎𝛼]𝛾 +
2

3
𝜃𝜔𝛽𝛼,

где квадратные скобки обозначают антисимметризацию по паре индексов. Четвертое
слагаемое при антисимметризации дает нуль, поскольку тензор кривизны симметри-
чен относительно перестановки первой и второй пар индексов. В результате получаем
эволюционное уравнение для тензора вращений:

Πt
𝛼
𝛾Πt

𝛽
𝛿𝜔̇𝛿𝛾 − Πt

𝛼
𝛾Πt

𝛽
𝛿∇[𝛿𝑢̇𝛾] + 2𝜔[𝛽

𝛾𝜎𝛼]𝛾 +
2

3
𝜃𝜔𝛽𝛼 = 0. (2.20)

Сейчас построим бесследовую симметричную часть уравнения (2.17). Первые три
слагаемых имеют вид

Πt
(𝛼

𝛾Πt
𝛽)

𝛿(∇𝛿𝑢𝛾)· − 1

3
(𝜃 + 𝑢̇𝛾𝑢̇𝛾)Πt

𝛼𝛽 = Πt
𝛼
𝛾Πt

𝛽
𝛿𝜎̇𝛿𝛾 −

1

3
𝑢̇𝛾𝑢̇𝛾Πt

𝛼𝛽,

−Πt
(𝛼

𝛾Πt
𝛽)

𝛿∇𝛿𝑢̇𝛾 +
1

3
(∇𝛾𝑢̇

𝛾 + 𝑢̇𝛾𝑢̇𝛾)Πt
𝛼𝛽 = −Πt

𝛼
𝛾Πt

𝛽
𝛿∇(𝛿𝑢̇𝛾) +

1

3
(∇𝛾𝑢̇

𝛾 + 𝑢̇𝛾𝑢̇𝛾)Πt
𝛼𝛽,

Πt
(𝛼

𝛾Πt
𝛽)

𝛿∇𝛿𝑢
𝜖∇𝜖𝑢𝛾 −

1

3

(︂
2𝜎2 − 2𝜔2 +

1

3
𝜃2
)︂

Πt
𝛼𝛽 = 𝜎𝛽

𝜖𝜎𝜖𝛼 + 𝜔𝛽
𝜖𝜔𝜖𝛼+

+
2

3
𝜃𝜎𝛽𝛼 − 1

3
(2𝜎2 − 2𝜔2)Πt

𝛼𝛽,

где скобки обозначают симметризацию по паре индексов, и использованы формулы
для следов (2.18). Четвертое слагаемое равно

𝑅𝛼𝛾𝛽𝛿𝑢
𝛾𝑢𝛿−1

3
𝑅𝛾𝛿𝑢

𝛾𝑢𝛿Πt
𝛼𝛽 =

=𝐶𝛼𝛾𝛽𝛿𝑢
𝛾𝑢𝛿 +

1

2
(𝑅𝛼𝛽 −𝑅𝛼𝛾𝑢

𝛾𝑢𝛽 −𝑅𝛽𝛾𝑢
𝛾𝑢𝛼)+

+
1

6
𝑅𝛾𝛿𝑢

𝛾𝑢𝛿𝑔𝛼𝛽 −
1

6
𝑅(𝑔𝛼𝛽 − 𝑢𝛼𝑢𝛽) +

1

3
𝑅𝛾𝛿𝑢

𝛾𝑢𝛿𝑢𝛼𝑢𝛽,

(2.21)

где мы разложили тензор кривизны на неприводимые компоненты, выделив тензор
Вейля 𝐶𝛼𝛽𝛾𝛿, тензор Риччи 𝑅𝛼𝛽 и скалярную кривизну 𝑅 (см. раздел ??). Из урав-
нений Эйнштейна следует, что тензор Риччи имеет следующую структуру

𝑅𝛼𝛽 = 𝐴𝑔𝛼𝛽 +𝐵𝑢𝛼𝑢𝛽 ⇒ 𝑅 = 4𝐴+𝐵, (2.22)

где 𝐴 и 𝐵 – некоторые функции. Если подставить это выражение в правую часть
равенства (2.21), то все слагаемые сократятся за исключением тензора Вейля. Сле-
довательно, эволюционное уравнение для тензора сдвига принимает вид

Πt
𝛼
𝛾Πt

𝛽
𝛿𝜎̇𝛿𝛾 − Πt

𝛼
𝛾Πt

𝛽
𝛿∇(𝛿𝑢̇𝛾) + 𝜎𝛼𝛾𝜎

𝛾
𝛽 + 𝜔𝛼𝛾𝜔

𝛾
𝛽 +

2

3
𝜃𝜎𝛼𝛽+

+
1

3

[︀
∇𝛾𝑢̇

𝛾 − 2(𝜎2 − 𝜔2)
]︀

Πt
𝛼𝛽 − 𝐸𝛼𝛽 = 0, (2.23)
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где
𝐸𝛼𝛽 := 𝐶𝛼𝛾𝛽𝛿𝑢

𝛾𝑢𝛿 (2.24)

– электрическая компонента тензора Вейля.
Таким образом получены эволюционные уравнения (2.19), (2.20) и (2.222) для всех

трех неприводимых компонент тензора ∇𝛼𝑢𝛽. Эти уравнения эквивалентны системе
уравнений (2.17).

Из исходных уравнений (2.16) можно получить дополнительные независимые урав-
нения. Получим еще три (но не все) алгебраически независимых уравнения. Посколь-
ку антисимметризация тензора кривизны по любым трем индексам дает нуль, то
полная антисимметризация исходного уравнения (2.16) приводит к равенству

∇[𝛼𝜔𝛽𝛾] + 𝜔[𝛼𝛽𝑢̇𝛾] + 𝑢[𝛼∇𝛽𝑢̇𝛾] = 0, (2.25)

где квадратные скобки обозначают антисимметризацию по трем индексам. Получен-
ное уравнение не зависят от тензора кривизны и, следовательно, от полей материи.
Поэтому оно имеет кинематический характер.

Теперь свернем уравнение (2.16) c 𝑔𝛾𝛿:

∇𝜖∇𝛾𝑢
𝛾 −∇𝛾∇𝜖𝑢

𝛾 −𝑅𝜖𝜁𝑢
𝜁 = 0.

Если тензор Риччи имеет структуру (2.22), то последнее слагаемое обращается в
нуль. После проектирования на перпендикулярное направление, т.е. умножения на
Πt𝛼𝜖, возникает второе уравнение

Πt𝛼𝜖
(︂

2

3
∇𝜖𝜃 −∇𝛾𝜎𝜖

𝛾 −∇𝛾𝜔𝜖
𝛾

)︂
− (𝜎𝛾

𝛼 + 𝜔𝛾
𝛼)𝑢̇𝛾 = 0. (2.26)

Хотя оно не зависит от тензора кривизны, полученное уравнение нельзя назвать ки-
нематическим, т.к. при его получении использована структура тензора Риччи (2.22).

Еще одно уравнение возникает после поднятия индексов 𝜖, 𝛿 в уравнении (2.16) и
умножения его на тензор

1

2
𝜀𝜂𝜁𝜖𝛿𝑢

𝜁Πt
𝛼
𝜂Πt

𝛽
𝛾.

После несложных преобразований получим уравнение

2𝜔(𝛼𝑢̇𝛽) − Πt
𝛼
𝛾Πt

𝛽
𝛿𝑢𝜖𝜀𝜖𝜂𝜁(𝛾∇𝜂

[︀
𝜎𝜁

𝛿) + 𝜔𝜁
𝛿)

]︀
= −𝐻𝛼𝛽, (2.27)

где

𝐻𝛼𝛽 :=
1

2
𝜀𝛼𝛾𝛿𝜖𝐶

𝛿𝜖
𝛽𝜁𝑢

𝛾𝑢𝜁 (2.28)

– магнитная составляющая тензора Вейля.
Значение полученных эволюционных уравнений (2.19), (2.20), (2.222), (2.25)–(3.181)

заключается в том, что они приводят к важным следствиям, если на кинематические
характеристики среды наложены ограничения.

Пример 2.1.1. Пусть 𝜎𝛼𝛽 = 0, 𝜔𝛼𝛽 = 0 и 𝑢̇𝛼 = 0. Тогда уравнения (2.20) и (2.25)
тождественно удовлетворяются. Из уравнения (2.26) следует, что скаляр расширения
может меняться только вдоль линий тока. Уравнения (2.222) и (3.181) приводят к
равенству нулю тензора Вейля.
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2.1.4 Большой взрыв и большое сжатие

Рассмотрим вселенную, которая заполнена непрерывной средой. Допустим, что ча-
стицы среды движутся по экстремалям пространства-времени, т.е. ускорение линий
тока равно нулю, 𝑢̇ = 0. Предположим также, что тензор вращения при движении
равен нулю, 𝜔 = 0.

Теперь введем функцию 𝑙(𝑠) как решение обыкновенного дифференциального
уравнения вдоль линий тока

𝑙

𝑙
:=

1

3
𝜃,

где 𝑙 := 𝑢𝛼𝜕𝛼𝑙. Тогда уравнение Райчаудхури (2.19) примет вид

3
𝑙̈

𝑙
+ 2𝜎2 +

1

4𝜅
(ℰ + 3𝒫) = 0. (2.29)

Для всех известных в настоящее время видов материи ℰ > 0 и 𝒫 > 0. Поэтому из
полученного уравнения следует, что 𝑙̈/𝑙 < 0.

Рассмотрим случай, когда 𝑙 > 0. Тогда из уравнения (2.29) вытекает, что функ-
ция 𝑙 является вогнутой, т.е. 𝑙̈ < 0. Это означает, что если к кривой 𝑙(𝑠) провести
касательную, то вся кривая будет лежать ниже этой касательной. Зафиксируем неко-
торую точку 𝑠 = 𝑝. Тогда в этой точке возможны три случая 𝑙 < 0, 𝑙 = 0 и 𝑙 > 0,
которые качественно показаны на рис. 2.1. Если в точке 𝑝 производная больше нуля,

Рис. 2.1: Качественное поведение кривой 𝑙(𝑠) в трех случаях: 𝑙(𝑝) > 0, 𝑙(𝑝) = 0 и
𝑙(𝑝) < 0. В любом случае функция 𝑙(𝑠) обратится в нуль при конечном значении 𝑠.

𝑙(𝑝) > 0, то функция 𝑙(𝑠) должна обратиться в нуль при конечном значении 𝑠 < 𝑝,
которое мы обозначим через 𝑠𝑏. Если 𝑙(𝑝) < 0, то функция 𝑙(𝑠) обратится в нуль при
некотором значении 𝑠𝑐 > 𝑝. При 𝑙(𝑝) = 0 функция 𝑙(𝑠) обязательно обратится в нуль
при некоторых 𝑠𝑏 < 𝑝 и 𝑠𝑐 > 𝑝.

Пусть теперь 𝑙 < 0. В этом случае функция 𝑙 является выпуклой, т.к. 𝑙̈ > 0. Как и
предыдущем случае функция 𝑙 обратится в нуль при конечных значениях параметра
𝑠. Нужно просто отразить графики, показанные на рис. 2.1, относительно оси абсцисс
𝑠.

При переходе через точку 𝑙(𝑠) = 0 вторая производная 𝑙̈ меняет знак. Это значит,
что 𝑙̈(𝑠𝑏,𝑐) = 0, и точки 𝑠𝑏 и 𝑠𝑐 являются точками перегиба. Допустим, что функция
𝑙(𝑠) при переходе через нуль ведет себя степенным образом. Поскольку она меняет
знак, то главный член разложения будет нечетной степени:

𝑙 ≈ 𝐶(𝑠− 𝑠𝑏,𝑐)
2𝑘+1, 𝐶 = const ̸= 0, 𝑘 = 1, 2, . . . .

Тогда

lim
𝑠→𝑠𝑏,𝑐

𝑙̈

𝑙
= lim

𝑠→𝑠𝑏,𝑐

2𝑘(2𝑘 + 1)

(𝑠− 𝑠𝑏,𝑐)2
= ∞.
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Поэтому из уравнения (2.29) вытекает, что в точках 𝑠𝑏 и 𝑠𝑐 либо ℰ + 3𝒫 → ∞, либо
𝜎2 → ∞. Это означает, что решения уравнений Эйнштейна будут иметь особенность
либо в прошлом, либо в будущем. Поскольку параметр вдоль линий тока выбран
каноническим, то эта особенность будет лежать при конечном значении собствен-
ного времени. Особенность, лежащая в прошлом, называется большим взрывом, а
лежащая в будущем – большим сжатием.

В англоязычной литературе употребляются термины big bang и big crunch. До-
словный перевод второго термина большой хруст. Его также иногда употребляют
вместо “большого сжатия”.

Таким образом, при достаточно общих предположениях мы доказали наличие осо-
бенности в космологических решениях уравнений Эйнштейна либо в прошлом, либо в
будущем. Подчеркнем, что при этом не были использованы какие либо решения урав-
нений Эйнштейна. Большинство рассмотренных в настоящей главе космологических
решений действительно имеет особенности. В то же время существуют отдельные ре-
шения без особенностей. В настоящее время принято считать, что окружающая нас
вселенная родилась из большого взрыва, что неплохо согласуется с наблюдательны-
ми данными.

2.2 Трехмерные пространства постоянной кривизны
В настоящем разделе мы рассмотрим трехмерные римановы пространства положи-
тельной и отрицательной постоянной кривизны, которые являются однородными
и изотропными пространствами. Эти пространства важны, поскольку играют роль
пространственных сечений постоянного времени в космологических моделях Фрид-
мана.

2.2.1 Трехмерная сфера S3

Рассмотрим четырехмерное евклидово пространство R4 с декартовой системой коор-
динат 𝑤, 𝑥, 𝑦, 𝑧. Это значит, что метрика в R4 имеет вид

𝑑𝑠2 = 𝑑𝑤2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2. (2.30)

Трехмерная сфера S3 радиуса 𝑎 с центром в начале координат задается уравнением

𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2, 𝑎 > 0. (2.31)

Это уравнение задает множество точек в R4, равноудаленных от начала коорди-
нат. Мы предполагаем, что топология и дифференцируемая структура на S3 заданы
вложением S3 →˓ R4. Тем самым множество точек S3 становится компактным трех-
мерным гладким многообразием. Кроме этого мы предполагаем, что на S3 задана
метрика, также индуцированная вложением S3 →˓ R4. Тогда сфера S3 превращается
в риманово многообразие, как мы увидим, постоянной положительной кривизны.

Чтобы определить индуцированную метрику, решим уравнение (2.31) относитель-
но 𝑤:

𝑤 = ±
√︀
𝑎2 − 𝑥2 − 𝑦2 − 𝑧2,

где знаки ± соответствуют верхней и нижней полусфере. Тогда

𝑑𝑤 = ∓ 𝑥𝑑𝑥+ 𝑦𝑑𝑦 + 𝑧𝑑𝑧√︀
𝑎2 − 𝑥2 − 𝑦2 − 𝑧2

.
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Подстановка полученного выражения в евклидов интервал (2.30) приводит к следу-
ющему выражению

𝑑𝑠2 =
(𝑎2 − 𝑦2 − 𝑧2)𝑑𝑥2 + (𝑎2 − 𝑥2 − 𝑧2)𝑑𝑦2 + (𝑎2 − 𝑥2 − 𝑦2)𝑑𝑧2

𝑎2 − 𝑥2 − 𝑦2 − 𝑧2
+

+ 2
𝑥𝑦𝑑𝑥𝑑𝑦 + 𝑥𝑧𝑑𝑥𝑑𝑧 + 𝑦𝑧𝑑𝑦𝑑𝑧

𝑎2 − 𝑥2 − 𝑦2 − 𝑧2
. (2.32)

Это и есть метрика на сфере, индуцированная вложением S3 →˓ R4. Координаты
𝑥, 𝑦, 𝑧 и на нижней, и на верхней полусфере определены внутри трехмерного шара
B3

𝑎 радиуса 𝑎:
𝑥2 + 𝑦2 + 𝑧2 < 𝑎2.

Отсюда, в частности, следует, что сфера S3 трехмерна.
Индуцированная метрика на S3 принимает более простой диагональный вид, если

ввести сферические координаты 𝑟, 𝜃, 𝜙 в трехмерном евклидовом подпространстве
R3 ⊂ R4 с координатами 𝑥, 𝑦, 𝑧:

𝑥 := 𝑟 sin 𝜃 cos𝜙,

𝑦 := 𝑟 sin 𝜃 sin𝜙,

𝑧 := 𝑟 cos 𝜃.

(2.33)

Тогда уравнение сферы (2.31) примет вид

𝑤2 + 𝑟2 = 𝑎2 ⇔ 𝑤 = ±
√
𝑎2 − 𝑟2.

Отсюда следует равенство дифференциалов

𝑑𝑤 = ∓ 𝑟𝑑𝑟√
𝑎2 − 𝑟2

.

Подстановка 𝑑𝑤 в интервал (2.30) приводит к диагональной индуцированной метрике

𝑑𝑠2 =
𝑑𝑟2

1 − 𝑟2/𝑎2
+ 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2). (2.34)

Полученная метрика определена при

0 < 𝑟 < 𝑎, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋.

Эти значения координат покрывают либо верхнюю полусферу, 𝑤 > 0, либо нижнюю,
𝑤 < 0. По аналогии с двумерной сферой, мы считаем, что значение 𝑟 = 0 соот-
ветствует либо северному, либо южному полюсу. Экватору сферы S3 соответствует
максимальное значение 𝑟 = 𝑎.

Теперь сделаем замену радиальной координаты 𝑟 ↦→ 𝜒:

𝑟 := 𝑎 sin𝜒 ⇒ 𝑑𝑟 = 𝑎 cos𝜒𝑑𝜒,

где 𝜒 – новая безразмерная радиальная координата. Тогда метрика примет вид

𝑑𝑠2 = 𝑎2
[︀
𝑑𝜒2 + sin 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]︀
. (2.35)

Новая координата меняется в интервале 𝜒 ∈ (0, 𝜋/2) для каждой из полусфер. Одна-
ко метрика (2.35) определена в более широком интервале 𝜒 ∈ (0, 𝜋). Поэтому можно
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считать, что индуцированная метрика в виде (2.35) покрывает всю сферу, за исклю-
чением двумерного сечения 𝜙 = 0, которое включает северный и южный полюса.
При этом две полусферы гладко сшиты по экватору 𝜒 = 𝜋/2. Таким образом, без-
размерные сферические координаты определены при

0 < 𝜒 < 𝜋, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋.

Фактически, безразмерные сферические координаты 𝜒, 𝜃, 𝜙 – это сферические ко-
ординаты на сфере S3 единичного радиуса, 𝑎 = 1.

Метрика трехмерной сферы S3 в безразмерных сферических координатах диаго-
нальна. Следовательно, диагональна также обратная метрика. Поэтому координат-
ные векторные поля 𝜕𝜒, 𝜕𝜃 и 𝜕𝜙 ортогональны.

Каждое двумерное сечение 𝑟 := 𝑎 sin𝜒 = const трехмерной сферы S3, которое со-
ответствует постоянному радиусу, представляет двумерную сферу S2

𝑟 ⊂ S3 с обычной
индуцированной метрикой

𝑑𝑙2 = 𝑎2 sin 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2), 𝜒 = const.

Площадь поверхности этой сферы максимальна на экваторе 𝜒 = 𝜋/2 и равна 4𝜋𝑎2.
На полюсах, 𝜒 = 0, 2𝜋, площадь поверхности двумерной сферы равна нулю. Для
сравнения напомним, что сечения двумерной сферы S2 плоскостями 𝑧 = const пред-
ставляют собой окружности S1, длина которых убывает от экватора к полюсам.

Объем трехмерной сферы просто вычисляется в безразмерных сферических ко-
ординатах:

𝑉 =

∫︁ 𝜋

0

𝑑𝜒

∫︁ 𝜋

0

𝑑𝜃

∫︁ 2𝜋

0

𝑑𝜙 𝑎3 sin 2𝜒 sin 𝜃 = 2𝜋2𝑎3. (2.36)

Метрику (2.34), индуцированную на сфере, можно записать в конформно плоском
виде. Действительно, совершим преобразование радиальной координаты 𝑟 ↦→ 𝜌(𝑟)
такое, чтобы было выполнено уравнение

1

1 − 𝑟2/𝑎2

(︂
𝑑𝑟

𝑑𝜌

)︂2

=
𝑟2

𝜌2
.

Это уравнение легко решается. С точностью до несущественной постоянной интегри-
рования решение имеет вид

𝑟 =
𝜌

1 + 𝜌2

4𝑎2

. (2.37)

После такого преобразования радиальной координаты метрика становится конформ-
но плоской:

𝑑𝑠2 =
𝑑𝜌2 + 𝜌2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)(︁

1 + 𝜌2

4𝑎2

)︁2 . (2.38)

Эта метрика определена при 0 < 𝜌 < ∞. Северному и южному полюсам ставятся в
соответствие точки 𝜌 = ∞ и 𝜌 = 0. Экватору сферы S3 соответствует значение 𝜌 = 2𝑎.
Заметим, что на экваторе метрика сферы невырождена. По аналогии с двумерной
сферой будем называть систему координат 𝜌, 𝜃, 𝜙 стереографической.

Рассмотрим координаты 𝜌, 𝜃, 𝜙 в качестве сферических координат в R3 и перейдем
к декартовым координатам:

𝑥1 := 𝜌 sin 𝜃 cos𝜙,

𝑥2 := 𝜌 sin 𝜃 sin𝜙,

𝑥3 := 𝜌 cos 𝜃.

(2.39)
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Введем обозначение {𝑥𝜇} = {𝑥1, 𝑥2, 𝑥3}, 𝜇 = 1, 2, 3. Тогда метрика примет вид

𝑑𝑠2 =
𝑑𝑥2(︀

1 + 𝑥2

4𝑎2

)︀2 , (2.40)

где
𝑑𝑥2 := 𝛿𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 , 𝑥2 := 𝜌2 = 𝛿𝜇𝜈𝑥
𝜇𝑥𝜈 .

Индуцированная метрика на сфере S3 с стереографических координатах (2.40) опре-
делена во всем евклидовом пространстве {𝑥𝜇} ∈ R3 и является гладкой. Эти коор-
динаты покрывают всю сферу за исключением северного полюса, которому соответ-
ствует бесконечно удаленная точка 𝜌 = ∞. Северная и южная полусферы гладко
сшиваются по экватору, которому соответствует двумерная сфера 𝜌 = 2𝑎.

Теперь вычислим геометрические характеристики трехмерной сферы S3 для ин-
дуцированной метрики (2.40) в стереографических координатах. Начнем с символов
Кристоффеля. Несложные вычисления дают следующее выражение

Γ𝜇𝜈
𝜌 = − 1

2𝑎2
(︀
1 + 𝑥2

4𝑎2

)︀(𝑥𝜇𝛿
𝜌
𝜈 + 𝑥𝜈𝛿

𝜌
𝜇 − 𝑥𝜌𝛿𝜇𝜈), (2.41)

где 𝑥𝜇 := 𝛿𝜇𝜈𝑥
𝜈 . Ему соответствует тензор кривизны

𝑅𝜇𝜈𝜌𝜎 = −𝛿𝜇𝜌𝛿𝜈𝜎 − 𝛿𝜈𝜌𝛿𝜇𝜎

𝑎2
(︀
1 + 𝑥2

4𝑎2

)︀4 = −𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜈𝜌𝑔𝜇𝜎
𝑎2

. (2.42)

Отсюда следует, что трехмерная сфера S3 с индуцированной метрикой является ри-
мановым пространством постоянной кривизны. Тензор Риччи и скалярная кривизна
имеют вид

𝑅𝜇𝜌 = − 2𝛿𝜇𝜌

𝑎2
(︀
1 + 𝑥2

4𝑎2

)︀2 = −2𝑔𝜇𝜌
𝑎2

,

𝑅 = − 6

𝑎2
.

(2.43)

Гауссова кривизна при этом положительна

𝐾 := −1

2
𝑅 =

3

𝑎2
.

Поэтому трехмерная сфера S3 с индуцированной метрикой является пространством
постоянной положительной кривизны.

Евклидова метрика (2.30) и уравнение (2.31), определяющее вложение S3 →˓ R4,
инвариантны относительно группы вращений O(4), которая действует в исходном
евклидовом пространстве R4 обычным образом. Группа Ли вращений O(4) шести-
параметрическая, и поэтому в R4 существует шесть линейно независимых векторов
Киллинга:

𝐾12 := 𝑤𝜕𝑥 − 𝑥𝜕𝑤, 𝐾23 := 𝑥𝜕𝑦 − 𝑦𝜕𝑥,

𝐾13 := 𝑤𝜕𝑦 − 𝑦𝜕𝑤, 𝐾24 := 𝑥𝜕𝑧 − 𝑧𝜕𝑥,

𝐾14 := 𝑤𝜕𝑧 − 𝑧𝜕𝑤, 𝐾34 := 𝑦𝜕𝑧 − 𝑧𝜕𝑦.

(2.44)

Если пронумеровать координаты, {𝑥𝑖} := {𝑤, 𝑥, 𝑦, 𝑧}, 𝑖 = 1, 2, 3, 4, то векторы Кил-
линга можно записать в компактной форме

𝐾𝑖𝑗 := 𝑥𝑖𝜕𝑗 − 𝑥𝑗𝜕𝑗,
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где 𝑥𝑖 := 𝑥𝑗𝛿𝑗𝑖. Векторы Киллинга удовлетворяют алгебре Ли so(4):

[𝐾𝑖𝑗, 𝐾𝑘𝑙] = −𝛿𝑖𝑘𝐾𝑗𝑙 + 𝛿𝑖𝑙𝐾𝑗𝑘 + 𝛿𝑗𝑘𝐾𝑖𝑙 − 𝛿𝑗𝑙𝐾𝑖𝑘, (2.45)

в чем нетрудно убедиться с помощью прямых вычислений.
Поскольку алгебра Ли векторных полей Киллинга замкнута, то они находятся

в инволюции, и, согласно теореме Фробениуса, у распределения векторных полей
Киллинга существуют интегральные подмногообразия, которыми, как мы увидим,
являются сферы S3 →˓ R4.

Для того, чтобы получить явные выражения для векторных полей Киллинга на
сфере S3 проделаем следующее. Переменные 𝑟, 𝜒, 𝜃, 𝜙 можно рассматривать, как ло-
кальные координаты в R4:

𝑤 := 𝑟 cos𝜒, 𝑥 := 𝑟 sin𝜒 sin 𝜃 cos𝜙,

𝑧 := 𝑟 sin𝜒 cos 𝜃, 𝑦 := 𝑟 sin𝜒 sin 𝜃 sin𝜙.

Отсюда следует, что значения 𝜒 = 0, 𝜋 соответствуют северному и южному полюсу,
а 𝜒 = 𝜋/2 – экватору.

В дальнейшем нам понадобятся следующие формулы:

𝑥2 + 𝑦2 = 𝑟2 sin 2𝜒 sin 2𝜃,

𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 sin 2𝜒,

𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2.

Обратные преобразования координат имеют вид:

𝑟 =
√︀
𝑤2 + 𝑥2 + 𝑦2 + 𝑧2,

𝜒 = arctg

√︀
𝑥2 + 𝑦2 + 𝑧2

𝑤
,

𝜃 = arctg

√︀
𝑥2 + 𝑦2

𝑧
,

𝜙 = arctg
𝑦

𝑥
.

Для нахождения явного вида векторов Киллинга будут использованы частные
производные, определяющие дифференциал отображения (𝑤, 𝑥, 𝑦, 𝑧) ↦→ (𝑟, 𝜒, 𝜃, 𝜙):

𝜕𝑟
𝜕𝑤

= cos𝜒, 𝜕𝜃
𝜕𝑤

= 0,

𝜕𝑟
𝜕𝑥

= sin𝜒 sin 𝜃 cos𝜙, 𝜕𝜃
𝜕𝑥

=
cos 𝜃 cos𝜙

𝑟 sin𝜒
,

𝜕𝑟
𝜕𝑦

= sin𝜒 sin 𝜃 sin𝜙, 𝜕𝜃
𝜕𝑦

=
cos 𝜃 sin𝜙

𝑟 sin𝜒
,

𝜕𝑟
𝜕𝑧

= sin𝜒 cos 𝜃, 𝜕𝜃
𝜕𝑧

= − sin 𝜃
𝑟 sin𝜒

,

𝜕𝜒

𝜕𝑤
= − sin𝜒

𝑟
,

𝜕𝜙

𝜕𝑤
= 0,

𝜕𝜒

𝜕𝑥
=

cos𝜒 sin 𝜃 cos𝜙

𝑟
,

𝜕𝜙

𝜕𝑥
= − sin𝜙

𝑟 sin𝜒 sin 𝜃
,

𝜕𝜒

𝜕𝑦
=

cos𝜒 sin 𝜃 sin𝜙

𝑟
,

𝜕𝜙

𝜕𝑦
=

cos𝜙

𝑟 sin𝜒 sin 𝜃
,

𝜕𝜒

𝜕𝑧
=

cos𝜒 cos 𝜃

𝑟
,

𝜕𝜙

𝜕𝑧
= 0.

(2.46)
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Тогда несложные вычисления приводят к следующим выражениям для векторов
Киллинга в новых координатах:

𝐾12 = sin 𝜃 cos𝜙𝜕𝜒 + ctg𝜒 cos 𝜃 cos𝜙𝜕𝜃 −
ctg𝜒 sin𝜙

sin 𝜃
𝜕𝜙,

𝐾13 = sin 𝜃 sin𝜙𝜕𝜒 + ctg𝜒 cos 𝜃 sin𝜙𝜕𝜃 +
ctg𝜒 cos𝜙

sin 𝜃
𝜕𝜙,

𝐾14 = cos 𝜃𝜕𝜒 − ctg𝜒 sin 𝜃𝜕𝜃,

𝐾23 = 𝜕𝜙,

𝐾24 = − cos𝜙𝜕𝜃 + ctg 𝜃 sin𝜙𝜕𝜙,

𝐾34 = − sin𝜙𝜕𝜃 − ctg 𝜃 cos𝜙𝜕𝜙.

(2.47)

Мы видим, что все шесть векторов Киллинга направлены вдоль касательных векто-
ров 𝜕𝜒, 𝜕𝜃 и 𝜕𝜙. Следовательно, гиперповерхности, выделяемые равенством 𝑟 = const,
являются интегральными гиперповерхностями распределения векторных полей Кил-
линга. Это в точности трехмерные сферы S3, и векторные поля Киллинга касательны
к ним. Векторных поля Киллинга линейно независимы. Поскольку сфера трехмер-
на, то между векторными полями Киллинга можно написать линейную зависимость,
коэффициентами которой будут не числа, а функции. Ситуация здесь аналогична
вложению двумерной сферы S2 →˓ R3, которое было рассмотрено в разделе ??.

Таким образом, векторные поля (2.47) являются векторными полями Киллинга
на сфере S3, вложенной в четырехмерное евклидово пространство R3. Они удовле-
творяют алгебре Ли (2.45), т.к. коммутатор векторных полей не зависит от выбора
системы координат. При желании векторы Киллинга (2.47) можно записать в любой
другой системе координат на сфере S3.

Согласно теореме 1.3.1 шесть – это максимально возможное число линейно неза-
висимых векторов Киллинга на трехмерном многообразии, и сфера S3 является про-
странством постоянной кривизны. Последнее утверждение уже было проверено с
помощью прямых вычислений.

Рассмотрим южный полюс сферы 𝑥 = 𝑦 = 𝑧 = 0, 𝑤 = −𝑎. Подгруппа группы
изометрий сферы, оставляющей южный полюс неподвижным, является группа Ли
трехмерных вращений SO(3). Это – группа изотропии южного полюса. Ее генерато-
рами являются векторные поля Киллинга 𝐾23, 𝐾24 и 𝐾34, которые мы рассмотрим
в декартовой системе координат (2.47), т.к. она невырождена в южном полюсе. Они
обращаются в нуль в южном полюсе, и поэтому эта точка является неподвижной
относительно действия подгруппы SO(3) ⊂ SO(4). В южном полюсе остальные век-
торные поля Киллинга принимают вид

𝐾∘
12 = −𝑎𝜕𝑥, 𝐾∘

13 = −𝑎𝜕𝑦, 𝐾∘
14 = −𝑎𝜕𝑧,

т.е. имеют тот же вид, что и трансляции в трехмерном евклидовом пространстве. Мы
видим, что эти векторные поля играют роль трансляций для южного полюса. Поэто-
му многообразие S3 однородно и изотропно в окрестности южного полюса. Из явного
вида коммутатора векторных полей Киллинга (2.45) следует, что векторы Киллинга
𝐾12, 𝐾13 и 𝐾14 не образуют подалгебры в алгебре Ли so(4) и, следовательно, не гене-
рируют никакой подгруппы в группе Ли SO(4). Это отличает “трансляции” в группе
SO(4) от трансляций в группе Пуанкаре, где они образуют подгруппу. Одно и то же
векторное поле Киллинга может генерировать для одной точки сферы вращение, а
для другой – трансляцию.
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Поскольку группа Ли изометрий SO(4) действует на сфере S3 транзитивно, то
все, сказанное выше о южном полюсе, справедливо для любой точки сферы. По-
этому сфера S3 →˓ R4 является однородным и изотропным пространством в смысле
определения, данного в разделе 1.3.

Трехмерная сфера S3 естественным образом вкладывается в четырехмерное ев-
клидово пространство R4, как было описано в настоящем разделе. Группа вращений
SO(4) действует на сфере транзитивно, т.е. для любых двух точек найдется такое
вращение, которое переводит одну точку в другую (см. главу ??). Следовательно,
она является однородным пространством согласно определению, данному в конце
раздела ??. Подгруппа изотропии каждой точки сферы изоморфна группе трехмер-
ных вращений SO(3). Поэтому согласно теореме ?? между точками сферы и точка-
ми факторпространства SO(4)/SO(3) существует взаимно однозначное соответствие.
Более того, из теоремы ?? следует, что на фактор пространстве существует един-
ственная структура вещественно аналитического многообразия. Поэтому сфера, как
многообразие, диффеоморфна фактор пространству

S3 ≈ SO(4)

SO(3)
. (2.48)

С другой стороны, на трехмерной сфере была определена групповая структура (??)

S3 ≈ SU(2). (2.49)

Группа унитарных матриц SU(2) действует на сфере транзитивно и свободно, т.е.
любой элемент группы, отличный от единичного, сдвигает все точки многообразия.
Поэтому сфера S3 является главным однородным пространством, которое можно
просто отождествить с SU(2).

2.2.2 Двуполостный гиперболоид H3

Рассмотрим четырехмерное пространство Минковского R3,1 с декартовой системой
координат 𝑥, 𝑦, 𝑧, 𝑤 и метрикой

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑑𝑤2. (2.50)

Двуполостный гиперболоид H3 “радиуса” 𝑎 с центром в начале координат задается
уравнением

𝑥2 + 𝑦2 + 𝑧2 − 𝑤2 = −𝑎2, 𝑎 > 0. (2.51)

При работе с трехмерным гиперболоидом H3 полезно иметь перед глазами кар-
тинку ??, где показано вложение двумерного двуполостного гиперболоида H2 в трех-
мерное пространство Минковского R1,2.

Будем считать, что топология, дифференцируемая структура и метрика на H3

индуцированы вложением H3 →˓ R3,1.
Из уравнения (2.51), определяющего вложение, можно исключить координату 𝑤:

𝑤 = ±
√︀
𝑎2 + 𝑥2 + 𝑦2 + 𝑧2,

где знак ± соответствует северной и южной полам гиперболоида. Отсюда следует,
что двуполостный гиперболоид состоит из двух компонент связности: северной и
южной. Для дифференциалов справедлива формула

𝑑𝑤 = ± 𝑥𝑑𝑥+ 𝑦𝑑𝑦 + 𝑧𝑑𝑧√︀
𝑎2 + 𝑥2 + 𝑦2 + 𝑧2

.
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Подстановка полученного выражения в евклидов интервал (2.50) приводит к инду-
цированной метрике

𝑑𝑠2 =
(𝑎2 + 𝑦2 + 𝑧2)𝑑𝑥2 + (𝑎2 + 𝑥2 + 𝑧2)𝑑𝑦2 + (𝑎2 + 𝑥2 + 𝑦2)𝑑𝑧2

𝑎2 + 𝑥2 + 𝑦2 + 𝑧2
+

− 2
𝑥𝑦𝑑𝑥𝑑𝑦 + 𝑥𝑧𝑑𝑥𝑑𝑧 + 𝑦𝑧𝑑𝑦𝑑𝑧

𝑎2 + 𝑥2 + 𝑦2 + 𝑧2
. (2.52)

Координаты 𝑥, 𝑦, 𝑧 можно выбрать в качестве координат на двуполостном гипербо-
лоиде H3. На каждой поле́ гиперболоида они пробегают все евклидово пространство
𝑥, 𝑦, 𝑧 ∈ R3.

Для определенности выберем северную полу гиперболоида. Она диффеоморфна
R3, некомпактна, и система координат 𝑥, 𝑦, 𝑧 является глобальной, т.е. покрывает
всю полу гиперболоида. Для нее сохраним прежнее обозначение H3.

Индуцированная метрика на гиперболоиде H3 принимает более простой диаго-
нальный вид, если ввести сферические координаты 𝑟, 𝜃, 𝜙 в подпространстве R3 ⊂
R3,1 с координатами 𝑥, 𝑦, 𝑧 (2.33). Тогда уравнение гиперболоида примет вид

𝑟2 − 𝑤2 = −𝑎2 ⇔ 𝑤 = ±
√
𝑎2 + 𝑟2.

Отсюда следует равенство дифференциалов

𝑑𝑤 = ± 𝑟𝑑𝑟√
𝑎2 + 𝑟2

.

Подстановка 𝑑𝑤 в исходный интервал (2.50) приводит к диагональной индуцирован-
ной метрике

𝑑𝑠2 =
𝑑𝑟2

1 + 𝑟2/𝑎2
+ 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2). (2.53)

Сферические координаты определены на всей верхней поле́ гиперболоида:

0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋.

Теперь сделаем замену радиальной координаты 𝑟 ↦→ 𝜒:

𝑟 := 𝑎 sh𝜒 ⇒ 𝑑𝑟 = 𝑎 ch𝜒𝑑𝜒,

где 𝜒 ∈ (0,∞) – новая безразмерная радиальная координата. Тогда метрика примет
вид

𝑑𝑠2 = 𝑎2
[︀
𝑑𝜒2 + sh 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]︀
. (2.54)

Каждое двумерное сечение 𝑟 = 𝑎 sh𝜒 = const трехмерного гиперболоида H3 пред-
ставляет собой двумерную сферу S2

𝑟 ⊂ H3 с обычной индуцированной метрикой.
Площадь этой сферы равна нулю в вершине 𝜒 = 0 и бесконечно возрастает при
𝜒→ ∞.

Легко проверить, что объем каждой полы двуполостного гиперболоида бесконе-
чен.

Теперь запишем метрику двуполостного гиперболоида H3 в стереографических
координатах, которые часто встречаются в приложениях. Как и в случае трехмерной
сферы S3 совершим преобразование радиальной координаты 𝑟 ↦→ 𝜌(𝑟) такое, чтобы
было выполнено уравнение

1

1 + 𝑟2/𝑎2

(︂
𝑑𝑟

𝑑𝜌

)︂2

=
𝑟2

𝜌2
.
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С точностью до несущественной постоянной интегрирования решение имеет вид

𝑟 =
𝜌

1 − 𝜌2

4𝑎2

.

После этого преобразования радиальной координаты метрика становится конформно
плоской:

𝑑𝑠2 =
𝑑𝜌2 + 𝜌2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)(︁

1 − 𝜌2

4𝑎2

)︁2 . (2.55)

Метрика двуполостного гиперболоида H3 определена внутри шара 𝜌 < 1
2𝑎

. Значение
𝜌 = 0 соответствует вершине гиперболоида 𝑟 = 0, а 𝜌 = 2𝑎 – бесконечно удаленной
точке 𝑟 = ∞.

В евклидовом пространстве (𝜌, 𝜃, 𝜙) ∈ R3 можно ввести декартовы координаты
(2.39). Тогда метрика примет вид

𝑑𝑠2 =
𝑑𝑥2(︀

1 − 𝑥2

4𝑎2

)︀2 . (2.56)

Она отличается от метрики трехмерной сферы (2.40) только формальной заменой
𝑎2 ↦→ −𝑎2.

Геометрические характеристики двуполостного гиперболоида получаются из фор-
мул (2.42)–(2.43) заменой 𝑎2 ↦→ −𝑎2:

𝑅𝜇𝜈𝜌𝜎 =
𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜈𝜌𝑔𝜇𝜎

𝑎2
,

𝑅𝜇𝜌 =
2𝑔𝜇𝜌
𝑎2

,

𝑅 =
6

𝑎2
, 𝐾 = − 3

𝑎2
.

(2.57)

Отсюда следует, что двуполостный гиперболоид H3 с индуцированной метрикой яв-
ляется пространством постоянной отрицательной кривизны.

Лоренцева метрика (2.50) и уравнение (2.51), определяющее вложение, инвари-
антны относительно группы Лоренца O(3, 1), которая действует в пространстве Мин-
ковского R3,1 обычным образом. Группа Ли O(3, 1) шестипараметрическая, и поэтому
в R3,1 существует шесть векторов Киллинга:

𝐾𝑖𝑗 := 𝑥𝑖𝜕𝑗 − 𝑥𝑗𝜕𝑖, 𝑖, 𝑗 = 1, 2, 3, 4, (2.58)

где {𝑥𝑖} := {𝑥, 𝑦, 𝑧, 𝑤}, и 𝑥𝑖 := 𝑥𝑗𝜂𝑗𝑖, 𝜂𝑖𝑗 := diag (+ + +−). Нетрудно проверить, что
векторные поля Киллинга удовлетворяют алгебре Ли so(3.1):

[𝐾𝑖𝑗, 𝐾𝑘𝑙] = −𝜂𝑖𝑘𝐾𝑗𝑙 + 𝜂𝑖𝑙𝐾𝑗𝑘 + 𝜂𝑗𝑘𝐾𝑖𝑙 − 𝜂𝑗𝑙𝐾𝑖𝑘. (2.59)

Чтобы получить явные выражения для векторов Киллинга на H3 поступим так
же, как и в случае сферы S3. А именно, будем рассматривать переменные 𝑟, 𝜒, 𝜃, 𝜙 в
качестве координат в пространстве Минковского R3,1:

𝑥 := 𝑟 sh𝜒 sin 𝜃 cos𝜙, 𝑤 := 𝑟 ch𝜒,

𝑦 := 𝑟 sh𝜒 sin 𝜃 sin𝜙, 𝑧 := 𝑟 sh𝜒 cos 𝜃.

При этом вершине гиперболоида соответствует значение 𝜒 = 0.



2.2. ТРЕХМЕРНЫЕ ПРОСТРАНСТВА ПОСТОЯННОЙ КРИВИЗНЫ 43

Нетрудно проверить следующие формулы:

𝑥2 + 𝑦2 = 𝑟2 sh 2𝜒 sin 2𝜃,

𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 sh 2𝜒,

−𝑥2 − 𝑦2 − 𝑧2 + 𝑤2 = 𝑟2.

Обратные преобразования координат имеют вид

𝑟 =
√︀
𝑤2 − 𝑥2 − 𝑦2 − 𝑧2

𝜒 = arcth

√︀
𝑥2 + 𝑦2 + 𝑧2

𝑤
,

𝜃 = arctg

√︀
𝑥2 + 𝑦2

𝑧
,

𝜙 = arctg
𝑦

𝑥
.

Частные производные координат 𝑟, 𝜒, 𝜃, 𝜙 по координатам 𝑥, 𝑦, 𝑧, 𝑤 легко вычисля-
ются и имеют вид (2.46) с заменой

sin𝜒 ↦→ sh𝜒, cos𝜒 ↦→ ch𝜒.

Поскольку мы находимся в пространстве Минковского R3,1, то декартовы координа-
ты с опущенным индексом имеют вид {𝑥𝑖} = {𝑥, 𝑦, 𝑧,−𝑤}. Теперь нетрудно вычис-
лить векторы Киллинга:

𝐾12 = 𝜕𝜙,

𝐾13 = − cos𝜙𝜕𝜃 + ctg 𝜃 sin𝜙𝜕𝜙,

𝐾14 = sin 𝜃 cos𝜙+ cth𝜒 cos 𝜃 cos𝜙𝜕𝜃 −
cth𝜒 sin𝜙

sin 𝜃
𝜕𝜙,

𝐾23 = − sin𝜙𝜕𝜃 − cth 𝜃 cos𝜙𝜕𝜙,

𝐾24 = sin 𝜃 sin𝜙𝜕𝜒 + cth𝜒 cos 𝜃 sin𝜙𝜕𝜃 +
cth𝜒 cos𝜙

sin 𝜃
𝜕𝜙,

𝐾34 = cos 𝜃𝜕𝜒 − cth𝜒 sin 𝜃𝜕𝜃.

(2.60)

Как и для сферы S3 распределение векторных полей Киллинга находится в инво-
люции и, согласно теореме Фробениуса, определяет интегральные подмногообразия
в пространстве Минковского R3,1. Этими интегральными подмногообразиями явля-
ются двуполостные гиперболоиды H3, определяемые равенством 𝑟 = 𝑎. Таким обра-
зом, на двуполостном гиперболоиде определено максимальное число (шесть) линей-
но независимых векторных полей Киллинга (2.60). Следовательно, согласно теореме
1.3.1, двуполостный гиперболоид H3 является пространством постоянной кривизны,
что уже было проверено нами с помощью прямых вычислений.

Рассмотрим вершину северной полы гиперболоида 𝑥 = 𝑦 = 𝑧 = 0, 𝑤 = 𝑎. Группа
изометрий этой точки является группа Ли трехмерных вращений SO(3). Ее генера-
торами являются векторные поля Киллинга 𝐾12, 𝐾13 и 𝐾23, которые мы рассмотрим
в декартовой системе координат (2.58). Они обращаются в нуль в вершине, и поэтому
эта точка является неподвижной относительно действия подгруппы SO(3) ⊂ SO(3, 1).
В вершине северной полы гиперболоида остальные векторные поля Киллинга при-
нимают вид

𝐾∘
14 = 𝑎𝜕𝑥, 𝐾∘

24 = 𝑎𝜕𝑦, 𝐾∘
34 = 𝑎𝜕𝑧,
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т.е. имеют тот же вид, что и трансляции в трехмерном евклидовом пространстве.
Поэтому эти векторные поля играют роль трансляций для вершины северной полы
гиперболоида. Следовательно, многообразие H3 однородно и изотропно в окрестно-
сти вершины северной полы гиперболоида. Из явного вида коммутатора векторных
полей Киллинга (2.59) вытекает, что векторы Киллинга 𝐾14, 𝐾24 и 𝐾34 не образуют
подалгебры в алгебре Ли so(3, 1) и, следовательно, не генерируют никакой подгруп-
пы в группе Ли SO(3, 1). Это отличает “трансляции” в группе SO(3, 1) от трансляций
в группе Пуанкаре, где они образуют подгруппу.

Поскольку группа Ли изометрий O(3, 1) действует на двуполостном гиперболоиде
H3 транзитивно, то все, сказанное выше о вершине северной полы гиперболоида,
справедливо для любой точки H3. Поэтому двуполостный гиперболоид H3 →˓ R3,1

является однородным и изотропным пространством в смысле определения, данного
в разделе 1.3.

Группа Лоренца SO(3, 1) действует на верхней поле гиперболоида H3 транзи-
тивно. Поэтому верхняя пола гиперболоида является однородным пространством.
Группа изотропии произвольной точки из H3 изоморфна группе трехмерных враще-
ний SO(3). Поэтому, как многообразие, верхняя пола гиперболоида H3 изоморфна
фактор пространству

H3 ≈ SO(3, 1)

SO(3)
. (2.61)

2.3 Вселенная Фридмана
Во вселенной очень много объектов, типичными представителями которых являют-
ся звезды, вокруг которых вращаются планеты. Звезды объединены в галактики,
которые, в свою очередь, образуют скопления галактик. Кроме этого во вселенной
присутствует электромагнитное излучение, метеориты, кометы и множество других
объектов, о многих из которых мы в настоящее время, вполне возможно, и не до-
гадываемся. К настоящему времени человечество накопило довольно много данных,
полученных в результате наблюдений за звездным небом.

Согласно современным наблюдательным данным трехмерное пространство, кото-
рое нас окружает, в каждый момент времени 𝑡 := 𝑥0 в крупном масштабе является
однородным и изотропным. Правильнее сказать, что современные данные не проти-
воречат предположению об однородности и изотропии вселенной, которые являются
естественными с физической точки зрения. Физически однородность пространства
означает, что свойства вселенной не зависят от того, какая точка выбрана в каче-
стве начала системы координат, а изотропия – что свойства вселенной не зависят от
направления, выбранного в каждой точке пространства. Однородность и изотропию
вселенной часто называют космологическим принципом. Слова “в крупном масшта-
бе” следует понимать по аналогии с однородностью газа: нельзя говорить об одно-
родности в малых областях вселенной; она однородна только после усреднения по
достаточно большим областям пространства, включающим много скоплений галак-
тик.

Об изотропии вселенной говорит изотропия реликтового микроволнового излу-
чения, которое было открыто А. Пензиасом и Р. Вилсоном в 1965 году [?]. За это
открытие они получили нобелевскую премию. Впоследствии реликтовое излучение
было измерено в широком диапазоне частот. С высокой степенью точности оно яв-
ляется изотропным и неполяризованным, а его спектр соответствует излучению аб-
солютно черного тела с температурой около 2, 7∘𝐾.
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Для построения модели вселенной в рамках общей теории относительности слов
однородная и изотропная вселенная недостаточно. Определение и математический
смысл этим словам был дан в разделе 1.3. Там было доказано, что однородное и изо-
тропное многообразие является пространством постоянной кривизны. Верно также
обратное утверждение: если (псевдо-)риманово многообразие является пространст-
вом постоянной кривизны в смысле определения (??), то оно является однородным
и изотропным. Для построения космологической модели мы требуем, чтобы все се-
чения пространства-времени, соответствующие постоянному времени, и которые мы
предполагаем пространственноподобными, были однородными и изотропными, т.е.
пространствами постоянной кривизны, которые имеют максимально возможное чис-
ло (шесть) векторов Киллинга. При этом в каждой точке пространства три вектор-
ных поля Киллинга генерируют группу вращений O(3) (изотропия вселенной) и три
векторных поля Киллинга – симметрию относительно “трансляций” (однородность
вселенной), как было показано в разделах 2.2.1 и 2.2.2.

Замечание. Согласно предложению 1.3.1 требование однородности многообразия
является излишним, поскольку любое многообразие, изотропное в каждой своей точ-
ке, является однородным. Тем не менее мы будем говорить об однородной и изотроп-
ной вселенной, как это принято в современной литературе.

2.3.1 Метрика однородной и изотропной вселенной

При рассмотрении моделей вселенных Фридмана мы предполагаем, что простран-
ственные сечения постоянного времени 𝑡 = const являются пространствами постоян-
ной кривизны. В рассматриваемом случае под пространством постоянной кривизны
мы понимаем пару (S, ∘𝑔), где S – трехмерное многообразие, и ∘

𝑔 – заданная на нем
метрика, которая удовлетворяет равенству

∘
𝑅𝜇𝜈𝜌𝜎 =

∘
𝐾

3

(︁
∘
𝑔𝜇𝜌

∘
𝑔𝜈𝜎 −

∘
𝑔𝜇𝜎

∘
𝑔𝜈𝜌

)︁
, (2.62)

где
∘
𝑅𝜇𝜈𝜌𝜎 – тензор кривизны для метрики ∘

𝑔𝜇𝜈 и
∘
𝐾 ∈ R – некоторая постоянная

(гауссова кривизна). Напомним, что на пространственных сечениях мы выбираем
отрицательно определенную метрику. Поэтому в правой части равенства (2.62) стоит
знак плюс. Соответствующий тензор Риччи и скалярная кривизна имеют вид

∘
𝑅𝜇𝜈 =

2
∘
𝐾

3

∘
𝑔𝜇𝜈 ,

∘
𝑅 = 2

∘
𝐾. (2.63)

Тензор кривизны определяет тензор Вейля

𝐶𝜇𝜈𝜌𝜎 := 𝑅𝜇𝜈𝜌𝜎 −
1

2
(𝑅𝜇𝜌𝑔𝜈𝜎 −𝑅𝜇𝜎𝑔𝜈𝜌 −𝑅𝜈𝜌𝑔𝜇𝜎 +𝑅𝜈𝜎𝑔𝜇𝜌)+

+
1

6
𝑅(𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜎𝑔𝜈𝜌).

Прямая подстановка в это выражение тензора кривизны (2.62) показывает, что тен-
зор Вейля для пространства постоянной кривизны равен нулю

∘
𝐶𝛼𝛽𝛾𝛿 = 0.
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Это значит, что пространство постоянной кривизны является конформно плоским.
Действительно, хорошо известно, что метрика пространства постоянной кривизны в
стереографических координатах является конформно евклидовой (или лоренцевой,
если сигнатура метрики лоренцева).

Координаты на S можно масштабировать таким образом, что постоянная
∘
𝐾 будет

принимать только три значения:
∘
𝐾 = 1, 0,−1. Поэтому возможны три случая:

∘
𝐾 = 1,

S ≈ S3 – трехмерная сфера (пространство положительной кривизны, замкнутая все-

ленная);
∘
𝐾 = 0, S ≈ R3 – трехмерное евклидово пространство (пространство нулевой

кривизны, открытая вселенная) и
∘
𝐾 = −1, S ≈ H3 – трехмерное гиперболическое

пространство или псевдосфера (пространство отрицательной кривизны, открытая
вселенная). В последних двух случаях вселенная также может быть замкнута, если
евклидово R3 или гиперболическое H3 пространства факторизовать по группе преоб-
разований, действующей свободно и собственно разрывно. Например, для евклидова
пространства R3 после факторизации мы получим трехмерный цилиндр или тор.

Определение. Вселенная (M, 𝑔) называется однородной и изотропной, если она
представляет собой сплетенное произведение прямой 𝑡 ∈ R на трехмерное простран-
ство постоянной кривизны: M = R× S.

Определение сплетенного произведения было дано в разделе ??. В рассматрива-
емом случае это означает, что как многообразие пространство-время представляет
собой топологическое произведение оси времени на пространство постоянной кри-
визны, M = R× S, а метрика в естественной системе координат имеет вид

𝑑𝑠2 = 𝑑𝑡2 + 𝑎2(𝑡)
∘
𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 , (2.64)

где 𝑥𝜇 и ∘
𝑔𝜇𝜈 – координаты и отрицательно определенная метрика на S, 𝜇 = 1, 2, 3.

Функция 𝑎(𝑡) > 0 предполагается достаточно гладкой и называется масштабным
множителем.

Метрика (2.64) имеет тот же вид, что и метрика (1.29) для многообразий с мак-
симально симметричными подпространствами. Следовательно, метрика (2.64) опи-
сывает однородную и изотропную вселенную.

Метрика (2.64) имеет блочно диагональный вид, и, в соответствии с результата-
ми раздела ??, часы во всей вселенной можно синхронизировать. Поэтому система
координат {𝑡, 𝑥𝜇} является синхронной, и координата 𝑡 называется космологическим
временем. Ситуация здесь аналогична тому, что имеет место в механике Ньютона:
наблюдаемое время 𝑡 едино для всех точек вселенной. Сравнение наблюдательных
космологических данных с теорией проводится, как правило, с использованием мет-
рики в виде (2.64). К сожалению, эта процедура не является инвариантной, т.к. вид
метрики зависит от выбора системы отсчета.

Впервые метрику вида (2.64) для космологических моделей вселенных рассмот-
рел А. Фридман [?, ?], и она называется метрикой Фридмана. Позже эта метрика
несколько раз переоткрывалась [?, ?, ?].

Вычислим геометрические характеристики метрики (2.64), не фиксируя коорди-
нат на пространствах постоянной кривизны. Простые вычисления показывают, что
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только четыре символа Кристоффеля отличны от нуля:

Γ0𝜇
𝜈 = Γ𝜇0

𝜈 =
𝑎̇

𝑎
𝛿𝜈𝜇,

Γ𝜇𝜈
0 = −𝑎𝑎̇∘

𝑔𝜇𝜈 ,

Γ𝜇𝜈
𝜌 =

∘
Γ𝜇𝜈

𝜌,

(2.65)

где
∘
Γ𝜇𝜈

𝜌 – символы Кристоффеля для метрики ∘
𝑔𝜇𝜈 . Тензор кривизны имеет только

две отличные от нуля независимые компоненты:

𝑅0𝜇0𝜈 = 𝑎𝑎̈
∘
𝑔𝜇𝜈 ,

𝑅𝜇𝜈𝜌𝜎 = 𝑎2
∘
𝑅𝜇𝜈𝜌𝜎 + 𝑎2𝑎̇2(

∘
𝑔𝜇𝜌

∘
𝑔𝜈𝜎 −

∘
𝑔𝜇𝜎

∘
𝑔𝜈𝜌),

(2.66)

где
∘
𝑅𝜇𝜈𝜌𝜎 – тензор кривизны для метрики ∘

𝑔𝜇𝜈 . Теперь вычислим тензор Риччи и
скалярную кривизну:

𝑅00 = 3
𝑎̈

𝑎
,

𝑅𝜇𝜈 =

(︂
𝑎𝑎̈+ 2𝑎̇2 +

2

3

∘
𝐾

)︂
∘
𝑔𝜇𝜈 ,

𝑅 =
2

𝑎2
(3𝑎𝑎̈+ 3𝑎̇2 +

∘
𝐾),

(2.67)

где мы воспользовались выражением для тензора Риччи пространства постоянной
кривизны (2.63).

Зная тензор кривизны (2.66), нетрудно вычислить тензор Вейля

𝐶0𝜇0𝜈 = 0, 𝐶0𝜇𝜈𝜌 = 0,

𝐶𝜇𝜈𝜌𝜎 = −2

3
𝑎2

∘
𝐾(

∘
𝑔𝜇𝜌

∘
𝑔𝜈𝜎 −

∘
𝑔𝜇𝜎

∘
𝑔𝜈𝜌).

(2.68)

Заметим, что скалярная кривизна (2.67), которая является геометрическим ин-
вариантом, не зависит от пространственных координат. Это находится в согласии
с требованием симметрии скалярных полей относительно действия транзитивных
групп преобразований.

Конкретный вид метрики пространства постоянной кривизны ∘
𝑔𝜇𝜈 зависит от си-

стемы координат, выбранной на S. Часто используются безразмерные полярные ко-
ординаты 𝜒, 𝜃, 𝜙, в которых метрика (положительно определенная) имеет вид

∘
𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 =

⎧⎪⎪⎨⎪⎪⎩
𝑑𝜒2 + sin 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2),

∘
𝐾 = 1,

𝑑𝜒2 + 𝜒2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2),
∘
𝐾 = 0,

𝑑𝜒2 + sh 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2),
∘
𝐾 = −1.

(2.69)

Безразмерные полярные координаты для сферы S3 и двуполостного гиперболоида H3

были рассмотрены в разделах 2.2.1 и 2.2.2 соответственно. В этом случае масштабный
множитель имеет размерность длины, [𝑎] = 𝑙.

Метрика Фридмана (2.64) допускает по крайней мере шести параметрическую
группу симметрии, которая действует на пространственных сечениях 𝑡 = const.
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Это группа вращений SO(4), группа Пуанкаре ISO(3) или группа псевдовращений

SO(3, 1) соответственно для
∘
𝐾 = 1,

∘
𝐾 = 0 или

∘
𝐾 = −1. Масштабный множи-

тель находится из уравнений Эйнштейна, и в некоторых случаях группа симметрии
пространства-времени может быть шире.

В стереографических координатах на сечениях 𝑡 = const метрика Фридмана при-
мет вид

𝑔𝛼𝛽 =

⎛⎝1 0

0
𝑎2𝜂𝜇𝜈(︀

1 + 𝑏0𝑥
2
)︀2
⎞⎠ , (2.70)

где 𝜂𝜇𝜈 := diag (−−−), и постоянная 𝑏0 связана с гауссовой кривизной простым соот-

ношением
∘
𝐾 = −12𝑏0 (напомним, что, поскольку метрика 𝜂𝜇𝜈 на пространственных

сечениях отрицательно определена, то 𝑥2 := 𝑥𝜇𝑥𝜈𝜂𝜇𝜈 ≤ 0). Метрике (2.70) соответ-
ствует интервал

𝑑𝑠2 = 𝑑𝑡2 + 𝑎2
𝜂𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈(︀
1 + 𝑏0𝑥2

)︀2 .
В такой записи размерности следующие:

[𝑡] = [𝑥𝜇] = 𝑙, [𝑎] = 1, [𝑏0] = 𝑙−2. (2.71)

Стереографические координаты удобны для проведения вычислений. Поэтому
вычислим геометрические характеристики для метрики Фридмана в виде (2.70). От-
личные от нуля символы Кристоффеля равны

Γ0𝜇
𝜈 = Γ𝜇0

𝜈 =
𝑎̇

𝑎
𝛿𝜈𝜇,

Γ𝜇𝜈
0 = − 𝑎̇𝑎(︀

1 + 𝑏0𝑥2
)︀2𝜂𝜇𝜈 ,

Γ𝜇𝜈
𝜌 =

∘
Γ𝜇𝜈

𝜌,

(2.72)

где
∘
Γ𝜇𝜈

𝜌 – символы Кристоффеля для метрики постоянной кривизны ∘
𝑔𝜇𝜈 , и точка

обозначает дифференцирование по 𝑡.
Прямые вычисления показывают, что только две независимые компоненты тен-

зора кривизны отличны от нуля:

𝑅0𝜇0𝜈 =
𝑎̈𝑎(︀

1 + 𝑏0𝑥2
)︀2𝜂𝜇𝜈 ,

𝑅𝜇𝜈𝜌𝜎 = 𝑎2
∘
𝑅𝜇𝜈𝜌𝜎 +

𝑎̇2𝑎2(︀
1 + 𝑏0𝑥2

)︀2 (𝜂𝜇𝜌𝜂𝜈𝜎 − 𝜂𝜇𝜎𝜂𝜈𝜌),

(2.73)

где
∘
𝑅𝜇𝜈𝜌𝜎 – тензор кривизны, построенный по метрике ∘

𝑔𝜇𝜈 .
Выпишем отличные от нуля компоненты тензора Риччи и скалярную кривизну в

стереографических координатах:

𝑅00 = 3
𝑎̈

𝑎
,

𝑅𝜇𝜈 =
𝑎̈𝑎+ 2𝑎̇2 − 8𝑏0(︀

1 + 𝑏0𝑥2
)︀2 𝜂𝜇𝜈 ,

𝑅 =
6𝑎̈𝑎+ 6𝑎̇2 − 24𝑏0

𝑎2
.

(2.74)
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В дальнейшем метрика Фридмана будет использоваться в общем виде (2.64) без
использования координат на пространственных сечениях. Этого оказывается доста-
точно для анализа уравнений Эйнштейна.

Для исследования свойств метрики Фридмана часто используется другая система
координат в пространстве-времени, в которой метрика Фридмана конформно экви-
валентна некоторой статической метрике. А именно, совершим преобразование вре-
менно́й координаты 𝑡 ↦→ 𝜂, где монотонная функция 𝑡 = 𝑡(𝜂) определяется диффе-
ренциальным уравнением

𝑑𝑡 = 𝑎(𝑡)𝑑𝜂. (2.75)

Это уравнение при достаточно общих предположениях имеет решение. Постоянная
интегрирования соответствует сдвигу новой временно́й координаты, 𝜂 ↦→ 𝜂 + const,
и является несущественной. После преобразования временно́й координаты интервал
принимает вид

𝑑𝑠2 = 𝑎2
(︁
𝑑𝜂2 +

∘
𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈
)︁
, (2.76)

где 𝑎 = 𝑎
(︀
𝑡(𝜂)

)︀
– функция нового времени 𝜂. Метрика, стоящая в скобках, статична,

и вся зависимость от времени вынесена в общий конформный множитель. В таком
виде удобно исследовать причинную структуру пространства-времени, т.к. световые
конусы для метрики 𝑔𝛼𝛽 те же, что и для статической метрики, стоящей в скобках.

2.3.2 Космологическое красное смещение

Если масштабный множитель меняется со временем, 𝑎̇ ̸= 0, то расстояние между
двумя наблюдателями, имеющими фиксированные пространственные координаты,
скажем, 𝑥1 и 𝑥2, также меняется со временем. Это приводит к смещению частот
световых сигналов. Если вселенная расширяется, 𝑎̇ > 0, то, как мы увидим, возникает
красное смещение спектральных линий.

Свет распространяется вдоль нулевых экстремалей {𝑡(𝜏), 𝑥𝜇(𝜏)}, 𝜏 ∈ R, при этом
4-вектор скорости {𝑡′, 𝑥𝜇 ′}, где штрих обозначает дифференцирование по канони-
ческому параметру 𝜏 (точка зарезервирована для дальнейших обозначений), пред-
ставляет собой 4-импульс фотона. Нулевая компонента импульса является энергией
фотона и, следовательно, пропорциональна частоте фотона 𝜔:

𝑡′ = ~𝜔,

где ~ – постоянная Планка. При этом длина волны фотона 𝜆 связана с частотой
равенством

𝜆𝜔 = 2𝜋𝑐,

где 𝑐 – скорость света.
Допустим, что мы находимся в точке 𝑥0 и наблюдаем световой сигнал, испущен-

ный наблюдателем в точке 𝑥1. Тогда величина красного смещения 𝑧 определяется
относительным смещением длин волн

𝑧 :=
𝜆0 − 𝜆1
𝜆1

,

что можно выразить через нулевую компоненту скорости:

𝑧 =
𝜔1 − 𝜔0

𝜔0

=
𝑡′1 − 𝑡′0
𝑡′0

. (2.77)
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Фотоны распространяются в пространстве-времени вдоль экстремалей 𝑡(𝜏), 𝑥𝜇(𝜏).
Уравнения для экстремалей определяются символами Кристоффеля (2.65) и имеют
вид

𝑡′′ = 𝑎𝑎̇
∘
𝑔𝜇𝜈𝑥

𝜇 ′𝑥𝜈 ′,

𝑥𝜇 ′′ = −2
𝑎̇

𝑎
𝑥𝜇 ′𝑡′ −

∘
Γ𝜈𝜌

𝜇𝑥𝜈 ′𝑥𝜌 ′.
(2.78)

Поскольку фотоны распространяются вдоль нулевых экстремалей, то для них вы-
полнено равенство

𝑡′2 + 𝑎2
∘
𝑔𝜇𝜈𝑥

𝜇 ′𝑥𝜈 ′ = 0.

Подстановка этого выражения в правую часть первого уравнения (2.78) приводит к
равенству

𝑡′′ +
𝑎̇

𝑎
𝑡′2 = 0.

Разделим это равенство на 𝑡′ и проинтегрируем. В результате получим условие на
нулевую компоненту 4-скорости фотона:

𝑎𝑡′ = const.

Отсюда следует, что красное смещение можно выразить через масштабный множи-
тель:

𝑧 =
𝑎0 − 𝑎1
𝑎1

. (2.79)

Это – универсальная и точная формула для красного смещения. Она определяется
масштабным множителем 𝑎1 в момент испускания света и 𝑎0 в момент наблюдения,
и не зависит от истории сигнала в промежуточные моменты времени. Из получен-
ной формулы вытекает, что относительное смещение длин волн положительно, если
вселенная расширяется, и отрицательно – если сжимается.

Другое важное следствие из вида метрики Фридмана – это связь красного сме-
щения с расстоянием до объекта. Для света, испущенного и полученного в близких
пространственно временных точках, справедливо равенство

𝑑𝑡2 = 𝑑𝑙2,

где 𝑑𝑙 – пространственное расстояние между событиями:

𝑑𝑙2 := −𝑎2 ∘𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 .

Поэтому из формулы (2.79) следуют равенства:

𝑧 :=
𝑑𝜆

𝜆
=
𝑑𝑎

𝑎
=
𝑎̇𝑑𝑡

𝑎
=
𝑎̇

𝑎
𝑑𝑙.

Введем постоянную Хаббла

𝐻 :=
𝑎̇

𝑎

⃒⃒⃒⃒
𝑡=𝑡0

. (2.80)

Тогда красное смещение спектральных линий в настоящее время 𝑡0 определяется
законом Хаббла

𝑑𝜆

𝜆
= 𝐻𝑑𝑙. (2.81)
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Содержание этого закона состоит в том, что относительное красное смещение спек-
тральных линий прямо пропорционально расстоянию до объекта. Этот закон полу-
чен для бесконечно близких событий. На практике он приближенно справедлив для
конечных расстояний, 𝑑𝑙 ↦→ △𝑙. Современные наблюдательные данные показывают,
что закон Хаббла справедлив с высокой степенью точности, но все же “постоянная
Хаббла” не является постоянной. Поэтому постоянную Хаббла называют также па-
раметром Хаббла

Если параметр Хаббла является постоянным, то из уравнения (2.80) следует экс-
поненциальное поведение масштабного множителя

𝑎 = 𝐶 e𝐻𝑡, 𝐶 > 0.

Если 𝐻 > 0, то происходит экспоненциальный рост. Для решения некоторых космо-
логических проблем, которые мы обсуждать не будем, предполагают, что масштаб-
ный множитель, по крайней мере на ранних этапах эволюции вселенной, экспонен-
циально растет. Такой экспоненциальный рост масштабного множителя называется
инфляцией. Предположение об инфляционной стадии развития вселенной в настоя-
щее время широко распространено. Моделей, приводящих к инфляции, не так много.
Позже мы увидим, что это происходит, например, в решении де Ситтера (2.122).

Наша интуиция основана на механике Ньютона. Поэтому посмотрим на наблюда-
емое красное смещение спектральных линий с другой точки зрения. Пусть галактики
движутся в плоском пространстве-времени Минковского R1,3. Если галактика удаля-
ется, то наблюдаемая длина волны светового сигнала будет увеличиваться, а часто-
та – уменьшаться (красное смещение). Это явление известно как эффект Доплера и
описывается формулой (??). В рассматриваемом случае

𝜔1 = 𝜔′, 𝜔0 = 𝜔 и 𝛼 = 0.

Тогда в нерелятивистском пределе 𝑉/𝑐 ≪ 1 частота в первом порядке меняется по
правилу

𝜔1 = 𝜔0

(︂
1 +

𝑉

𝑐

)︂
,

где 𝑉 – скорость галактики, и 𝑐 – скорость света. Подстановка этого выражения в
формулу для красного смещения (2.77) приводит к равенству

𝑧 =
𝑉

𝑐
. (2.82)

Дальнейшее сравнение с законом Хаббла позволяет найти скорость галактики

𝑉 = 𝑐𝐻△𝑙,

где △𝑙 – расстояние между галактиками. Мы видим, что скорость разбегания галак-
тик прямо пропорциональна расстоянию.

В заключение вычислим наблюдаемую скорость разбегания галактик. Соглас-
но предложению 2.3.1, которое будет доказано в следующем разделе, в однородной
и изотропной вселенной частицы среды (галактики) движутся вдоль экстремалей,
совпадающих с координатными линиями времени. То есть пространственные коор-
динаты галактик 𝑥𝜇 остаются неизменными. Поэтому наблюдаемое расстояние до
галактики равно

△𝑙 = 𝑎(𝑡)

√︁
−∘
𝑔𝜇𝜈△𝑥𝜇△𝑥𝜈 .
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Это расстояние меняется только благодаря наличию масштабного множителя. Вы-
числим наблюдаемую скорость

𝑉 :=
𝑑

𝑑𝑡
△𝑙 = 𝑐

𝑎̇

𝑎
△𝑙 = 𝑐𝐻△𝑙, (2.83)

где мы восстановили скорость света, 𝑥0 = 𝑐𝑡, и 𝑎̇ := 𝑑𝑎/𝑑𝑥0. Как видим, полученная
формула совпадает с тем, что было получено из закона Хаббла.

2.3.3 Уравнения движения

Масштабный множитель, входящий в метрику Фридмана, находится из уравнений
Эйнштейна и зависит от выбора модели для полей материи. В дальнейшем мы рас-
смотрим несколько моделей вселенной, для которых масштабный множитель имеет
явное аналитическое выражение.

Прежде всего получим уравнения Эйнштейна. Из компонент тензора Риччи и
скалярной кривизны (2.67) составляем тензор Эйнштейна. Он имеет следующие ком-
поненты:

𝐺0
0 = −3

𝜖+ 𝑎̇2

𝑎2
,

𝐺0
𝜇 = 0, 𝐺𝜇

0 = 0,

𝐺𝜇
𝜈 = −2𝑎𝑎̈+ 𝑎̇2 + 𝜖

𝑎2
𝛿𝜈𝜇,

(2.84)

где постоянная 𝜖, которая введена для удобства, пропорциональна гауссовой кри-
визне,

𝜖 :=
∘
𝐾/3. (2.85)

Пространственные сечения 𝑡 = const при этом являются сферой S3 (𝜖 > 0), евклидо-
вым пространством R3 (𝜖 = 0) или двуполостным гиперболоидом H3 (𝜖 < 0).

Мы записываем компоненты тензора Эйнштейна (2.84) с одним ковариантным и
одним контравариантным индексом. Это удобно, т.к. в этом случае тензор энергии-
импульса, как мы увидим, является диагональным.

Следующий шаг состоит в выборе тензора энергии-импульса материи. При по-
строении моделей вселенной мы используем космологический принцип, который со-
стоит из двух независимых требований:

∙ Метрика пространства-времени должна быть однородна и изотропна.

∙ Тензор энергии-импульса материи должен быть однороден и изотропен.

Первому требованию мы уже удовлетворили, выбрав метрику Фридмана (2.64).
Наиболее общий вид симметричного тензора второго ранга был установлен в раз-

деле 1.4. В общей теории относительности тензор энергии-импульса 𝑇𝛼𝛽 является че-
тырехмерным симметричным тензором второго ранга. Группа симметрии действу-
ет только на пространственных сечениях, и по отношению к ее действию тензор
энергии-импульса разлагается на три неприводимые компоненты:

𝑇00 − скаляр,
𝑇0𝜇 − вектор,
𝑇𝜇𝜈 − симметричный тензор второго ранга.

(2.86)
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Из результатов, полученных в разделе 1.4, следует, что наиболее общий вид этих
симметричных компонент следующий

𝑇00 = ℰ(𝑡), 𝑇0𝜇 = 𝑇𝜇0 = 0, 𝑇𝜇𝜈 = −𝒫(𝑡)
∘
𝑔𝜇𝜈 ,

где ℰ и 𝒫 – некоторые функции (скалярные поля). Сравнение этих компонент с
тензором энергии-импульса сплошной среды

𝑇𝛼𝛽 = (ℰ + 𝒫)𝑢𝛼𝑢𝛽 − 𝒫𝑔𝛼𝛽, (2.87)

показывает, что ℰ и 𝒫 есть ни что иное как плотность энергии и давление мате-
рии соответственно, и тензор энергии-импульса записан в сопутствующей системе
координат 𝑢 = (1, 0, 0, 0).

Предложение 2.3.1. Если и метрика, и тензор энергии-импульса среды однородны
и изотропны, то линии тока непрерывной среды являются геодезическими (экстре-
малями).

Доказательство. Зафиксируем систему координат так, чтобы метрика была метри-
кой Фридмана (2.64) и тензор энергии-импульса имел вид (2.86). Символы Кристоф-
феля были вычислены ранее (2.65), и уравнения для экстремалей имеют вид (2.78).
Ясно, что координатные линии 𝑥0 = 𝜏, 𝑥𝜇 = const, 𝜏 ∈ R, являются экстремаля-
ми. С другой стороны, эти координатные линии представляют собой линии тока для
векторного поля скорости 𝑢 = (1, 0, 0, 0).

Таким образом, в рассматриваемой космологической модели выбрана синхронная
система координат, в которой метрика имеет вид (2.64), и каждая точка сплошной
среды движется вдоль экстремали, которая совпадает с координатной линией 𝑥0 := 𝑡.
Точки среды покоятся в том смысле, что пространственные координаты имеют по-
стоянные значения 𝑥𝜇 = const. При этом наблюдаемое расстояние между частицами
среды может увеличиваться или уменьшаться в зависимости от поведения масштаб-
ного множителя.

Здесь возникает вопрос. Если присутствует давление, то в общем случае частицы
среды не будут двигаться по экстремалям, т.к. присутствуют не только гравитацион-
ные силы. Тем не менее рассматриваемая модель является самосогласованной. Дей-
ствительно, поскольку давление зависит только от времени, то градиент давления
параллелен вектору скорости. Следовательно, согласно уравнениям релятивистской
гидродинамики (??), (??), движение частиц происходит вдоль экстремалей. Причи-
ной этого является требование однородности и изотропии тензора энергии-импульса
полей материи.

Приведенные выше аргументы однозначно фиксируют однородный и изотропный
тензор энергии-импульса материи. С одним контра- и одним ковариантным индексом
он всегда диагонален:

𝑇𝛼
𝛽 =

⎛⎜⎜⎝
ℰ 0 0 0
0 −𝒫 0 0
0 0 −𝒫 0
0 0 0 −𝒫

⎞⎟⎟⎠ . (2.88)

Уравнения релятивистской гидродинамики ∇𝛽𝑇𝛼
𝛽 = 0, выполнение которых необ-

ходимо для разрешимости уравнений Эйнштейна, для метрики Фридмана (2.70) при-
нимают вид

ℰ̇ +
3𝑎̇

𝑎
(ℰ + 𝒫) = 0. (2.89)
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Если подставить выражение для тензора энергии-импульса (2.88) в уравнения
Эйнштейна c космологической постоянной Λ

Φ𝛼
𝛽 := 𝐺𝛼

𝛽 + 𝛿𝛽𝛼Λ +
1

2
𝑇𝛼

𝛽 = 0,

где мы для простоты положили гравитационную постоянную равной единице, 𝜅 = 1,
и учесть явный вид тензора Эйнштейна (2.84), то получим два уравнения:

−3
𝑎̇2 + 𝜖

𝑎2
+ Λ +

1

2
ℰ = 0, (2.90)

−2𝑎𝑎̈+ 𝑎̇2 + 𝜖

𝑎2
+ Λ − 1

2
𝒫 = 0. (2.91)

Продифференцируем уравнение (2.90) по времени 𝑡 и учтем уравнение совместно-
сти (2.89). В результате получим, что уравнение (2.91) тождественно удовлетворяет-
ся. Можно проверить, что это свойство является следствием линейной зависимости
уравнений Эйнштейна

∇𝛽Φ𝛼
𝛽 = 0,

вытекающей из ковариантности (см. раздел ??).
Таким образом, у нас есть два независимых обыкновенных дифференциальных

уравнения (2.90) и (2.89) на три неизвестные функции 𝑎(𝑡), ℰ(𝑡) и 𝒫(𝑡). Чтобы за-
мкнуть систему уравнений будем считать, что давление среды связано с плотно-
стью энергии уравнением состояния. Для баротропной жидкости уравнение состоя-
ния имеет вид

𝒫 = 𝒫(ℰ), (2.92)

где 𝒫(ℰ) – некоторая достаточно гладкая функция. Это равенство корректно, т.к.
плотность энергии и давление – скалярные поля (функции).

Таким образом, для вселенной Фридмана мы имеем два независимых обыкно-
венных дифференциальных уравнения на две независимые функции: масштабный
множитель 𝑎 и плотность энергии ℰ , которые мы запишем в следующем виде

𝑎̇2 =
𝑎2

3

(︂
1

2
ℰ + Λ

)︂
− 𝜖, (2.93)

𝑑ℰ
ℰ + 𝒫(ℰ)

= −3
𝑑𝑎

𝑎
. (2.94)

Это и есть полная система уравнений для космологических моделей Фридмана.
Таким образом, при заданном уравнении состояния (2.92), решая уравнение (2.94),

мы находим зависимость плотности энергии от масштабного множителя: ℰ = ℰ(𝑎).
Подставляя эту функцию в уравнение (2.93), мы получаем одно обыкновенное диф-
ференциальное уравнение первого порядка на масштабный множитель. Это и есть
основное уравнение в стандартных моделях однородной и изотропной вселенной.

Для интегрирования уравнения (2.93) удобно ввести временну́ю координату 𝜂 =
𝜂(𝑡), определенную равенством (2.75). Тогда уравнение (2.93) можно формально про-
интегрировать

𝜂 = ±
∫︁

𝑑𝑎

𝑎
√︁

1
6
ℰ𝑎2 + 1

3
Λ𝑎2 − 𝜖

. (2.95)

Постоянная интегрирования соответствует сдвигу временно́й координаты 𝜂 ↦→ 𝜂 +
const и является несущественной. Знак ± соответствует выбору направления течения
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времени: если функция 𝑎(𝑡) является решением уравнений Фридмана, то 𝑎(−𝑡) –
также решение. Зависимость плотности энергии от масштабного множителя, ℰ =
ℰ(𝑎), находится из уравнения (2.94). Это решает поставленную задачу в общем виде.
На практике уравнения (2.94) и (2.95) решаются в явном виде далеко не всегда.

Не смотря на то, что одно из уравнений Эйнштейна (2.91) было отброшено как
следствие остальных, из него можно сделать важные выводы. Перепишем уравнение
(2.91) в виде

𝑎̈ = − 𝑎

12
(ℰ + 3𝒫) +

𝑎Λ

3
, (2.96)

где мы использовали уравнение (2.90) для исключения 𝑎̇2 + 𝜖. Пусть Λ = 0 и ℰ > 0
и 𝒫 ≥ 0, что соответствует обычной материи. По предположению, масштабный мно-
житель положителен, 𝑎 > 0, и, следовательно, 𝑎̈ < 0. Это означает, что функция 𝑎(𝑡)
вогнутая. Допустим, что в настоящее время вселенная расширяется, 𝑎̇ > 0, что соот-
ветствует современным наблюдательным данным. Качественное поведение масштаб-
ного множителя в этом случае показано на рис. 2.2. Мы видим, что при конечном

Рис. 2.2: Качественное поведение масштабного множителя 𝑎(𝑡) в предположении, что
вселенная в настоящее время расширяется, 𝑎̇(𝑡0) > 0.

значении времени 𝑡 масштабный множитель должен обратиться в нуль, что соот-
ветствует большому взрыву. Этот вывод является довольно общим, т.к. не зависит
от уравнения состояния материи и не использует какое либо из решений уравнений
Эйнштейна. В космологии принято отсчитывать наблюдаемое время 𝑡 от большого
взрыва при 𝑡 = 0.

Из уравнений Эйнштейна (2.90), (2.91) следует, что наличие космологической по-
стоянной можно трактовать как поля материи с диагональным тензором энергии-
импульса

𝑇Λ𝛼
𝛽 := 2Λ

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

Эта материя необычна, т.к. при Λ > 0 плотность энергии положительна, а давление
отрицательно. Материя, обладающая таким свойством, называется темной энергией.

Понятие темной энергии играет важную роль в космологии. В 1998 году Сол
Перлмуттер [?], Брайан П. Шмидт и Адам Рисс [?] открыли, что в настоящее время
вселенная не просто расширяется, а расширяется с ускорением. За это открытие они
получили Нобелевскую премию в 2011 году. Если принять модель вселенной Фрид-
мана за основу, то из уравнения (2.96) вытекает, что обычная материя, ℰ > 0 и 𝒫 > 0,
приводит к замедлению, а положительная космологическая постоянная – к ускоре-
нию. Таким образом, к ускорению приводит либо положительная космологическая
постоянная, либо какая то другая материя с отрицательным давлением (плотность
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энергии всегда считается положительной), которая была названа темной. В настоя-
щее время к темной материи относят положительную космологическую постоянную
и (или) другие модели материи, обсуждение которых выходит за рамки тех огра-
ничений, которые поставил перед собой автор этих строк. Наличие темной энергии
приводит к антигравитации: отталкиванию вместо притяжения. Это отталкивание и
приводит к ускоренному расширению вселенной.

Существующие в настоящее время наблюдательные данные не противоречат пред-
ставлению о темной энергии, как о положительной космологической постоянной. По-
этому данная точка зрения считается стандартной в современной космологии.

Замечание. Помимо темной энергии в космологии используется понятие темной
материи. Это – гипотетическая материя, которая не взаимодействует с электромаг-
нитным полем и, следовательно, не видна, т.к. не излучает фотонов. Понятие темной
материи стало обсуждаться с 1922 года, когда Джеймс Джинс [?] и Якобус Каптейн
[?] пришли к выводу, что бо́льшая часть вещества в нашей галактике невидима, т.к.
гравитационного поля всех видимых звезд явно недостаточно для удержания звезд,
находящихся на периферии. Впоследствии нехватка видимого вещества была под-
тверждена для многих других галактик. Кандидатов на роль темной материи много,
и мы их обсуждать не будем.

В настоящее время наблюдательные данные указывают на то, что темная энергия
составляет более 70% всего вещества вселенной, а темная материя – более 20%. Если
учесть еще межгалактический газ, то на нашу долю (звезды, планеты и др.) остается
меньше половины процента всего вещества вселенной.

2.3.4 Вселенная Эйнштейна

Одну из первых космологических моделей в рамках общей теории относительности
предложил А. Эйнштейн [?] в 1917 году задолго до статей А. Фридмана. Он нашел
точное статической решение для однородной и изотропной замкнутой вселенной. Это
решение укладывается в общую схему однородной и изотропной вселенной с метри-
кой Фридмана.

Космологические уравнения Фридмана (2.90), (2.91) допускают статические ре-
шения. Положим

𝑎 = const, ℰ = const, 𝒫 = const.

Тогда уравнения (2.90) и (2.91) определяют равновесное значение плотности энергии
и давления

ℰ = 2
(︁

3
𝜖

𝑎2
− Λ

)︁
,

𝒫 = 2
(︁
− 𝜖

𝑎2
+ Λ

)︁
.

Эти уравнения имеют много решений в зависимости от значений постоянных 𝜖 и Λ.
Для обычной материи 𝒫 ≤ ℰ/3. Отсюда вытекает ограничение сверху на космологи-
ческую постоянную

Λ ≤ 3

2

𝜖

𝑎2
.

С другой стороны, давление обычной среды положительно, 𝒫 ≥ 0. Это дает оценку
снизу

𝜖

𝑎2
≤ Λ.
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Вместе получаем получаем ограничение на значение космологической постоянной
при заданных кривизне и радиусе вселенной

𝜖

𝑎2
≤ Λ ≤ 3

2

𝜖

𝑎2
. (2.97)

Как видим, для обычной материи это неравенство имеет нетривиальные решения
только при 𝜖 > 0 (замкнутая вселенная) и положительной космологической постоян-
ной, Λ.

Метрику вселенной Эйнштейна после можно записать в виде

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2
[︂

𝑑𝑟2

1 − 𝜖𝑟2
+ 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]︂
. (2.98)

Из формул (2.66) и (2.62) вытекает, что у полного тензора кривизны для модели
Эйнштейна отличны от нуля только пространственные компоненты

𝑅𝜇𝜈𝜌𝜎 = 𝑎2
∘
𝑅𝜇𝜈𝜌𝜎 = 𝑎2𝜖

(︁
∘
𝑔𝜇𝜌

∘
𝑔𝜈𝜎 −

∘
𝑔𝜇𝜎

∘
𝑔𝜈𝜌

)︁
.

В своей статье [?] А. Эйнштейн нашел решение для пыли, 𝒫 = 0, в замкнутой
вселенной, 𝜖 > 0. В этом случае 𝜖 = 𝑎2Λ, и была отмечена необходимость введения
положительной космологической постоянной.

Наблюдательные данные последних лет говорят о том, что вселенная расширяет-
ся. Это не укладывается в статическую модель, которая рассмотрена выше. Поэтому
статическая модель вселенной Эйнштейна в настоящее время носит теоретический
характер. Необходимо знать, что уравнения общей теории относительности допуска-
ют такие решения.

2.3.5 Линейное уравнение состояния

Согласно современным наблюдательным данным вселенная расширяется. Это при-
водит к необходимости построения нестационарных моделей вселенных.

Для того, чтобы построить конкретную космологическую модель и решить урав-
нения Фридмана (2.93), (2.94), необходимо задать уравнение состояния 𝒫 = 𝒫(ℰ).
Важный класс космологических моделей описывается линейным уравнением состоя-
ния. Например, когда вселенная заполнена идеальным газом с уравнением состояния
(??), пылью или излучением (??). Для упрощения некоторых последующих формул
запишем линейное уравнение состояние в виде

𝒫 = (𝛾 − 1)ℰ , 𝛾 = const. (2.99)

Для обычной материи 1 ≤ 𝛾 ≤ 4/3. Граничное значение 𝛾 = 1 соответствует пыли
(𝒫 = 0), а 𝛾 = 4/3 – излучению (𝒫 = ℰ/3).

Часто говорят, что в случае пыли вселенная заполнена холодной материей. Это
значит, что вселенная состоит из массивных частиц, которые движутся с нереляти-
вистскими скоростями, а безмассовыми частицами (излучением) можно пренебречь.
В противоположном случае излучения, 𝛾 = 4/3, мы говорим, что вселенная заполне-
на горячей материей. Частицы горячей материи движутся с около световыми ско-
ростями и ведут себя так же, как и безмассовые. В настоящее время в качестве стан-
дартной космологической модели рассматривается так называемая ΛCDM-модель.
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Эта модель содержит космологическую постоянную и холодную материю (от англий-
ского сокращения CDM = Cold Dark Matter). ΛCDM-модель экономна, и ее следствия
хорошо согласуются с современными наблюдательными данными.

Можно доказать, что скорость звука в непрерывной среде превышает скорость
света при 𝒫 > ℰ . Поэтому на давление накладывают ограничение сверху 𝒫 < ℰ , что
немного увеличивает интервал значений постоянной 𝛾 в уравнении состояния (2.99).

Для линейного уравнения состояния (2.99) уравнение (2.94) легко интегрируется

ℰ =
𝐶

𝑎3𝛾
, (2.100)

где 𝐶 > 0 – постоянная интегрирования. Полученное решение имеет простой фи-
зический смысл: плотность энергии обратно пропорциональна объему вселенной в
данный момент времени 𝑎3 в степени 𝛾. Для пыли (𝒫 = 0, 𝛾 = 1) плотность энергии
просто пропорциональна плотности числа частиц.

Для сопоставления предсказаний теории с наблюдательными данными, необхо-
димо фиксировать постоянные интегрирования в решениях уравнений Фридмана.
Обычно полагают, что в настоящее время 𝑡 = 𝑡0 масштабный множитель равен еди-
нице, 𝑎(𝑡0) = 1. Тогда постоянная интегрирования в (2.100) равна плотности энергии
(плотности числа частиц) в настоящий момент времени, 𝐶 = ℰ0.

Теперь запишем уравнение Фридмана (2.93) в виде

𝑎̇2 + 𝑉 (𝑎) = −𝜖, (2.101)

где
𝑉 (𝑎) := −𝑀𝑎−3𝛾+2 − 𝐿𝑎, (2.102)

и

𝑀 :=
ℰ0
6

= const, 𝐿 :=
Λ

3
= const. (2.103)

Напомним, что 𝜖 :=
∘
𝐾/3, где

∘
𝐾 – гауссова кривизна пространственных сечений 𝑡 =

const. Уравнение (2.101) имеет тот же вид, что и закон сохранения энергии в механике
Ньютона при движении точечной частицы с полной энергией −𝜖 в потенциале 𝑉 (𝑎).
Поэтому, нарисовав потенциал для фиксированных значений постоянных 𝑀 , 𝐿 и 𝛾,
можно определить точки поворота и понять качественное поведение решений.

Продемонстрируем интегрирование уравнений модели Фридмана в простейшем
случае пыли, когда давление равно нулю, 𝒫 = 0. В этом случае плотность энергии
пропорциональна плотности частиц

ℰ =
ℰ0
𝑎3
. (2.104)

Положим для простоты космологическую постоянную равной нулю, Λ = 0. Тогда
подстановка решения (2.104) в уравнение (2.101) дает простое уравнение на мас-
штабный множитель

𝑎̇2 − 𝑀

𝑎
= −𝜖. (2.105)

Решение данного уравнение удобно записать, используя вместо времени 𝑡 коорди-
нату 𝜂, определенную уравнением (2.75). Это уравнение имеет различные решения
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в зависимости от знака 𝜖, т.е. в зависимости от знака кривизны пространственных
сечений:

𝑎 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀
2𝜖

[︀
1 − cos (

√
𝜖 𝜂)

]︀
, 𝜖 > 0,

𝑀𝜂2

4
, 𝜖 = 0,

𝑀
2|𝜖|

[︀
ch (

√︀
|𝜖| 𝜂) − 1

]︀
, 𝜖 < 0.

(2.106)

Постоянная интегрирования соответствует сдвигу 𝜂 ↦→ 𝜂 + const и положена равной
нулю. Параметр 𝜂 связан с временем следующими соотношениями:

𝑡 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀

2𝜖3/2
[︀√
𝜖 𝜂 − sin (

√
𝜖 𝜂)

]︀
, 𝜖 > 0,

𝑀𝜂3

12
, 𝜖 = 0,

𝑀
2|𝜖|3/2

[︀
sh (

√︀
|𝜖| 𝜂) −

√︀
|𝜖| 𝜂

]︀
, 𝜖 < 0,

(2.107)

где постоянная интегрирования, соответствующая сдвигу времени, положена рав-
ной нулю. Поскольку уравнение (3.84) инвариантно относительно инверсии времени,
𝑡 ↦→ −𝑡, то каждому решению 𝑎(𝑡) соответствует также решение 𝑎(−𝑡). Таким обра-
зом, равенства (2.106) и (2.107) определяют масштабный множитель 𝑎(𝑡) в парамет-
рическом виде. Качественное поведение масштабного множителя для пространствен-
ных сечений положительной, нулевой и отрицательной кривизны для пыли показано
на рис. 2.3. Во всех случаях масштабный множитель равен нулю в момент большого

Рис. 2.3: Качественное поведение масштабного множителя для пространственных
сечений положительной, нулевой и отрицательной кривизны для пыли и излучения.

взрыва при 𝑡 = 0. В настоящее время при 𝑡 = 𝑡0 он положителен. Дальнейшая эволю-
ция масштабного множителя зависит от кривизны пространственных сечений. Для
открытых моделей вселенных 𝜖 ≤ 0 и масштабный множитель монотонно возрастает.
Для замкнутых моделей вселенных 𝜖 > 0, масштабный множитель возрастает, дости-
гает своего максимального значения и затем начинает убывать до нулевого значения,
которое соответствует большому сжатию.

Для излучения 𝛾 = 4/3 при нулевой космологической постоянной уравнение
Фридмана (2.101) принимает вид

𝑎̇2 − 𝑀

𝑎2
= −𝜖.
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Это уравнение легко решается

𝑎 =

√︂
𝑡
(︁

2
√
𝑀 − 𝜖𝑡

)︁
. (2.108)

Качественное поведение масштабного множителя для излучения такое же, как и для
пыли, и показано на рис. 2.3 для трех случаев: 𝜖 < 0, 𝜖 = 0 и 𝜖 > 0. Если вселенная
замкнута, 𝜖 > 0, то большой взрыв заканчивается большим сжатием. При этом время
меняется в конечном интервале 0 < 𝑡 < 2

√
𝑀/𝜖. Для открытой вселенной, 𝜖 < 0 или

𝜖 = 0, после большого взрыва происходит бесконечное расширение вселенной.
Как уже упоминалось, качественное поведение решений можно понять, анализи-

руя “потенциал” (2.102). При нулевой космологической постоянной, 𝐿 = 0, для пыли,
𝛾 = 1, и излучения, 𝛾 = 4/3, он изображен на рис. 2.4. Если “энергия” −𝜖 отрицатель-

Рис. 2.4: Качественное поведение “потенциала” для пыли, 𝛾 = 1, и излучения, 𝛾 = 3/4.

на, т.е. 𝜖 > 0, масштабный множитель меняется в конечных интервалах 0 < 𝑎 < 𝑎max.
Максимальное значение масштабного множителя определяется из условия

𝑎̇ = 0 ⇔ 𝑉 (𝑎) = 𝜖.

Для пыли и излучения получаем следующие значения

𝑎max =

⎧⎨⎩ 𝑀/𝜖, 𝛾 = 1,√︀
𝑀/𝜖, 𝛾 = 4/3.

Для открытой вселенной 𝜖 ≤ 0, и масштабный множитель меняется в бесконечном
полуинтервале 0 < 𝑎 <∞, что соответствует бесконечному расширению.

Для уравнения Фридмана (2.101) аналитические решения известны 1) при 𝜖 = 0
для всех 𝛾; 2) при 𝐿 = 0 для 𝛾 = 1 и 𝛾 = 4/3 и 3) при 𝛾 = 4/3 для всех 𝐿 и 𝜖.
Детальный анализ приведен в [?]. Некоторые решения не имеют космологических
особенностей, но они не приемлемы с других точек зрения.

В заключение проанализируем более детально космологическую особенность для
пыли и излучения. Уравнение Фридмана для пыли в общем случае имеет вид

𝑎̇2 =
𝑀

𝑎
+ 𝐿𝑎2 − 𝜖. (2.109)
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Космологическая особенность возникает в решениях этого уравнения при 𝑎 → 0.
Вблизи особенности уравнение принимает вид

𝑎̇2 =
𝑀

𝑎
,

не зависимо от значений космологической постоянной Λ и 𝜖. Поэтому асимптотика
масштабного множителя вблизи космологической особенности следующая

𝑎 ≈
(︂

9𝑀

4

)︂ 1
3

𝑡
2
3 , (2.110)

где мы положили постоянную интегрирования равной нулю. Подстановка получен-
ной асимптотики в выражение для скалярной кривизны (2.74) приводит к следующей
асимптотике при 𝑡→ 0

𝑅 ≈ 2

𝑡
4
3

(︂
2

3
𝑡−

2
3 +𝐾0

)︂
≈ 4

3𝑡2
.

Мы видим, что при конечном значении наблюдаемого времени 𝑡 = 0 масштабный
множитель обращается в нуль, метрика вырождается, и кривизна обращается в бес-
конечность. Отметим, что асимптотика скалярной кривизны не зависит от постоян-
ных 𝑀 , 𝐿 и 𝜖, входящих в уравнение Фридмана.

Для излучения уравнение Фридмана вблизи особенности имеет вид

𝑎̇2 =
𝑀

𝑎2
,

также не зависимо от значения космологической постоянной Λ и кривизны простран-
ственных сечений 𝜖. Его решение имеет вид

𝑎 ≈𝑀
1
4

√
2𝑡. (2.111)

Для скалярной кривизны (2.74) получаем следующую асимптотику

𝑅 ≈
∘
𝐾√
𝑀 𝑡

.

Мы видим, что для излучения возникает сингулярность скалярной кривизны только
при отличной от нуля кривизне пространственных сечений. Тем не менее кривизна
имеет особенность и при

∘
𝐾 = 0. Для этого достаточно вычислить квадрат тензора

Риччи, который является геометрическим инвариантом,

𝑅𝛼𝛽𝑅𝛼𝛽 =
9𝑎̈2

𝑎2
+

3

𝑎4

(︂
𝑎̈𝑎+ 2𝑎̇2 +

2

3

∘
𝐾

)︂2

,

где мы использовали явный вид компонент тензора Риччи (2.74). Подстановка в это
выражение асимптотики масштабного множителя (2.111) приводит к следующему
выражению

𝑅𝛼𝛽𝑅𝛼𝛽 ≈ 3

4𝑡4
.

Следовательно, квадрат тензора Риччи имеет особенность при 𝑡→ 0, которая не за-
висит от кривизны пространственных сечений. Интересно отметить, что асимптотика
квадрата тензора Риччи не зависит также от 𝑀 и 𝐿.



62 ГЛАВА 2. КОСМОЛОГИЯ

2.4 Вакуумные решения
Вакуумные решения уравнений Фридмана, хотя, возможно, и менее реалистичны,
но представляют значительный интерес. В настоящем разделе мы покажем, что все
вакуумные космологические решения – это плоское пространство Минковского R1,3

(Λ = 0), пространство де Ситтера dS (Λ > 0) и анти-де Ситтера AdS (Λ < 0).

2.4.1 Пространство-время Минковского

Ниже мы покажем, что плоское пространство-время Минковского является един-
ственным решением вакуумных космологических моделей при нулевой космологиче-
ской постоянной.

Положим Λ = 0 и предположим, что материя отсутствует, ℰ = 𝒫 = 0. Тогда
уравнение (2.109) принимает вид

𝑎̇2 = −
∘
𝐾

3
.

Оно имеет решение только при
∘
𝐾 ≤ 0. Следовательно, в отсутствие материи (ваку-

умное решение) и космологической постоянной пространственные сечения должны
иметь неположительную кривизну, т.е. представляют собой либо трехмерное гипер-
болическое пространство H3, либо трехмерное евклидово пространство R3. Это соот-
ветствует открытой модели вселенной.

Если
∘
𝐾 = 0, то 𝑎 = const и метрика Фридмана переходит в метрику Лоренца.

Поэтому пространство-время становится плоским пространством Минковского R1,3.
При

∘
𝐾 < 0 масштабный множитель линеен по времени

𝑎 =

√︃
−

∘
𝐾

3
𝑡, (2.112)

где мы отбросили несущественную постоянную интегрирования и выбрали знак плюс
у квадратного корня. Это вакуумное решение имеет особенность, поскольку при 𝑡 = 0
масштабный множитель обращается в нуль, и метрика вырождается. Если вычислить
компоненты тензора кривизны (2.66), то они окажутся тождественно равными нулю.
Поэтому линейный масштабный множитель (2.112) в метрике Фридмана описывает
плоское пространство Минковского R1,3.

Полученный вывод можно подтвердить явным преобразованием координат. Ин-
тервал для вакуумного решения (2.112) после растяжки временно́й координаты мож-
но записать в виде

𝑑𝑠2 = 𝑑𝑡2 − 𝑡2
[︀
𝑑𝜒2 + sh 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]︀
,

где мы выбрали полярные координаты (2.69) на пространственных сечениях 𝑡 =
const. Если теперь совершить преобразование координат 𝑡, 𝜒 ↦→ 𝜏, 𝑟, где

𝜏 := 𝑡 ch𝜒, 𝑟 := 𝑡 sh𝜒,

то интервал станет евклидовым,

𝑑𝑠2 = 𝑑𝜏 2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2).
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Якобиан преобразования координат 𝑡, 𝜒 ↦→ 𝜏, 𝑟 равен 𝐽 = 𝑡 и вырожден при 𝑡 = 0.
Если масштабный множитель 𝑎(𝑡) определен при положительных временах 𝑡 > 0, то
временна́я координата 𝜏 в пространстве Минковского также положительна 𝜏 > 0.

Таким образом, вакуумное решение при
∘
𝐾 < 0, сводится к плоскому пространству

Минковского R1,3, которое никаких особенностей не имеет. Отсюда вытекает, что
особенность в решении (2.112) при 𝑡 = 0 является координатной.

То, что мы получили одно и то же пространство Минковского R1,3 и при
∘
𝐾 = 0, и

при
∘
𝐾 < 0 связано с различным выбором пространственных сечений в пространстве

Минковского.
Полученное космологическое решение для вакуума следовало ожидать. Действи-

тельно, метрика (2.70) является блочно диагональной и сферически симметричной.
Это очевидно в безразмерных полярных координатах. Следовательно, должна быть
выполнена теорема Бирхгоффа, утверждающая, что единственным решением ваку-
умных уравнения является решение Шварцшильда, которое при нулевой массе дает
пространство Минковского. При этом решение Шварцшильда с отличной от нуля
массой возникнуть не может, т.к. оно не является однородным.

2.4.2 Пространство-время де Ситтера dS
Одну из первых моделей вселенных предложил де Ситтер [?, ?]. Эта модель описы-
вает пустую вселенную и является максимально симметричной. Она представляет
самостоятельный интерес, хотя и не является реалистичной с современной точки
зрения.

Пусть Λ > 0 ⇔ 𝐿 > 0 и материя отсутствует, ℰ = 𝒫 = 0. Тогда уравнения
Фридмана (2.96) и (2.101) принимают вид

𝑎̈ = 𝐿𝑎, (2.113)
𝑎̇2 = 𝐿𝑎2 − 𝜖. (2.114)

Конечно, первое уравнение (2.113) есть следствие второго уравнения (3.23). Однако в
данном случае проще их совместное рассмотрение. Первое уравнение имеет решение,
зависящее от двух постоянных интегрирования:

𝑎 = 𝑐+ e𝑡/𝑅 + 𝑐− e−𝑡/𝑅, 𝑐± = const, (2.115)

где введено обозначение

𝑅 :=
1√
𝐿
.

Подстановка этого решения в уравнение (3.23) приводит к связи между постоянными
интегрирования

𝑐+𝑐− =
𝜖

4𝐿
=
𝑅2𝜖

4
. (2.116)

Таким образом, решение уравнений Фридмана зависит только от одной постоянной
интегрирования. Эту постоянную интегрирования можно фиксировать, используя
инвариантность уравнения (3.23) относительно сдвига времени 𝑡 ↦→ 𝑡+ const.

При растяжке пространственных координат постоянная 𝜖 умножается на поло-
жительный множитель. Поэтому, не ограничивая общности, рассмотрим последова-
тельно три случая 𝜖 = 1, 𝜖 = 0 и 𝜖 = −1.
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Сфера, 𝜖 = 1

Если пространственные сечения являются сферами, 𝜖 = 1, положим

𝑐+ = 𝑐− =
𝑅

2
.

Тогда масштабный множитель будет равен

𝑎 = 𝑅 ch (𝑡/𝑅),

и метрика примет вид

𝑑𝑠2 = 𝑑𝑡2 −𝑅2 ch 2(𝑡/𝑅)

[︂
𝑑𝑟2

1 − 𝑟2
+ 𝑟2

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀]︂
, (2.117)

где мы использовали метрику на пространственных сечениях в виде (2.34). Эта мет-
рика называется метрикой де Ситтера и определена при

−∞ < 𝑡 <∞, 0 < 𝑟 < 1, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋. (2.118)

Как видим, она определена при всех временах и никакой космологической особенно-
сти не имеет.

Из формулы (2.117) не видно, что метрика де Ситтера описывает пространство-
время постоянной кривизны и инвариантна относительно группы Лоренца SO(1, 4).
Тем не менее это так. Для доказательства построим пространство постоянной кри-
визны и укажем необходимое преобразование координат.

Рассмотрим пятимерное пространство Минковского R1,4 с декартовой системой
координат 𝑣, 𝑤, 𝑥, 𝑦, 𝑧. По определению, метрика пространства-времени имеет вид

𝑑𝑠2 = 𝑑𝑣2 − 𝑑𝑤2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2. (2.119)

Пусть в него вложен однополостный гиперболоид dS →˓ R1,4

𝑣2 − 𝑤2 − 𝑥2 − 𝑦2 − 𝑧2 = −𝑅2, 𝑅 > 0. (2.120)

Будем считать, что топология, дифференцируемая структура и метрика на гипер-
болоиде индуцированы вложением. Тогда уравнение (2.120) определяет связное че-
тырехмерное псевдориманово многообразие, вложенное в пространство Минковского
R1,4 (см. рис. 2.5, на котором показаны сечения гиперболоида плоскостями 𝑦 = 𝑧 = 0).
Это и есть пространство де Ситтера dS.

И метрика (2.119), и уравнение гиперболоида (2.120) инвариантны относительно
группы Лоренца SO(1, 4). Поэтому она является группой изометрий построенного
гиперболоида. Для четырехмерного многообразия эта группа максимальна, и, сле-
довательно, однополостный гиперболоид (2.120) является пространством постоянной
кривизны.

Каждое сечение гиперболоида 𝑣 = const определяет трехмерную сферу S3 →˓ R4,
определенную уравнением

𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 + 𝑣2.

При 𝑣 = 0 радиус сферы минимален и равен 𝑅. Условимся считать, что значения
0 < 𝑤 <

√
𝑅2 + 𝑣2 покрывают верхнюю (северную) полусферу, а −

√
𝑅2 + 𝑣2 < 𝑤 < 0

– нижнюю (южную).
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Рис. 2.5: Пространство-время де Ситтера dS.

Теперь совершим преобразование координат 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ↦→ 𝑅, 𝑟, 𝑡, 𝜃, 𝜙

𝑣 := 𝑅 sh (𝑡/𝑅),

𝑤 := ±𝑅
√

1 − 𝑟2 ch (𝑡/𝑅),

𝑥 := 𝑅𝑟 ch (𝑡/𝑅) sin 𝜃 cos𝜙,

𝑦 := 𝑅𝑟 ch (𝑡/𝑅) sin 𝜃 sin𝜙,

𝑧 := 𝑅𝑟 ch (𝑡/𝑅) cos 𝜃.

(2.121)

Знак ± в преобразовании координаты 𝑤 соответствует выбору либо верхней полусфе-
ры S3, либо нижней. Тогда уравнение гиперболоида сведется к тождеству 𝑅2 = 𝑅2.
Таким образом, в новой системе координат гиперболоид задается равенством 𝑅 =
const, и координаты 𝑡, 𝑟, 𝜃, 𝜙 можно выбрать в качестве координат на гиперболоиде.
Для получения явного вида метрики, индуцированной на гиперболоиде, необходи-
мо просто выразить дифференциалы 𝑑𝑣, 𝑑𝑤, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 через 𝑑𝑡, 𝑑𝑟, 𝑑𝜃, 𝑑𝜙, используя
формулы (2.121), и подставить их в исходную метрику (2.119). Для упрощения вы-
числений, вспомним, что для сферической системы координат в подпространстве
R3 ⊂ R1,4, натянутом на координатные оси 𝑥, 𝑦, 𝑧, справедлива формула

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
[︀
𝑑
(︀
𝑅𝑟 ch (𝑡/𝑅)

)︀]︀2
+𝑅2𝑟2 ch 2(𝑡/𝑅)

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀
.

С учетом этого равенства после несложных вычислений получим в точности метрику
де Ситтера (2.117).

Мы видим, что область значений координат (2.118) при 0 < 𝑡 < ∞ покрывают
либо верхнюю полусферу (знак + в уравнениях (2.121)), либо нижнюю (знак −).
Если зафиксировать знак в преобразовании координат (2.121) и разрешить времени
меняться на всей вещественной прямой −∞ < 𝑡 <∞, то метрика де Ситтера (2.117)
покроет дважды либо верхнюю, либо нижнюю полусферы S3 →˓ R4.

Пространственные сечения метрики де Ситтера (2.117) задаются сечениями 𝑡 =
const. В исходном пространстве Минковского R1,4 время параметризует гиперплос-
кости R4, которые задаются уравнением

𝑣 = 𝑅 sh (𝑡/𝑅) = const.

Это значит, что пространственные сечения метрики де Ситтера соответствуют сече-
ниям гиперболоида гиперплоскостями R4, которые определяются условием 𝑣 = const.
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Для решения де Ситтера в виде (2.117) “постоянная” Хаббла равна

𝐻 =
𝑎̇

𝑎
=

th(𝑡/𝑅)

𝑅

и не является постоянной.

Трехмерное евклидово пространство, 𝜖 = 0

Зафиксируем 𝜖 = 0 и положим 𝑐− = 0 и 𝑐+ = 𝑅. Тогда масштабный множитель равен

𝑎 = 𝑅 e𝑡/𝑅. (2.122)

Метрика де Ситтера теперь примет вид

𝑑𝑠2 = 𝑑𝑡2 −𝑅2 e2𝑡/𝑅
[︀
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]︀
. (2.123)

Она соответствует слоению однополостного гиперболоида евклидовыми гиперплос-
костями R3. Полученная метрика определена при

−∞ < 𝑡 <∞, 0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋. (2.124)

Для того, чтобы доказать, что метрика (2.123) действительно является метрикой
де Ситтера, совершим преобразование координат 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ↦→ 𝑅, 𝑟, 𝑡, 𝜃, 𝜙, которое
задано следующими формулами:

𝑣 := ±𝑅
[︂

1

2
𝑟2 e𝑡/𝑅 + sh (𝑡/𝑅)

]︂
,

𝑤 := ±𝑅
[︂

1

2
𝑟2 e𝑡/𝑅 − ch (𝑡/𝑅)

]︂
,

𝑥 := 𝑅𝑟 e𝑡/𝑅 sin 𝜃 cos𝜙,

𝑦 := 𝑅𝑟 e𝑡/𝑅 sin 𝜃 sin𝜙,

𝑧 := 𝑅𝑟 e𝑡/𝑅 cos 𝜃.

(2.125)

Нетрудно проверить, что уравнение (2.120), задающее вложение гиперболоида,
сводится к тождеству 𝑅2 = 𝑅2. Это означает, что в новых координатах уравнение
гиперболоида задается уравнением 𝑅 = const. Чтобы получить метрику, индуциро-
ванную на гиперболоиде, в координатах 𝑡, 𝑟, 𝜃, 𝜙, необходимо подставить дифферен-
циалы 𝑑𝑣, 𝑑𝑤, 𝑑𝑥, 𝑦 и 𝑑𝑧 из уравнений (2.125) в исходную метрику Лоренца (2.119).
Чтобы упростить вычисления, заметим что

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
[︀
𝑑(𝑅𝑟 e𝑡/𝑅

]︀2
+𝑅2𝑟2 e2𝑡/𝑅

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀
.

Теперь нетрудно проверить, что индуцированная метрика равна метрике де Ситтера
в форме (2.123).

Пространственные сечения R3 для метрики (2.123) задаются сечениями 𝑡 = const.
Эти сечения в объемлющем пространстве R1,4 задают нулевые гиперплоскости

𝑣 − 𝑤 = ±𝑅 e𝑡/𝑅.

Таким образом, пространственные сечения в метрике де Ситтера (2.123) получаются
при сечении гиперболоида нулевыми гиперплоскостями.
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Нетрудно вычислить постоянную Хаббла для решения де Ситтера в виде (2.123)

𝑎̇

𝑎
=

1

𝑅
.

Как видим, при таком выборе координат она действительно постоянна. Тем самым
пространство-время де Ситтера дает один из немногих примеров инфляционного
развития вселенной.

Двуполостный гиперболоид, 𝜖 = −1

При 𝜖 = −1 пространственными сечениями пространства-времени являются двупо-
лостные гиперболоиды H3, описанные в разделе 2.2.2. В этом случае выберем

𝑐+ = −𝑐− =
𝑅

2
.

Тогда масштабный множитель равен

𝑎 = 𝑅 sh (𝑡/𝑅),

и метрика де Ситтера принимает вид

𝑑𝑠2 = 𝑑𝑡2 −𝑅2 sh 2(𝑡/𝑅)

[︂
𝑑𝑟2

1 + 𝑟2
+ 𝑟2

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀]︂
. (2.126)

Эта метрика определена при следующих значениях координат

−∞ < 𝑡 <∞, 0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋, (2.127)

и вырождена при 𝑡 = 0.
Для того, чтобы доказать, что это действительно метрика де Ситтера, совершим

преобразование координат 𝑤, 𝑣, 𝑥, 𝑦, 𝑧 ↦→ 𝑅, 𝑟, 𝑡, 𝜃, 𝜙:

𝑣 := 𝑅
√

1 + 𝑟2 sh (𝑡/𝑅),

𝑤 := 𝑅 ch (𝑡/𝑅),

𝑥 := 𝑅𝑟 sh (𝑡/𝑅) sin 𝜃 cos𝜙,

𝑦 := 𝑅𝑟 sh (𝑡/𝑅) sin 𝜃 sin𝜙,

𝑧 := 𝑅𝑟 sh (𝑡/𝑅) cos𝜙.

(2.128)

Если подставить эти выражения в определяющее уравнение гиперболоида (2.120), то
получим тождество 𝑅2 = 𝑅2. Следовательно, в исходном пространстве Минковского
R1,4 гиперболоид задается равенством 𝑅 = const.

Для получения явного вида метрики, индуцированной на гиперболоиде, необхо-
димо подставить дифференциалы 𝑑𝑣, 𝑑𝑤, 𝑑𝑥, 𝑑𝑦 и 𝑑𝑧 из (2.128) в исходную метрику
(2.119). Учтем равенство

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
[︀
𝑑
(︀
𝑅𝑟 sh (𝑡/𝑅)

)︀]︀2
+𝑅2𝑟2 sh 2(𝑡/𝑅)

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀
.

Теперь нетрудно проверить, что в новых координатах метрика действительно при-
нимает вид (2.126).
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Пространственные сечения метрики де Ситтера (2.126) задаются равенством 𝑡 =
const. В исходном пространстве Минковского R1,4 время 𝑡 параметризует гиперплос-
кости R1,3, которые задаются уравнением

𝑤 = 𝑅 ch (𝑡/𝑅) = const.

Это значит, что пространственные сечения метрики де Ситтера задаются сечениями
гиперболоида гиперплоскостями 𝑤 = const.

“Постоянная” Хаббла в данной системе координат равна

𝐻 =
cth (𝑡/𝑅)

𝑅

и вовсе не является постоянной.

Координаты Шварцшильда

Еще одна важная система координат 𝑅, 𝜌, 𝜏, 𝜃, 𝜙 для пространства де Ситтера зада-
ется следующими уравнениями:

𝑣 := 𝑅
√︀

1 − 𝜌2 sh 𝜏,

𝑤 := 𝑅
√︀

1 − 𝜌2 ch 𝜏,

𝑥 := 𝑅𝜌 sin 𝜃 cos𝜙,

𝑦 := 𝑅𝜌 sin 𝜃 sin𝜙,

𝑧 := 𝑅𝜌 cos 𝜃.

(2.129)

Как и ранее, гиперболоид (2.120) задается уравнением 𝑅 = const. Индуцированная
метрика на гиперболоиде в координатах Шварцшильда 𝜏, 𝜌, 𝜃, 𝜙 принимает вид

𝑑𝑠2 = 𝑅2

[︂
(1 − 𝜌2)𝑑𝜏 2 − 𝑑𝜌2

1 − 𝜌2
− 𝜌2

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀]︂
. (2.130)

Эта метрика определена при

−∞ < 𝜏 <∞, 0 < 𝜌 < 1, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋. (2.131)

В этих координатах метрика де Ситтера статична.
Таким образом, при положительной космологической постоянной Λ и в отсут-

ствие полей материи, для всех значений кривизны пространственных сечений: 𝜖 = 1,
𝜖 = 0 и 𝜖 = −1 мы получили пространство-время де Ситтера. Это космологическое
решение не имеет никаких особенностей и после максимального продолжения вдоль
экстремалей описывает пространство постоянной кривизны. Его группа изометрий
SO(1, 4) максимальна. Мы видим, что метрика пространства де Ситтера может быть
записана в форме метрики Фридмана со всеми возможными пространственными се-
чениями: S3, R3 или H3. Кроме этого, постоянная Хаббла в различных системах
координат разная. Пример метрики де Ситтера показывает насколько сильно кос-
мологические выводы зависят от выбора системы координат. Даже ответ на вопрос
о том, является ли вселенная замкнутой или открытой, может зависеть от выбора
системы координат. Это является существенным недостатком всех космологических
моделей.
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2.4.3 Пространство-время анти-де Ситтера AdS
Рассмотрим случай отрицательной космологической постоянной, Λ < 0, в пустом
пространстве-времени, ℰ = 𝒫 = 0. Уравнения Фридмана по прежнему имеют вид
(2.113), (3.23), где 𝐿 = Λ/3 < 0. Из второго уравнения следует, что решения суще-
ствуют только при 𝜖 = −1, т.е. пространственными сечениями метрики Фридмана
являются двуполостные гиперболоиды. При отрицательной космологической посто-
янной решение (2.115) является вещественным только если 𝑐− = 𝑐*+. Положим теперь

𝑅 :=
1√
−𝐿

и выберем 𝑐+ = 1/2. Тогда масштабный множитель (2.115) примет вид

𝑎 = 𝑅 cos (𝑡/𝑅) (2.132)

и метрика вселенной равна

𝑑𝑠2 = 𝑑𝑡2 −𝑅2 cos 2(𝑡/𝑅)

[︂
𝑑𝑟2

1 + 𝑟2
+ 𝑟2

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀]︂
, (2.133)

где мы использовали метрику двуполого пространственного гиперболоида H3 в фор-
ме (2.53). Эта метрика называется метрикой анти-де Ситтера и определена при

− 𝜋𝑅/2 < 𝑡 < 𝜋𝑅/2, 0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 𝜋. (2.134)

При 𝑡 = ±𝜋𝑅/2 метрика вырождается.
Опять, из вида метрики анти-де Ситтера (2.133) совершенно не видно, что эта

метрика описывает пространство-время постоянной кривизны. Чтобы доказать это,
совершим следующее построение.

Рассмотрим плоское пятимерное пространство R2,3 с декартовыми координатами
𝑣, 𝑤, 𝑥, 𝑦, 𝑧. По определению, его метрика имеет вид

𝑑𝑠2 = 𝑑𝑣2 + 𝑑𝑤2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2. (2.135)

Рассмотрим однополостный вложенный гиперболоид AdS →˓ R2,3, который определен
уравнением

𝑣2 + 𝑤2 − 𝑥2 − 𝑦2 − 𝑧2 = 𝑅2. (2.136)
На рис. 2.6 изображены двумерные сечения пространства анти-де Ситтера, соответ-
ствующие 𝑦 = 𝑧 = 0.

Поскольку уравнения (2.135) и (2.136) инвариантны относительно действия груп-
пы SO(2, 3), то эта группа является группой изометрий пространства анти-де Ситте-
ра. Для четырехмерного пространства-времени она максимальна, и ее алгебра содер-
жит 10 независимых векторных полей Киллинга. Согласно теореме 1.3.1 пространство-
время анти-де Ситтера является пространством постоянной кривизны. Группа SO(2, 3)
называется группой анти-де Ситтера.

Чтобы доказать, что метрика (2.133) описывает пространство постоянной кри-
визны, совершим преобразование координат 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ↦→ 𝑅, 𝑟, 𝑡, 𝜃, 𝜙, определяемое
формулами:

𝑣 := 𝑅 sin (𝑡/𝑅),

𝑤 := ±𝑅
√

1 + 𝑟2 cos (𝑡/𝑅),

𝑥 := 𝑅𝑟 cos (𝑡/𝑅) sin 𝜃 cos𝜙,

𝑦 := 𝑅𝑟 cos (𝑡/𝑅) sin 𝜃 cos𝜙,

𝑧 := 𝑅𝑟 cos (𝑡/𝑅) cos 𝜃.

(2.137)
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Рис. 2.6: Пространство-время анти-де Ситтера AdS.

В новой системе координат гиперболоид задается равенством 𝑅 = const.
Для получения индуцированной метрики используем равенство

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
[︀
𝑑
(︀
𝑅𝑟 cos (𝑡/𝑅)

)︀]︀2
+𝑅2𝑟2 cos 2(𝑡/𝑅)(𝑑𝜃2 + sin 2𝜃𝑑𝜙2).

Прямые вычисления показывают, что индуцированная метрика принимает вид (2.133).
Пространственные сечения метрики анти-де Ситтера соответствуют постоянному

времени 𝑡 = const. В исходном пространстве R2,3 время 𝑡 параметризует гиперплос-
кости R1,3, которые задаются уравнением

𝑣 = 𝑅 sin (𝑡/𝑅) = const.

Это значит, что пространственные сечения метрики анти-де Ситтера (2.133) задаются
сечениями гиперболоида гиперплоскостями 𝑣 = const.

“Постоянная ” Хаббла для метрики анти-де Ситтера в рассматриваемой системе
координат равна

𝐻 = − tg (𝑡/𝑅)

𝑅

и не является постоянной.
Таким образом, метрика анти-де Ситтера (2.133) представляет собой метрику

пространства постоянной кривизны. Однако однополостный гиперболоид (2.136) не
является пространством-временем анти-де Ситтера. Дело в том, что сечения гипер-
болоида двумерными плоскостями, определяемыми постоянными значениями про-
странственных координат 𝑥, 𝑦, 𝑧 = const, представляют собой окружности

𝑣2 + 𝑤2 = 𝑅2 + 𝑥2 + 𝑦2 + 𝑧2.

Эти окружности являются замкнутыми времениподобными кривыми и приводят к
нарушению причинности (машина времени). Чтобы исправить ситуацию необходимо
от однополостного гиперболоида (2.136) перейти к его универсальной накрывающей.
Для этого гиперболоид нужно “развернуть” вдоль времениподобной координаты 𝑣.
Это достигается путем перехода к новым координатам 𝑡, 𝑟 ↦→ 𝜏, 𝜒, оставляя коорди-
наты 𝜃, 𝜙 прежними. Зададим преобразование координат неявными формулами:

𝑣 := 𝑅
sin 𝜏

cos𝜒
, 𝑤 := 𝑅

cos 𝜏

sin𝜒
,
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где
0 < 𝜏 < 2𝜋, −𝜋

2
< 𝜒 <

𝜋

2
.

Тогда

𝑣2 + 𝑤2 =
𝑅2

cos 2𝜒
,

и из уравнения гиперболоида следует равенство

𝑟 cos (𝑡/𝑅) = tg𝜒.

В новых координатах

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑅2 𝑑𝜒2

cos 4𝜒
+𝑅2 tg 2𝜒

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀
.

Теперь нетрудно вычислить метрику пространства-времени анти-де Ситтера

𝑑𝑠2 =
𝑅2

cos 2𝜒

[︀
𝑑𝜏 2 − 𝑑𝜒2 − sin 2𝜒

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀]︀
. (2.138)

Мы видим, что координата 𝜏 является временем. Эта метрика статична и вейлевски
эквивалентна метрике трехмерной сферы S3. Важно, что она определена при всех
−∞ < 𝜏 <∞. При этом гиперболоид возникает после отождествления 𝜏 ∼ 𝜏+2𝜋. Под
пространством анти-де Ситтера AdS понимается именно универсальная накрываю-
щая однополостного гиперболоида с метрикой (2.138). В этом пространстве-времени
замкнутые времениподобные кривые отсутствуют.

Заметим, что группа изометрии SO(2, 3) действует свободно на однополостном
гиперболоиде, но не на его универсальной накрывающей.

Координаты Шварцшильда

Метрику анти-де Ситтера можно записать в координатах Шварцшильда. Для этого
в объемлющем пространстве введем координаты

𝑣 := 𝑅
√︀

1 + 𝜌2 sin 𝜏,

𝑤 := 𝑅
√︀

1 + 𝜌2 cos 𝜏,

𝑥 := 𝑅𝜌 sin 𝜃 cos𝜙,

𝑦 := 𝑅𝜌 sin 𝜃 sin𝜙,

𝑧 := 𝑅𝜌 sin 𝜃 sin𝜙.

(2.139)

Нетрудно проверить, что гиперболоид задается равенством 𝑅 = const. Метрика,
индуцированная на гиперболоиде, в координатах Шварцшильда 𝜏, 𝜌, 𝜃, 𝜙 принимает
вид

𝑑𝑠2 = 𝑅2

[︂
(1 + 𝜌2)𝑑𝜏 2 − 𝑑𝜌2

1 + 𝜌2
− 𝜌2

(︀
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)︀]︂
. (2.140)

Эта метрика определена при

−∞ < 𝜏 <∞, 0 < 𝜌 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋. (2.141)

В координатах Шварцшильда метрика де Ситтера статична.
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2.5 Однородные вселенные

В предыдущем разделе мы рассмотрели однородные и изотропные модели вселен-
ной. При этом из изотропии вселенной вытекает ее однородность (предложение 1.3.1).
Обратное утверждение неверно: однородных многообразий намного больше, чем изо-
тропных. Трехмерных связных и односвязных изотропных многообразий всего три –
это сфера S3, евклидово пространство R3 и двуполостный гиперболоид H3. Класси-
фикация всех трехмерных однородных многообразий в настоящее время неизвестна.
Поэтому мы упростим задачу. Будем требовать, чтобы пространственные сечения по-
стоянного времени 𝑡 = const были не просто однородными, а главными однородными
пространствами (см. раздел ??). Напомним, что главным однородным пространст-
вом называется группа преобразований (M,G), которая действует транзитивно и
свободно. В этом случае размерности многообразия и группы Ли равны, и много-
образие M можно отождествить с самой группой Ли G. Поэтому классификация
главных однородных пространств сводится к классификации трехмерных групп Ли.
Согласно теореме ?? каждой алгебре Ли соответствует единственная, с точностью до
изоморфизма, связная и односвязная группа Ли (универсальная накрывающая). Все
остальные связные группы Ли с той же алгеброй являются фактор группами универ-
сальной накрывающей по некоторой нормальной подгруппе, действующей свободно и
собственно разрывно. Таким образом, если пространственными сечениями вселенной
являются связные и односвязные главные однородные пространства, то их классифи-
кация сводится к классификации трехмерных алгебр Ли. Эта классификация хорошо
известна.

2.5.1 Классификация Бианки

Трехмерные алгебры Ли были классифицированы Луиджи Бианки [?].
Пусть задана трехмерная алгебра Ли g с базисом 𝐿𝑖, 𝑖 = 1, 2, 3. Коммутатор

базисных левоинвариантных векторных полей,

[𝐿𝑖, 𝐿𝑗] = 𝑓𝑖𝑗
𝑘𝐿𝑘, (2.142)

определяется структурными константами 𝑓𝑖𝑗𝑘, которые, по построению, антисиммет-
ричны по нижним индексам

𝑓𝑖𝑗
𝑘 = −𝑓𝑗𝑖𝑘. (2.143)

Кроме того, структурные константы должны удовлетворять тождествам Якоби (см.
раздел ??)

𝑓𝑖𝑗
𝑙𝑓𝑘𝑙

𝑚 + 𝑓𝑗𝑘
𝑙𝑓𝑖𝑙

𝑚 + 𝑓𝑘𝑖
𝑙𝑓𝑗𝑙

𝑚 = 0. (2.144)

Верно также обратное утверждение. Произвольный набор структурных констант,
удовлетворяющих условиям (2.143) и (2.144), однозначно определяет некоторую ал-
гебру Ли.

Таким образом, классификация трехмерных алгебр Ли сводится к перечислению
всех возможных наборов структурных констант с точностью до некоторого отно-
шения эквивалентности. В данном случае отношение эквивалентности – это выбор
базиса в алгебре Ли. Мы говорим, что два базиса эквивалентны, 𝐿𝑖 ∼ 𝐿′

𝑖, если они
связаны некоторым невырожденным линейным преобразованием:

𝐿𝑖 ∼ 𝐿′
𝑖 ⇔ 𝐿′

𝑖 = 𝑆𝑖
𝑗𝐿𝑗, 𝑆 ∈ GL(3,R).
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Из определения структурных констант (2.142) вытекает, что при таких преобразова-
ниях структурные константы ведут себя как тензор третьего ранга с одним контрава-
риантным и двумя ковариантными индексами. Поскольку базис алгебры Ли 𝐿𝑖, как
базис произвольного векторного пространства, определен с точностью до произволь-
ных невырожденных линейных преобразований, то мы используем этот произвол для
приведения структурных констант к некоторому каноническому виду.

Изначально в трехмерном векторном пространстве алгебры Ли никакой метрики
нет, и мы не можем поднимать и опускать индексы у структурных констант. Зато есть
два полностью антисимметричных тензора третьего ранга: один с ковариантными,
𝜀𝑖𝑗𝑘, а другой с контравариантными индексами, 𝜀𝑖𝑗𝑘. Мы принимаем соглашение, что
𝜀123 = 1 и 𝜀123 = 1. Их свойства описаны в приложении ??.

Поскольку структурные константы антисимметричны по паре индексов, то их
можно взаимно однозначно задать тензором второго ранга:

𝑓𝑖𝑗
𝑘 = 𝜀𝑖𝑗𝑙𝑡

𝑙𝑘 ⇔ 𝜀𝑖𝑗𝑙𝑓𝑖𝑗
𝑘 = 2𝑡𝑙𝑘.

Тензор второго ранга 𝑡𝑙𝑘 никакой симметрией не обладает, и его можно разложить
на симметричную и антисимметричную части:

𝑏𝑙𝑘 :=
1

2
(𝑡𝑙𝑘 + 𝑡𝑘𝑙), 𝑑𝑙𝑘 :=

1

2
(𝑡𝑙𝑘 − 𝑡𝑘𝑙).

В свою очередь, антисимметричный тензор второго ранга можно параметризовать
ковектором:

𝑑𝑖𝑗 = 𝜀𝑖𝑗𝑘𝑎𝑘 ⇔ 𝑑𝑖𝑗𝜀𝑖𝑗𝑘 = 2𝑎𝑘.

Таким образом, в трехмерном случае структурные константы взаимно однозначно
параметризуются симметричным тензором второго ранга 𝑏𝑖𝑗 и ковектором 𝑎𝑖:

𝑓𝑖𝑗
𝑘 = 𝜀𝑖𝑗𝑙𝑏

𝑙𝑘 + 𝛿𝑘𝑖 𝑎𝑗 − 𝛿𝑘𝑗 𝑎𝑖. (2.145)

Отметим, что при получении данного представления никакая метрика на алгебре
Ли g не использовалась.

Теперь подставим структурные константы (2.145) в тождества Якоби (2.144). Для
упрощения вычислений заметим, что левая сторона равенства (2.144) антисиммет-
рична по трем индексам 𝑖, 𝑗, 𝑘 и поэтому эквивалентна равенству

𝜀𝑖𝑗𝑘𝑓𝑖𝑗
𝑙𝑓𝑘𝑙

𝑚 = 0.

Подставляя сюда выражение для структурных констант (2.145) приходим к равен-
ству

𝑏𝑖𝑗𝑎𝑗 = 0. (2.146)

Таким образом, для классификации алгебр Ли необходимо перечислить все сим-
метричные тензоры 𝑏𝑖𝑗 = 𝑏𝑗𝑖 и ковекторы 𝑎𝑖, на которые наложено условие (2.146) и
отношение эквивалентности. Из определения следует, что 𝑏𝑖𝑗 и 𝑎𝑖 при замене бази-
са в алгебре Ли ведут себя как тензоры. Чтобы привести структурные константы к
каноническому виду совершим следующее преобразование.

Уравнение (2.146) означает, что ковектор 𝑎, если он отличен от нуля, лежит в
одном из главных направлений тензора 𝑏𝑖𝑗, – в том, которое отвечает нулевому соб-
ственному значению 𝑏𝑖𝑗. Согласно теореме ?? с помощью ортогонального преобразо-
вания базиса алгебры Ли симметричную матрицу 𝑏 всегда можно преобразовать к
диагональному виду

𝑏𝑖𝑗 = 𝑏(𝑖)𝛿𝑖𝑗, суммирования по 𝑖 нет,
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где на диагонали стоят собственные числа. Поэтому, не ограничивая общности, мож-
но положить 𝑎 = (𝑎, 0, 0). Тогда уравнение (2.146) примет вид 𝑏(1)𝑎, откуда следует,
что либо 𝑏(1) = 0, либо 𝑎 = 0.

После таких преобразований правила коммутации базисных векторных полей ал-
гебры Ли примут вид

[𝐿1, 𝐿2] = 𝑏(3)𝐿3 − 𝑎𝐿2, [𝐿2, 𝐿3] = 𝑏(1)𝐿1, [𝐿3, 𝐿1] = 𝑏(2)𝐿2 + 𝑎𝐿3. (2.147)

У нас имеется также свобода в масштабировании базиса (умножению на отличные
от нуля постоянные). Совершим масштабное преобразование

𝐿1 ↦→ 𝐿′
1 := 𝑘1𝐿1, 𝐿2 ↦→ 𝐿′

2 := 𝑘2𝐿2, 𝐿3 ↦→ 𝐿′
3 := 𝑘3𝐿3, 𝑘1𝑘2𝑘3 ̸= 0.

Тогда для нового базиса правила коммутации (2.147) останутся прежними, но с за-
меной

𝑏′(1) =
𝑘1
𝑘2𝑘3

𝑏(1), 𝑏′(2) =
𝑘2
𝑘3𝑘1

𝑏(2), 𝑏′(3) =
𝑘3
𝑘1𝑘2

𝑏(3), 𝑎′ =
𝑎

𝑘1
.

Допустим, что все собственные значения 𝑏(𝑖) отличны от нуля, и положим

𝑘1 =
𝑘2𝑘3⃒⃒
𝑏(1)

⃒⃒ , 𝑘2 =
𝑘1𝑘3⃒⃒
𝑏(2)

⃒⃒ , 𝑘3 =
𝑘1𝑘2⃒⃒
𝑏(3)

⃒⃒ .
Эти уравнения имеют решения

𝑘21 =
⃒⃒
𝑏(2)𝑏(3)

⃒⃒
, 𝑘22 =

⃒⃒
𝑏(3)𝑏(1)

⃒⃒
, 𝑘23 =

⃒⃒
𝑏(1)𝑏(2)

⃒⃒
. (2.148)

Тогда новые собственные значения будут равны по модулю единице 𝑏′(𝑖) = ±1, при
этом 𝑎 = 0, как следует из уравнения (2.146).

Заметим также, что изменение знака одной постоянной, например, 𝑘1 при извлече-
нии корня в (2.148) приводит к одновременному изменению всех знаков собственных
значений 𝑏(𝑖).

Аналогично можно доказать, что при 𝑎 = 0 все отличные от нуля собственные
значения 𝑏(𝑖) можно по модулю приравнять единице. При этом еще остается свобода
одновременного изменения знаков всех собственных значений. В таблице 2.1 приве-
дена классификация Бианки трехмерных алгебр Ли. Первые шесть строк отведены
случаю 𝑎 = 0, который мы только что обсудили.

Если 𝑎 ̸= 0, то с необходимостью 𝑏(1) = 0. При 𝑏(2) = 𝑏(3) = 0 и 𝑏(2) = 0, 𝑏(3) ̸= 0,
выбрав 𝑘1 = 𝑎, получим 𝑎′ = 1. Одновременно можно преобразовать 𝑏(3) ̸= 0 в
единицу. Если 𝑏(2) ̸= 0 и 𝑏(3) ̸= 0, то возможны два неэквивалентных случая: 𝑏(2) > 0,
𝑏(3) > 0 и 𝑏(2) > 0, 𝑏(3) < 0.

Если 𝑏(2) > 0, 𝑏(3) > 0, то выберем

𝑘2 =
𝑘1𝑘3
𝑏(2)

, 𝑘1 = ±
√
𝑏(2)𝑏(3). (2.149)

Тогда 𝑏′(2) = 1 и 𝑏′(3) = 1, а параметр 𝑎 преобразуется по правилу

𝑎′ = ± 𝑎√
𝑏(2)𝑏(3)

.

Мы видим, что с помощью выбора знака 𝑘1 в масштабном преобразовании (2.149)
можно изменить знак постоянной 𝑎, но не ее модуль. Поэтому, не ограничивая общно-
сти, будем считать 𝑎 > 0. Таким образом, в типе VII𝑎 мы имеем однопараметрическое
семейство алгебр, которые параметризуются положительными числами 𝑎 > 0.
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Тип 𝑎 𝑏(1) 𝑏(2) 𝑏(3) 𝜂

I 0 0 0 0 diag (0, 0, 0)

II 0 1 0 0 diag (0, 0, 0)

VII0 0 1 1 0 diag (0, 0, 2)

VI0 0 1 −1 0 diag (0, 0,−2)

IX 0 1 1 1 diag (2, 2, 2)

VIII 0 1 1 −1 diag (−2,−2, 2)

V 1 0 0 0 diag (−2, 0, 0)

IV 1 0 0 1 diag (−2, 0, 0)

VII𝑎, 𝑎 > 0 𝑎 0 1 1 diag (2 − 2𝑎2, 0, 0)

III 1 0 1 −1 diag (−4, 0, 0)

VI𝑎, 𝑎 > 0 𝑎 0 1 −1 diag (−2 − 2𝑎2, 0, 0)

Таблица 2.1: Классификация трехмерных алгебр Ли по Бианки.

В случае 𝑏(2) > 0, 𝑏(3) < 0 можно проделать аналогичное построение.
Таким образом, по классификации Бианки мы имеем девять типов трехмерных

алгебр Ли I–IX, две из которых, VII𝑎 и VI𝑎 параметризуются положительным числом
𝑎.

В последней колонке таблицы 2.1 указана форма Киллинга–Картана

𝜂𝑖𝑗 := −𝑓𝑖𝑘𝑙𝑓𝑗𝑙𝑘 = 𝜀𝑖𝑘𝑙𝜀𝑗𝑚𝑛𝑏
𝑘𝑚𝑏𝑙𝑛 − 2𝑎𝑖𝑎𝑗.

В выбранном базисе матрица 𝑏𝑖𝑗 диагональна и 𝑎 = (𝑎, 0, 0). Поэтому форма Киллинга–
Картана тоже диагональна. Ее диагональные элементы равны:

𝜂11 = 2𝑏(2)𝑏(3) − 2𝑎2, 𝜂22 = 2𝑏(1)𝑏(3) 𝜂33 = 2𝑏(1)𝑏(2).

Они и приведены в таблице.
Согласно теореме Картана ?? алгебра Ли полупроста (см. раздел ??) тогда и

только тогда, когда ее форма Киллинга–Картана невырождена. Из таблицы следует,
что среди трехмерных алгебр Ли только две являются полупростыми: это алгебры
VIII и IX.

Тип I. Коммутационные соотношения имеют вид

[𝐿𝑖, 𝐿𝑗] = 0. (2.150)

Это – коммутативная алгебра сдвигов в R3. Соответствующая универсальная накры-
вающая группа Ли представляет собой коммутативную группу сдвигов в трехмерном
евклидовом пространстве, которую можно отождествить с самим R3.

Тип II. Коммутационные соотношения имеют вид

[𝐿1, 𝐿2] = 0, [𝐿2, 𝐿3] = 𝐿1, [𝐿3, 𝐿1] = 0. (2.151)

Эта алгебра изоморфна алгебре Ли группы Гейзенберга H3(R) (группа верхне тре-
угольных 3 × 3 матриц с единицами на диагонали).

Тип III. Коммутационные соотношения имеют вид

[𝐿1, 𝐿2] = −𝐿3 − 𝐿2, [𝐿2, 𝐿3] = 0, [𝐿3, 𝐿1] = 𝐿2 + 𝐿3. (2.152)



76 ГЛАВА 2. КОСМОЛОГИЯ

Перейдем к новому базису

𝐿̃1 :=
1

2
𝐿1, 𝐿̃2 := 𝐿2 + 𝐿3, 𝐿̃3 := 𝐿2 − 𝐿3.

Тогда коммутационные соотношения примут вид

[𝐿̃1, 𝐿̃2] = −𝐿̃2, [𝐿̃1, 𝐿̃3] = 0, [𝐿̃2, 𝐿̃3] = 0.

Сравнение этих коммутационных соотношений с коммутационными соотношениями
(??) показывает, что алгебра типа III изоморфна прямой сумме a(R) ⊕ R, где a(R)
– алгебра Ли группы аффинных преобразований прямой, натянутой на 𝐿̃1, 𝐿̃2 и R –
алгебра Ли сдвигов прямой.

Тип IV. Коммутационные соотношения имеют вид

[𝐿1, 𝐿2] = 𝐿3 − 𝐿2, [𝐿2, 𝐿3] = 0, [𝐿3, 𝐿1] = 𝐿3. (2.153)

Тип V. Коммутационные соотношения имеют вид

[𝐿1, 𝐿2] = −𝐿2, [𝐿2, 𝐿3] = 0, [𝐿3, 𝐿1] = 𝐿3. (2.154)

Тип VI𝑎. Коммутационные соотношения имеют вид

[𝐿1, 𝐿2] = −𝐿3 − 𝑎𝐿2, [𝐿2, 𝐿3] = 0, [𝐿3, 𝐿1] = 𝐿2 + 𝑎𝐿3. (2.155)

В частном случае 𝑎 = 0 алгебра типа VI0 изоморфна алгебре Ли двумерной группы
Пуанкаре io(1, 1) (движения двумерной плоскости Минковского).

В частном случае 𝑎 = 1 совпадает с алгеброй типа III.
Тип VII𝑎. Коммутационные соотношения имеют вид

[𝐿1, 𝐿2] = 𝐿3 − 𝑎𝐿2, [𝐿2, 𝐿3] = 0, [𝐿3, 𝐿1] = 𝐿2 + 𝑎𝐿3. (2.156)

В частном случае 𝑎 = 0 алгебра типа VII0 изоморфна алгебре Ли неоднородных
двумерных вращений io(2) (движения двумерной евклидовой плоскости R2).

Тип VIII. Коммутационные соотношения имеют вид

[𝐿1, 𝐿2] = −𝐿3, [𝐿2, 𝐿3] = 𝐿1, [𝐿3, 𝐿1] = 𝐿2. (2.157)

Сравнение с коммутационными соотношениями (2.224) показывает, что алгебра типа
VIII изоморфна алгебре Лоренца so(2, 1). Универсальные накрывающая для группы
Лоренца довольно сложно устроена и построена в разделе ??. Как многообразие, она
некомпактна и диффеоморфна евклидову пространству R3.

Тип IX. Коммутационные соотношения имеют вид

[𝐿1, 𝐿2] = 𝐿3, [𝐿2, 𝐿3] = 𝐿1, [𝐿3, 𝐿1] = 𝐿2. (2.158)

Это – алгебра трехмерных вращений so(3)
(︀
ср. (??)

)︀
. Как было показано в разделе

??, ее универсальной накрывающей является группа Ли SU(2), которая, как много-
образие, диффеоморфна трехмерной сфере S3.

Можно доказать, что перечисленные в таблице алгебры неразложимы в прямые
суммы, за исключением алгебр типа I и III.
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2.6 Неголономный базис
Аффинная геометрия на многообразии M, dimM = 𝑛, задается метрикой 𝑔𝛼𝛽 и аф-
финной связностью Γ𝛼𝛽

𝛾 или, что эквивалентно, метрикой 𝑔𝛼𝛽, кручением 𝑇𝛼𝛽
𝛾 и

неметричностью 𝑄𝛼𝛽𝛾. При таком описании каждое преобразование координат сопро-
вождаются соответствующим преобразованием компонент тензорных полей относи-
тельно координатного базиса. Существует также другой способ описания геометрии,
когда компоненты тензорных полей рассматриваются относительно репера, который
не меняется при преобразовании координат. В этом случае на компоненты тензорных
полей действует группа локальных преобразований GL(𝑛,R), что соответствует вра-
щению репера. В результате аффинная геометрия на многообразии M будет задана
репером 𝑒𝛼

𝑎 и линейной или GL(𝑛,R) связностью 𝜔𝛼𝑎
𝑏 (см. раздел ??).

Определение. Переменные репер 𝑒𝛼
𝑎(𝑥) и GL(𝑛,R) связность 𝜔𝛼𝑎

𝑏(𝑥), задающие
на многообразии M аффинную геометрию, называются переменными Картана. В
четырехмерном пространстве-времени репер называется тетрадой. В двумерном и
трехмерном пространстве репер называется соответственно диадой и триадой.

Замечание. В моделях математической физики переменные Картана, как правило,
упрощают вычисления и необходимы при рассмотрении спинорных полей на много-
образии M.

Напомним, что координатный базис касательных пространств T𝑥(M) во всех точ-
ках многообразия 𝑥 ∈ M мы обозначаем 𝜕𝛼, и он называется голономным. Важным
свойством координатных базисных векторов 𝜕𝛼 является их коммутативность:

[𝜕𝛼, 𝜕𝛽] = 0.

Предположим, что в каждой точке многообразия 𝑥 ∈ M задан произвольный ба-
зис касательного пространства 𝑒𝑎(𝑥) (репер) и дуальный к нему базис 1-форм 𝑒𝑎(𝑥)
(корепер), 𝑎 = 1, . . . , 𝑛. Дуальность означает, что значение 1-форм 𝑒𝑎 на векторных
полях 𝑒𝑏 равно символу Кронекера: 𝑒𝑎(𝑒𝑏) = 𝛿𝑎𝑏 .

Замечание. Как уже отмечалось, репер может существовать глобально не для всех
многообразий. Например, его не существует на неориентируемых многообразиях. В
таких случаях все, сказанное ниже, имеет локальный характер. Тем не менее полу-
ченные формулы важны для вычислений, которые, как правило, проводятся в какой
либо системе координат.

Репер и корепер можно разложить по координатному базису:

𝑒𝑎 = 𝑒𝛼𝑎𝜕𝛼, 𝑒𝑎 = 𝑑𝑥𝛼𝑒𝛼
𝑎,

где 𝑒𝛼𝑎 и 𝑒𝛼𝑎 – взаимно обратные невырожденные матрицы, что является следствием
дуальности базисов,

𝑒𝛼𝑎𝑒𝛼
𝑏 = 𝛿𝑏𝑎, 𝑒𝛼𝑎𝑒𝛽

𝑎 = 𝛿𝛼𝛽 .

По-предположению, матрицы 𝑒𝛼𝑎 и 𝑒𝛼
𝑎 невырождены и достаточно гладко зависят

от точки многообразия.
В общем случае репер представляет собой неголономный базис касательного про-

странства, т.е. не существует такой системы координат 𝑥𝑎 = 𝑥𝑎(𝑥), что

𝑒𝛼𝑎 = 𝜕𝑎𝑥
𝛼. (2.159)
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Репер определен с точностью до локальных GL(𝑛,R) преобразований, действующих
на латинские индексы. Его важнейшей характеристикой являются компоненты него-
лономности 𝑐𝑎𝑏𝑐, которые определяются коммутатором базисных векторных полей:

[𝑒𝑎, 𝑒𝑏] := 𝑐𝑎𝑏
𝑐𝑒𝑐 (2.160)

и антисимметричны по нижним индексам,

𝑐𝑎𝑏
𝑐(𝑥) = −𝑐𝑏𝑎𝑐(𝑥).

Из тождеств Якоби для алгебры Ли векторных полей,[︀
𝑒𝑎[𝑒𝑏, 𝑒𝑐]

]︀
+
[︀
𝑒𝑏[𝑒𝑐, 𝑒𝑎]

]︀
+
[︀
𝑒𝑐[𝑒𝑎, 𝑒𝑏]

]︀
= 0,

следуют тождества для компонент неголономности:

𝜕𝑎𝑐𝑏𝑐
𝑑 + 𝜕𝑏𝑐𝑐𝑎

𝑑 + 𝜕𝑐𝑐𝑎𝑏
𝑑 + 𝑐𝑎𝑏

𝑒𝑐𝑐𝑒
𝑑 + 𝑐𝑏𝑐

𝑒𝑐𝑎𝑒
𝑑 + 𝑐𝑐𝑎

𝑒𝑐𝑏𝑒
𝑑 = 0, (2.161)

где 𝜕𝑎 := 𝑒𝑎 = 𝑒𝛼𝑎𝜕𝛼.
Нетрудно проверить, что равенство нулю компонент неголономности является

необходимым и достаточным условием локальной разрешимости системы уравнений
(2.159). Это означает, что, если компоненты неголономности равны нулю в некоторой
области, то для любой точки из этой области существует окрестность, в которой
можно выбрать такую систему координат, что базис станет голономным 𝑒𝑎 = 𝜕𝑎.

Из определения (2.160) следует явное выражение для компонент неголономности
через компоненты репера и их производные

𝑐𝑎𝑏
𝑐 =

(︀
𝑒𝛼𝑎𝜕𝛼𝑒

𝛽
𝑏 − 𝑒𝛼𝑏𝜕𝛼𝑒

𝛽
𝑎

)︀
𝑒𝛽

𝑐. (2.162)

Умножив это соотношение на обратные матрицы 𝑒𝛼
𝑎, получим эквивалентную фор-

мулу
𝑐𝛼𝛽

𝑐 := 𝑒𝛼
𝑎𝑒𝛽

𝑏𝑐𝑎𝑏
𝑐 = −𝜕𝛼𝑒𝛽𝑐 + 𝜕𝛽𝑒𝛼

𝑐, (2.163)

которую можно переписать в виде

𝑑𝑒𝑐 = −1

2
𝑒𝑎 ∧ 𝑒𝑏 𝑐𝑏𝑎𝑐, (2.164)

где использовано определение внешнего умножения и дифференцирования форм (см.
раздел ??).

Многие формулы содержат след компонент неголономности, который определя-
ется следующим образом:

𝑐𝑎 := 𝑐𝑏𝑎
𝑏 = 𝜕𝛼𝑒

𝛼
𝑎 +

𝜕𝑎
√

|𝑔|
√

|𝑔|
. (2.165)

Компоненты неголономности ковариантны относительно преобразования коор-
динат 𝑥𝛼→𝑥𝛼

′
(𝑥), но не являются компонентами какого либо тензора относительно

локальных GL(𝑛,R) преобразований.
Использование неголономного базиса вместо координатного бывает значительно

удобнее и часто используется в приложениях. Поэтому получим основные формулы
дифференциальной геометрии в неголономном базисе.
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Произвольное векторное поле можно разложить как по координатному, так и по
некоординатному (неголономному) базису

𝑋 = 𝑋𝛼𝜕𝛼 = 𝑋𝑎𝑒𝑎,

где 𝑋𝛼 = 𝑒𝛼𝑎𝑋
𝑎 и 𝑋𝑎 = 𝑋𝛼𝑒𝛼

𝑎. Предположим, что переход от греческих индексов
к латинским и наоборот у компонент тензорных полей произвольного ранга всегда
осуществляется с помощью компонент репера и корепера. При этом все симметрии
относительно перестановок индексов, конечно, сохраняются.

Если на M задана метрика 𝑔𝛼𝛽, то ее компоненты в неголономном базисе имеют
вид

𝑔𝑎𝑏 = 𝑒𝛼𝑎𝑒
𝛽
𝑏𝑔𝛼𝛽. (2.166)

В общем случае компоненты метрики 𝑔𝑎𝑏(𝑥) зависят от точки многообразия. Метрика
𝑔𝑎𝑏 всегда имеет ту же сигнатуру, что и метрика 𝑔𝛼𝛽, т.к. матрица 𝑒𝛼𝑎 невырождена.
Подъем и опускание греческих и латинских индексов осуществляется с помощью
метрик 𝑔𝛼𝛽 и 𝑔𝑎𝑏, соответственно.

Как правило, репер используют в тех случаях, когда матрица 𝑔𝑎𝑏 является диа-
гональной и постоянной, а на диагонали расположены плюс и минус единицы:

𝑔𝑎𝑏 = 𝜂𝑎𝑏 := diag (+ · · ·+⏟  ⏞  
𝑝

− · · ·−⏟  ⏞  
𝑞

), 𝑝+ 𝑞 = 𝑛.

Локально такой репер существует, поскольку уравнение (2.166) при одинаковых сиг-
натурах метрик 𝑔𝑎𝑏 и 𝑔𝛼𝛽 всегда разрешимо относительно репера. Такой репер на-
зывается ортонормальным и определен с точностью до O(𝑝, 𝑞) вращений. Ортонор-
мальный базис часто бывает более удобным, т.к. метрика в этом базисе постоянна.

Для римановой метрики множество реперов делится на два класса: с положи-
тельным и отрицательным определителем. Для многообразий с метрикой лоренцевой
сигнатуры множество реперов можно разбить на четыре класса, по числу несвязных
компонент группы Лоренца (см. раздел ??).

Компоненты тензоров второго и более высокого рангов могут содержать одновре-
менно и греческие, и латинские индексы. По построению, ковариантная производная
от компонент такого тензора содержит по одному слагаемому с аффинной связно-
стью для каждого греческого индекса и одному слагаемому с линейной связностью
для каждого латинского индекса. Если репер задан, то из определения (локальной
формы) линейной связности (??) следует взаимно однозначная связь между линей-
ной и аффинной связностью:

𝜔𝛼𝑎
𝑏 = Γ𝛼𝛽

𝛾𝑒𝛽𝑎𝑒𝛾
𝑏 − 𝜕𝛼𝑒𝛽

𝑏𝑒𝛽𝑎. (2.167)

Эту формулу можно переписать в виде равенства нулю ковариантной производной
от компонент корепера:

∇𝛼𝑒𝛽
𝑎 = 𝜕𝛼𝑒𝛽

𝑎 − Γ𝛼𝛽
𝛾𝑒𝛾

𝑎 + 𝑒𝛽
𝑏𝜔𝛼𝑏

𝑎 = 0. (2.168)

Отсюда следует, что ковариантная производная от компонент репера также обраща-
ется в нуль

∇𝛼𝑒
𝛽
𝑎 = 𝜕𝛼𝑒

𝛽
𝑎 + Γ𝛼𝛾

𝛽𝑒𝛾𝑎 − 𝜔𝛼𝑎
𝑏𝑒𝛽𝑏 = 0.

Тогда, используя правило Лейбница, можно свободно переходить от греческих ин-
дексов к латинским и наоборот под знаком ковариантного дифференцирования:

∇𝛼𝑋
𝑎 = ∇𝛼(𝑋𝛽𝑒𝛽

𝑎) = (∇𝛼𝑋
𝛽)𝑒𝛽

𝑎,

∇𝛼𝑋𝑎 = ∇𝛼(𝑋𝛽𝑒
𝛽
𝑎) = (∇𝛼𝑋𝛽)𝑒𝛽𝑎,
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где

∇𝛼𝑋
𝑎 = 𝜕𝛼𝑋

𝑎 + 𝜔𝛼𝑏
𝑎𝑋𝑏,

∇𝛼𝑋𝑎 = 𝜕𝛼𝑋𝑎 − 𝜔𝛼𝑎
𝑏𝑋𝑏

(2.169)

– ковариантные производные от компонент векторного поля относительно неголо-
номного базиса.

Если аффинная связность не является метрической, то операция подъема и опус-
кания индексов с помощью метрик 𝑔𝛼𝛽 и 𝑔𝑎𝑏 не коммутирует с ковариантной произ-
водной.

Замечание. Формулу (2.167) можно рассматривать, как калибровочное преобразо-
вание (вращение) Γ ↦→ 𝜔 в касательном пространстве, которое совпадает с преобра-
зованием калибровочных полей Янга–Миллса (??). При этом репер 𝑒𝛼

𝑎 ∈ GL(𝑛,R)
играет роль матрицы преобразования (локального вращения), а координаты много-
образия не затрагиваются.

Формулы для кривизны (??) и кручения (??) содержат два греческих индек-
са. Эти индексы также можно преобразовать в неголономные. Простые вычисления
приводят к следующим компонентам тензора кривизны и кручения в неголономном
базисе:

𝑅𝑎𝑏𝑐
𝑑 = 𝜕𝑎𝜔𝑏𝑐

𝑑 − 𝜕𝑏𝜔𝑎𝑐
𝑑 − 𝜔𝑎𝑐

𝑒𝜔𝑏𝑒
𝑑 + 𝜔𝑏𝑐

𝑒𝜔𝑎𝑒
𝑑 − 𝑐𝑎𝑏

𝑒𝜔𝑒𝑐
𝑑, (2.170)

𝑇𝑎𝑏
𝑐 = 𝜔𝑎𝑏

𝑐 − 𝜔𝑏𝑎
𝑐 − 𝑐𝑎𝑏

𝑐, (2.171)

где 𝜔𝑎𝑏
𝑐 := 𝑒𝛼𝑎𝜔𝛼𝑏

𝑐 и 𝜕𝑎 := 𝑒𝛼𝑎𝜕𝛼. Эти формулы также часто используются в приложе-
ниях, особенно тогда, когда компоненты линейной связности 𝜔𝑎𝑏𝑐 являются постоян-
ными относительно некоторого неголономного базиса. В разделе ?? мы используем
их для вычисления тензора кручения и кривизны групп Ли.

В координатном базисе преобразование координат сопровождается преобразова-
ние компонент тензорных полей. Введение репера позволяет отделить преобразова-
ние координат от преобразований в касательном пространстве. Это достигается пу-
тем введения 𝑛2 новых полей 𝑒𝛼

𝑎(𝑥). В результате появляется дополнительная воз-
можность совершать локальные GL(𝑛,R) преобразования, зависящие также от 𝑛2

функций, в касательном пространстве, не затрагивая координат многообразия. Оче-
видно, что всегда можно совершить такое преобразование, что в некоторой области
репер совпадет с координатным базисом 𝑒𝛼

𝑎 = 𝛿𝑎𝛼. В этом случае линейная связность
совпадет с аффинной 𝜔𝛼𝑎

𝑏 = Γ𝛼𝑎
𝑏, а выражения для кривизны (2.170) и кручения

(2.171) перейдут в уже знакомые формулы аффинной геометрии, т.к. компоненты
неголономности обратятся в нуль: 𝑐𝑎𝑏𝑐 = 0.

Если на многообразии задана метрика 𝑔𝑎𝑏 общего вида, для которой

∇𝑎𝑔𝑏𝑐 = −𝑄𝑎𝑏𝑐,

где 𝑄𝑎𝑏𝑐 – тензор неметричности, то из уравнения (??) и определения (2.167) следует
выражение для линейной связности со всеми неголономными индексами:

𝜔𝑎𝑏𝑐 =
1

2
(𝜕𝑎𝑔𝑏𝑐 + 𝜕𝑏𝑔𝑐𝑎 − 𝜕𝑐𝑔𝑎𝑏) +

1

2
(𝑐𝑎𝑏𝑐 − 𝑐𝑏𝑐𝑎 + 𝑐𝑐𝑎𝑏)+

+
1

2
(𝑇𝑎𝑏𝑐 − 𝑇𝑏𝑐𝑎 + 𝑇𝑐𝑎𝑏) +

1

2
(𝑄𝑎𝑏𝑐 +𝑄𝑏𝑐𝑎 −𝑄𝑐𝑎𝑏), (2.172)
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где 𝜔𝑎𝑏𝑐 := 𝜔𝑎𝑏
𝑑𝑔𝑑𝑐 и 𝑐𝑎𝑏𝑐 := 𝑐𝑎𝑏

𝑑𝑔𝑑𝑐. В этом случае линейную связность можно выразить
через метрику, репер, кручение и неметричность.

Условие метричности связности в неголономном базисе принимает вид

∇𝑎𝑔𝑏𝑐 = 𝜕𝑎𝑔𝑏𝑐 − 𝜔𝑎𝑏𝑐 − 𝜔𝑎𝑐𝑏 = 0, (2.173)

что эквивалентно равенству 𝑄𝑎𝑏𝑐 = 0.
Предположим, что на M задана метрика и метрическая связность. Тогда выраже-

ние для тензора кривизны (2.170) со всеми опущенными индексами в неголономном
базисе равно

𝑅𝑎𝑏𝑐𝑑 = 𝜕𝑎𝜔𝑏𝑐𝑑 − 𝜕𝑏𝜔𝑎𝑐𝑑 − 𝜔𝑏𝑐
𝑒𝜔𝑎𝑑𝑒 + 𝜔𝑎𝑐

𝑒𝜔𝑏𝑑𝑒 − 𝑐𝑎𝑏
𝑒𝜔𝑒𝑐𝑑, (2.174)

где использовано равенство (2.173).
В геометрии Римана–Картана всегда можно выбрать ортонормальный репер, для

которого 𝑔𝑎𝑏 = 𝛿𝑎𝑏 или 𝜂𝑎𝑏, если сигнатура метрики отличается от евклидовой. Такие
реперы определены с точностью до локальных SO(𝑛) вращений (или SO(𝑝, 𝑞) враще-
ний, 𝑝+𝑞 = 𝑛, для неевклидовой сигнатуры). Тогда GL(𝑛,R) связность редуцируется
к SO(𝑛) связности (или SO(𝑝, 𝑞) связности). В этом случае из условия метричности
(2.173) вытекает, что компоненты линейной связности антисимметричны по послед-
ней паре индексов, 𝜔𝑎𝑏𝑐 = −𝜔𝑎𝑐𝑏, поскольку 𝜕𝑎𝑔𝑏𝑐 = 0. Кроме этого, тензор кривизны
со всеми ковариантными индексами (2.174) антисимметричен как по первой, так и
по второй паре индексов.

В (псевдо-)римановой геометрии кручение и неметричность равны нулю. Тогда
из формулы (2.172) для ортонормального репера следует выражение для соответ-
ствующей SO(𝑛)- или SO(𝑝, 𝑞) связности через компоненты неголономности:

̃︀𝜔𝑎𝑏𝑐 =
1

2
(𝑐𝑎𝑏𝑐 − 𝑐𝑏𝑐𝑎 + 𝑐𝑐𝑎𝑏). (2.175)

Если (псевдо-) риманово многообразие допускает векторное поле Киллинга 𝐾 =
𝐾𝑎𝑒𝑎, то уравнение Киллинга (1.4) в неголономном базисе принимает вид

̃︀∇𝑎𝐾𝑏 + ̃︀∇𝑏𝐾𝑎 = 0, (2.176)

где

̃︀∇𝑎𝐾𝑏 = 𝑒𝛼𝑎𝜕𝛼𝐾𝑏 − ̃︀𝜔𝑎𝑏
𝑐𝐾𝑐, 𝐾𝑏 := 𝐾𝑎𝑔𝑎𝑏. (2.177)

Как и ранее знак тильды означает, что связность построена по метрике при нуле-
вом кручении и неметричности. Эта формула следует из того, что переход между
индексами можно проводить под знаком ковариантного дифференцирования.

2.6.1 Уравнения движения для однородной вселенной

В настоящем разделе мы покажем, что для однородных моделей вселенных, у кото-
рых все пространственные сечения 𝑥0 := 𝑡 = const являются главными однородными
пространствами, уравнения Эйнштейна сводятся к системе обыкновенных дифферен-
циальных уравнений. Это является существенным упрощением задачи нахождения
точных решений, хотя построить их в явном виде удается далеко не всегда.
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Определение. Вселенная M называется однородной, если она имеет вид топологи-
ческого произведения вещественной прямой R ∋ 𝑡 на однородное трехмерное про-
странство H ∋ 𝑥, т.е. M = R × H. При этом мы предполагаем, что метрика на M
инвариантна относительно группы транзитивных преобразований, действующих на
H и продолженных на все M.

Пусть H – трехмерное однородное пространство с координатами 𝑥𝜇, 𝜇 = 1, 2, 3.
Пусть 𝐾 = 𝐾𝜇𝜕𝜇 – один из векторов Киллинга, действующих на H. Выберем есте-
ственные координаты на R×H в виде {𝑥𝛼} = {𝑡, 𝑥𝜇}, 𝛼 = 0, 1, 2, 3. Теперь продолжим
действие транзитивной группы преобразований с H на все M:

𝑡 ↦→ 𝑡′ := 𝑡, 𝑥 ↦→ 𝑥′𝜇 := 𝑥𝜇 + 𝜖𝐾𝜇(𝑡, 𝑥), 𝜖≪ 1.

Тогда из определения и теоремы 1.5.1 следует, что существует такая система коор-
динат на M, что метрика пространства-времени имеет блочно диагональный вид

𝑑𝑠2 = 𝑑𝑡2 +
∘
𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 , (2.178)

где ∘
𝑔𝜇𝜈(𝑡, 𝑥) – инвариантная метрика на однородном пространстве H, зависящая от

времени 𝑡 как от параметра. При этом векторные поля Киллинга не зависят от вре-
мени, 𝐾𝜇 = 𝐾𝜇(𝑥).

Отметим отличие метрики (2.178) от метрики однородной и изотропной вселен-
ной (2.64). Раньше мы требовали, чтобы зависимость от времени метрики на S входи-
ла только через масштабный множитель. Теперь мы рассматриваем более широкий
класс метрик.

Однородное пространство – это транзитивная группа преобразований (H,G). Для
определенности, мы считаем, что группа преобразований действует справа. В моде-
лях вселенной Фридмана пространственные сечения являются пространствами по-
стоянной кривизны. Группа симметрии действует на них транзитивно, и поэтому они
являются однородными пространствами. Для того, чтобы описать однородные все-
ленные, необходимо описать инвариантные метрики на однородных пространствах.
Эта задача довольно сложна, и мы рассмотрим более простой случай, когда про-
странственные сечения являются главными однородными пространствами.

В частном случае, когда пространство H является главным однородным простран-
ством, его можно отождествить с трехмерным многообразием группы Ли, H = G.
При этом инвариантные структуры на G строятся следующим образом. Мы фиксиру-
ем произвольную точку 𝑥0 ∈ G, задаем в этой точке компоненты некоторого тензора
и разносим его по всему групповому многообразию с помощью группового действия
справа. В результате, по построению, получим инвариантный тензор, заданный на
группе Ли G. Здесь важно, что однородное пространство является главным, т.к. в
этом случае решение уравнения 𝑥 = 𝑥0𝑎, где 𝑥, 𝑥0 ∈ G – две произвольные точки,
для 𝑎 ∈ G единственно. Если же однородное пространство не является главным, то
в общем случае разнесение тензорных компонент, заданных в точке 𝑥0, не является
единственным и поэтому не определено.

В предыдущем разделе мы построили все трехмерные алгебры Ли. Если соот-
ветствующая группа Ли является полупростой, то на групповом многообразии суще-
ствует естественная двусторонне инвариантная метрика – форма Киллинга–Картана.
Из классификации Бианки следует, что таких групп всего две: типы VIII и IX. При
этом форма Киллинга–Картана для типа VIII не является знакоопределенной и ее
нельзя использовать в качестве инвариантной метрики на пространственных сече-
ниях в космологических моделях. Поэтому в качестве инвариантной метрики мы
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используем не двусторонне инвариантную метрику, а метрику, инвариантную отно-
сительно действия группы справа.

Пусть 𝑅𝑖(𝑥), 𝑖 = 1, 2, 3 – произвольный правоинвариантный базис на группе Ли
G, который получается фиксированием некоторого базиса в касательном простран-
стве к единице группы 𝑅𝑖(𝑥0) с последующим разнесением по всей группе с помощью
группового действия справа. Алгебра Ли g группы Ли G – это алгебра Ли левоин-
вариантных векторных полей на G. Базис алгебры Ли 𝐿𝑖(𝑥) строится так же, как
и базис правоинвариантных векторных полей, но с помощью группового действия
слева. При этом в единице группы, по предположению, векторные поля совпадают,
𝑅𝑖(𝑥0) = 𝐿𝑖(𝑥0). В главе ?? было доказано, что базисы удовлетворяют следующим
коммутационным соотношениям

[𝐿𝑖, 𝐿𝑗] = 𝑓𝑖𝑗
𝑘𝐿𝑘, [𝑅𝑖, 𝑅𝑗] = −𝑓𝑖𝑗𝑘𝑅𝑘, (2.179)

где 𝑓𝑖𝑗𝑘 – структурные константы группы Ли G. Базис алгебры Ли генерирует дей-
ствие группы Ли справа. В частности, это действие сохраняет правоинвариантные
векторные поля. Формально это записывается в виде равенства нулю производной
Ли:

L𝐿𝑖
𝑅𝑗 = [𝐿𝑖, 𝑅𝑗] = 0. (2.180)

Построение право- и левоинвариантных векторных полей на группе Ли подробно
описано в главе ??.

Если на группе Ли в какой то окрестности задана система координат 𝑥𝜇, 𝜇 =
1, 2, 3, то базисы право- и левоинвариантных векторных полей можно разложить по
координатному базису:

𝑅𝑖 = 𝑒𝜇𝑖𝜕𝜇, 𝐿𝑖 = 𝑙𝜇𝑖𝜕𝜇, (2.181)

𝑒𝜇𝑖(𝑥) и 𝑙𝜇𝑖(𝑥) – компоненты соответствующих реперов. В трехмерном случае реперы
называют также триадами. Инвариантный базис кокасательных пространств 𝑅𝑖 и
𝐿𝑖 (базис 1-форм) определяется следующими равенствами:

𝑅𝑖(𝑅𝑗) = 𝛿𝑖𝑗, 𝐿𝑖(𝐿𝑗) = 𝛿𝑖𝑗. (2.182)

В координатном базисе он имеет следующий вид

𝑅𝑖 = 𝑑𝑥𝜇𝑒𝜇
𝑖, 𝐿𝑖 = 𝑑𝑥𝜇𝑙𝜇

𝑖, (2.183)

где 𝑒𝜇𝑖 и 𝑙𝜇𝑖 – компоненты обратных реперов. Эти базисы удовлетворяют уравнениям
Маурера–Картана (??):

𝑑𝑅𝑖 =
1

2
𝑅𝑗 ∧𝑅𝑘𝑓𝑗𝑘

𝑖, 𝑑𝐿𝑖 = −1

2
𝐿𝑗 ∧ 𝐿𝑘𝑓𝑗𝑘

𝑖, (2.184)

где 𝑑 и ∧ обозначают внешнюю производную и внешнее произведение форм (см.
главу ??).

Пример 2.6.1. Если группа коммутативна, т.е. 𝑓𝑖𝑗𝑘 = 0, то можно выбрать 𝑅𝑖 =
𝐿𝑖 = 𝜕𝑖, где 𝑥𝑖 некоторая система координат на G.

Для нахождения явного вида реперов 𝑒𝜇𝑖(𝑥) и 𝑙𝜇𝑖(𝑥) необходимо знание функ-
ции композиции для группы G. К сожалению, она известна только в простейших
случаях. Однако для проведения вычислений этого, как правило, и не нужно. Все
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вычисления можно провести непосредственно в базисе 𝑅𝑖. Этот базис в общем слу-
чае неголономен, поскольку коммутатор базисных векторных полей отличен от нуля
(2.179). При этом коэффициенты неголономности равны структурным константам,
взятым с обратным знаком. Все формулы, необходимые для вычислений, приведены
в разделе 2.6.

Ясно, что правоинвариантный базис касательных пространств на всем многооб-
разии M состоит из вектором {𝜕0 := 𝜕𝑡, 𝑅𝑖}, а форм – из 1-форм {𝑑𝑡, 𝑅𝑖}. Пусть на
M задано произвольное тензорное поле, например, 𝑇 = 𝑑𝑥𝛼𝑇𝛼

𝛽𝜕𝛽. Тогда его можно
разложить по правоинвариниантному базису:

𝑇 = 𝑑𝑡 𝑇0
0𝜕0 + 𝑑𝑡 𝑇0

𝑖𝑅𝑖 +𝑅𝑖 𝑇𝑖
0𝜕0 +𝑅𝑖 𝑇𝑖

𝑗𝑅𝑗.

Под действием группы G базисные векторные поля не меняются по построению.
Поэтому для того, чтобы тензорное поле было правоинвариантным, необходимо и
достаточно, чтобы его компоненты в правоинвариантном базисе зависели только от
времени 𝑡 = 𝑥0. Формально условие правой инвариантности тензорного поля запи-
сывается в виде равенства нулю производной Ли

L𝐿𝑖
𝑇 = 0.

При преобразовании координат на G меняются компоненты триад 𝑒𝜇𝑖 и 𝑙𝜇𝑖 по
обычному тензорному закону (индекс 𝜇), но не сами векторные поля 𝑅𝑖 и 𝐿𝑖. При
этом компоненты тензорного поля относительно правоинвариантного базиса ведут
себя как скаляры и, следовательно, не зависят от 𝑥.

Например, наиболее общая правоинвариантная метрика на M имеет вид

𝑑𝑠2 = 𝑑𝑡2 + ℎ𝑖𝑗𝑅
𝑖𝑅𝑗, (2.185)

где ℎ𝑖𝑗(𝑡) – произвольная невырожденная симметричная отрицательно определенная
матрица, зависящая только от времени.

Приступим к вычислению геометрических характеристик многообразия M с мет-
рикой (2.185), использую формулы раздела 2.6. Несложные вычисления показывают,
что только четыре компоненты линейной связности отличны от нуля

𝜔0𝑖𝑗 = 𝜔𝑖0𝑗 =
1

2
ℎ̇𝑖𝑗,

𝜔𝑖𝑗0 = −1

2
ℎ̇𝑖𝑗,

𝜔𝑖𝑗𝑘 = −1

2
(𝑓𝑖𝑗𝑘 − 𝑓𝑗𝑘𝑖 + 𝑓𝑘𝑖𝑗),

(2.186)

где 𝑓𝑖𝑗𝑘 := 𝑓𝑖𝑗
𝑙ℎ𝑘𝑙. Теперь можно вычислить компоненты тензора кривизны по фор-

муле (2.174):

𝑅0𝑖0𝑗 =
1

2
ℎ̈𝑖𝑗 −

1

4
ℎ̇𝑖𝑘ℎ̇𝑗𝑙ℎ

𝑘𝑙,

𝑅0𝑖𝑗𝑘 = −1

4
(𝑓𝑖𝑘

𝑙 − 𝑓𝑘
𝑙
𝑖 + 𝑓 𝑙

𝑖𝑘)ℎ̇𝑗𝑙 +
1

4
(𝑓𝑖𝑗

𝑙 − 𝑓𝑗
𝑙
𝑖 + 𝑓 𝑙

𝑖𝑗)ℎ̇𝑘𝑙,

𝑅𝑖𝑗𝑘𝑙 =
1

4
(ℎ̇𝑖𝑘ℎ̇𝑗𝑙 − ℎ̇𝑖𝑙ℎ̇𝑗𝑘) + 𝑅̂𝑖𝑗𝑘𝑙,

(2.187)

где тензор кривизны группы Ли имеет вид

𝑅̂𝑖𝑗𝑘𝑙 =
1

2
𝑓𝑖𝑗

𝑚𝑓𝑘𝑙𝑚 +
1

4

[︀
𝑓𝑖𝑘

𝑚𝑓𝑗𝑙𝑚 − 𝑓𝑗𝑘
𝑚𝑓𝑖𝑙𝑚 + 𝑓𝑖𝑗

𝑚(𝑓𝑘𝑚𝑙 − 𝑓𝑙𝑚𝑘) + 𝑓𝑘𝑙
𝑚(𝑓𝑖𝑚𝑗 − 𝑓𝑗𝑚𝑖)+

+ (𝑓𝑚
𝑖𝑘 + 𝑓𝑚

𝑘𝑖)(𝑓𝑚𝑗𝑙 + 𝑓𝑚𝑙𝑗) − (𝑓𝑚
𝑗𝑘 + 𝑓𝑚

𝑘𝑗)(𝑓𝑚𝑖𝑙 + 𝑓𝑚𝑙𝑖)
]︀
. (2.188)
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Следующий шаг состоит в вычислении компонент тензора Риччи:

𝑅00 =
1

2
ℎ̈𝑖𝑗ℎ

𝑖𝑗 − 1

4
ℎ̇𝑖𝑘ℎ̇𝑗𝑙ℎ

𝑖𝑗ℎ𝑘𝑙,

𝑅0𝑖 =
1

2
𝑓𝑘

𝑙𝑘ℎ̇𝑖𝑙 −
1

2
𝑓𝑖

𝑘𝑙ℎ̇𝑘𝑙,

𝑅𝑖𝑗 =
1

2
ℎ̈𝑖𝑗 −

1

2
ℎ̇𝑖𝑘ℎ̇𝑗𝑙ℎ

𝑘𝑙 +
1

4
ℎ̇𝑖𝑗ℎ̇𝑘𝑙ℎ

𝑘𝑙 + 𝑅̂𝑖𝑗,

(2.189)

где
𝑅̂𝑖𝑗 =

1

2
𝑓𝑖

𝑘𝑙(𝑓𝑗𝑘𝑙 + 𝑓𝑗𝑙𝑘) +
1

2
(𝑓𝑘

𝑖𝑗 + 𝑓𝑘
𝑗𝑖)𝑓𝑘𝑙

𝑙 − 1

4
𝑓𝑘𝑙

𝑖𝑓𝑘𝑙𝑗. (2.190)

Скалярная кривизна принимает вид

𝑅 = ℎ̈𝑖𝑗ℎ
𝑖𝑗 − 3

4
ℎ̇𝑖𝑘ℎ̇𝑗𝑙ℎ

𝑖𝑗ℎ𝑘𝑙 +
1

4
(ℎ̇𝑖𝑗ℎ

𝑖𝑗)2 + 𝑅̂, (2.191)

где
𝑅̂ =

1

4
𝑓 𝑖𝑗𝑘𝑓𝑖𝑗𝑘 −

1

2
𝑓 𝑖𝑗𝑘𝑓𝑘𝑖𝑗 + 𝑓 𝑖𝑘

𝑘𝑓𝑖𝑘
𝑘. (2.192)

Для интегрирования уравнений движения удобно ввести тензор внешней кривиз-
ны гиперповерхности 𝑡 = const, который определен формулой (??). В рассматри-
ваемом случае блочно диагональной метрики (2.185) – это обычная производная по
времени от трехмерной метрики:

𝐾𝑖𝑗 := −1

2
ℎ̇𝑖𝑗, 𝐾 := 𝐾𝑖𝑗ℎ

𝑖𝑗 = − 1√︀
|ℎ|

𝑑

𝑑𝑡

√︀
|ℎ|. (2.193)

Учитывая формулу

𝐾̇ =
𝑑

𝑑𝑡

(︀
𝐾𝑖𝑗ℎ

𝑖𝑗
)︀

= −1

2

𝑑

𝑑𝑡

(︀
ℎ̇𝑖𝑗ℎ

𝑖𝑗
)︀

= −1

2
ℎ̈𝑖𝑗ℎ

𝑖𝑗 − 1

2
ℎ̇𝑖𝑗ℎ̇

𝑖𝑗 = −1

2
ℎ̈𝑖𝑗ℎ

𝑖𝑗 + 2𝐾𝑖𝑗𝐾
𝑖𝑗,

выражение для нулевой компоненты тензора Риччи (2.189) принимает вид

𝑅00 = −𝐾̇ +𝐾𝑖𝑗𝐾
𝑖𝑗. (2.194)

Смешанные компоненты тензора Риччи также выражаются через внешнюю кривизну

𝑅0𝑖 = −𝑓𝑘𝑙𝑘𝐾𝑖𝑙 + 𝑓𝑖
𝑘𝑙𝐾𝑘𝑙. (2.195)

Чтобы упростить выражение для пространственных компонент тензора Риччи, за-
метим, что справедливы формулы:

𝐾̇𝑖𝑘ℎ
𝑘𝑗 =

𝑑

𝑑𝑡
(𝐾𝑖𝑘ℎ

𝑘𝑗) −𝐾𝑖𝑘ℎ̇
𝑘𝑗 = 𝐾̇𝑖

𝑗 − 2𝐾𝑖𝑘𝐾
𝑗𝑘,

1√︀
|ℎ|

𝑑

𝑑𝑡

(︀√︀
|ℎ|𝐾𝑖

𝑗
)︀

= 𝐾̇𝑖
𝑗 +

𝐾𝑖
𝑗√︀
|ℎ|

𝑑

𝑑𝑡

√︀
|ℎ| = 𝐾̇𝑖

𝑗 −𝐾𝑖
𝑗𝐾,

(2.196)

где ℎ := detℎ𝑖𝑗. Тогда пространственные компоненты тензора Риччи с одним кова-
риантным и одним контравариантным индексом примут вид

𝑅𝑖
𝑗 = − 1√︀

|ℎ|
𝑑

𝑑𝑡

(︀√︀
|ℎ|𝐾𝑖

𝑗
)︀

+ 𝑅̂𝑖
𝑗. (2.197)
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Теперь потребуем инвариантности тензора энергии-импульса материи относитель-
но группы G. Вектор скорости будет инвариантен тогда и только тогда, когда его
компоненты относительно правоинвариантного базиса будут зависеть только от вре-
мени:

𝑢 = 𝑢𝛼𝜕𝛼 = 𝑢0(𝑡)𝜕0 + 𝑢𝑖(𝑡)𝑅𝑖.

Из условия
𝑢2 =

(︀
𝑢0
)︀2

+ 𝑢𝑖𝑢𝑗ℎ𝑖𝑗 = 1

находим временну́ю компоненту скорости

𝑢0 =
√︀

1 − 𝑢𝑖𝑢𝑗ℎ𝑖𝑗,

где мы выбрали положительный корень, т.к. материя движется вперед по времени.
Таким образом, инвариантный тензор энергии-импульса в правоинвариантном базисе
имеет вид

𝑇 𝑎𝑏 = (ℰ + 𝒫)𝑢𝑎𝑢𝑏 − 𝒫𝑔𝑎𝑏, (2.198)

где {𝑎} = {0, 𝑖}, 𝑎 = 0, 1, 2, 3 и

{𝑢𝑎} = {
√︀

1 − 𝑢𝑘𝑢𝑘, 𝑢
𝑖},

и метрика имеет вид блочно диагональный вид (2.185). В правоинвариантном базисе
тензор энергии импульса зависит только от времени 𝑡.

Запишем уравнения Эйнштейна в правоинвариантном базисе с одним контра- и
одним ковариантным индексом

Φ𝑎
𝑏 := 𝑅𝑎

𝑏 − 𝛿𝑏𝑎Λ +
1

2

[︂
(ℰ + 𝒫)𝑢𝑎𝑢

𝑏 − 1

2
(ℰ − 𝒫)𝛿𝑏𝑎

]︂
= 0. (2.199)

С учетом явного вида компонент тензора Риччи (2.194), (2.195) и (2.197) получаем
систему уравнений:

−𝐾̇ +𝐾𝑖𝑗𝐾
𝑖𝑗 = Λ − 1

2

[︂
(ℰ + 𝒫)(1 − 𝑢𝑖𝑢𝑖) −

1

2
(ℰ − 𝒫)

]︂
,

−𝑓𝑘𝑙𝑘𝐾𝑖𝑙 + 𝑓𝑖
𝑘𝑙𝐾𝑘𝑙 = −1

2
(ℰ + 𝒫)𝑢0𝑢𝑖,

− 1√︀
|ℎ|

𝑑

𝑑𝑡

(︀√︀
|ℎ|𝐾𝑖

𝑗
)︀

+ 𝑅̂𝑖
𝑗 = 𝛿𝑗𝑖 Λ − 1

2

[︂
(ℰ + 𝒫)𝑢𝑖𝑢

𝑗 − 1

2
𝛿𝑗𝑖 (ℰ − 𝒫)

]︂
.

(2.200)

Таким образом, мы свели уравнения Эйнштейна для однородной вселенной к системе
обыкновенных дифференциальных уравнений.

Систему уравнений (2.200) необходимо дополнить уравнениями релятивистской
гидродинамики ∇𝛽𝑇𝛼

𝛽 = 0, которые являются условиями интегрируемости уравне-
ний Эйнштейна. Поскольку ковариантная производная от репера равна нулю (2.168),
то в неголономном базисе уравнения релятивистской гидродинамики примут вид

∇𝑏𝑇𝑎
𝑏 = 𝑒𝛽𝑏𝜕𝛽𝑇𝑎

𝑏 − 𝜔𝑏𝑎
𝑐𝑇𝑐

𝑏 + 𝜔𝑏𝑐
𝑏𝑇𝑎

𝑐 = 0. (2.201)

Компоненты линейной связности для однородной вселенной в правоинвариантном
базисе уже были посчитаны (2.186). След компонент линейной связности 𝜔𝑎 := 𝜔𝑏𝑎

𝑏

имеет вид
𝜔0 =

1

2
ℎ̇𝑖𝑗ℎ

𝑖𝑗, 𝜔𝑖 = −𝑓𝑗𝑖𝑗. (2.202)
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Положим в уравнениях (3.84) сначала 𝑎 = 0, а затем 𝑎 = 𝑖. Тогда после простых
вычислений получим уравнения релятивистской гидродинамики:

𝜕0
[︀
(ℰ + 𝒫)𝑢0𝑢

0 − 𝒫
]︀

+
1

2
(ℰ + 𝒫)ℎ̇𝑖𝑗(ℎ

𝑖𝑗𝑢0𝑢
0 − 𝑢𝑖𝑢𝑗) − (ℰ + 𝒫)𝑓𝑘𝑗

𝑘𝑢0𝑢
𝑗 = 0,

𝜕0
[︀
(ℰ + 𝒫)𝑢𝑖𝑢

0
]︀

+
1

2
(ℰ + 𝒫)ℎ̇𝑗𝑘ℎ

𝑗𝑘𝑢𝑖𝑢
0 − (ℰ + 𝒫)𝑓𝑖𝑗𝑘𝑢

𝑗𝑢𝑘 − (ℰ + 𝒫)𝑓𝑘𝑗
𝑘𝑢𝑖𝑢

𝑗 = 0.

(2.203)

Для трехмерного случая структурные константы 𝑓𝑖𝑗
𝑘 можно записать в канони-

ческом виде (2.145), который использовался при классификации Бианки трехмерных
алгебр Ли. В каноническом виде след структурных констант имеет вид

𝑓𝑘𝑗
𝑘 = 2𝑎𝑗.

Кроме этого, справедлива формула

𝑓𝑖𝑗𝑘𝑢
𝑗𝑢𝑘 = 𝜀𝑖𝑗𝑙𝑏

𝑙𝑘𝑢𝑘𝑢
𝑗 + 𝑎𝑗𝑢

𝑗𝑢𝑖 − 𝑎𝑖𝑢
𝑗𝑢𝑗.

Теперь уравнения релятивистской гидродинамики примут вид

𝜕0
[︀
(ℰ + 𝒫)𝑢0𝑢

0 − 𝒫
]︀

+
1

2
(ℰ + 𝒫)ℎ̇𝑖𝑗(ℎ

𝑖𝑗𝑢0𝑢
0 − 𝑢𝑖𝑢𝑗) − 2(ℰ + 𝒫)𝑢0𝑎𝑗𝑢

𝑗 = 0,

𝜕0
[︀
(ℰ + 𝒫)𝑢𝑖𝑢

0
]︀

+
1

2
(ℰ + 𝒫)ℎ̇𝑗𝑘ℎ

𝑗𝑘𝑢𝑖𝑢
0 − (ℰ + 𝒫)(𝜀𝑖𝑗𝑙𝑏

𝑙𝑘𝑢𝑘𝑢
𝑗 + 3𝑎𝑗𝑢

𝑗𝑢𝑖 − 𝑎𝑖𝑢
𝑗𝑢𝑗) = 0.

(2.204)

Конечно, для замыкания системы уравнений необходимо ее дополнить уравнением
состояния 𝒫 = 𝒫(ℰ).

Таким образом, мы получили 15 уравнений (2.200), (2.204) (плюс уравнение со-
стояния) на 11 неизвестных функций ℎ𝑖𝑗, ℰ , 𝒫 и 𝑢𝑖. Поскольку уравнения Эйнштейна
зависимы, 𝜕𝑏Φ𝑎

𝑏 = 0, то независимых уравнений движения также одиннадцать.
Система уравнений (2.200) интегрируется в явном виде далеко не всегда. Простей-

ший случай, когда общее решение можно записать явно, рассмотрен в следующем
разделе. п

2.6.2 Вселенная Казнера

Простейшая и интересная модель однородной, но не изотропной вселенной назы-
вается моделью Казнера [?]. Она относится к типу I по классификации Бианки и
представляет собой вакуумное решение уравнений Эйнштейна без космологической
постоянной.

Однородное пространство типа I – это абелева группа Ли трансляций трехмерного
евклидова пространства R3, которая как многообразие совпадает с R3. Пусть 𝑥𝜇,
𝜇 = 1, 2, 3 – декартовы координаты в евклидовом пространстве. Поскольку группа
абелева, то правоинвариантные векторные поля совпадают с левоинвариантными
векторными полями и координатным базисом: 𝑅𝜇 = 𝐿𝜇 = 𝜕𝜇. Поэтому наиболее
общая инвариантная метрика (2.178) принимает вид

𝑑𝑠2 = 𝑑𝑡2 + 𝑔𝜇𝜈(𝑡)𝑑𝑥𝜇𝑑𝑥𝜈 , (2.205)

где 𝑔𝜇𝜈(𝑡) – произвольная симметричная невырожденная отрицательно определен-
ная матрица, зависящая только от времени. Прямая подстановка этой метрики в
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вакуумные уравнения Эйнштейна приводит к трудоемким вычислениям. Поэтому
мы поступим иначе, тем более, что формулы, полученные ниже, еще пригодятся.

Для дальнейших целей рассмотрим более общий случай, когда метрика на про-
странственных сечениях зависит не только от времени, но и от пространственных
координат, 𝑔𝜇𝜈 = 𝑔𝜇𝜈(𝑡, 𝑥). В разделе ?? были получены выражения для тензора кри-
визны в АДМ параметризации метрики через тензор внешней кривизны 𝐾𝜇𝜈 = 𝐾𝜈𝜇

вложенной гиперповерхности H →˓ M. Поскольку в рассматриваемом случае метрика
блочно диагональна, то функции хода и сдвига имеют вид

𝑁 = 1, 𝑁𝜇 = 0,

что существенно упрощает формулы. Тогда тензор внешней кривизны (??) пропор-
ционален производной по времени 𝑡 от метрики, которую обозначим точкой:

𝐾𝜇𝜈 = −1

2
𝑔̇𝜇𝜈 . (2.206)

Из формул (??) следуют выражения для линейно независимых компонент тензора
кривизны:

𝑅0𝜇0𝜈 = −𝐾̇𝜇𝜈 −𝐾𝜇
𝜌𝐾𝜈𝜌,

𝑅𝜇𝜈𝜌0 = ∇̂𝜇𝐾𝜈𝜌 − ∇̂𝜈𝐾𝜇𝜌,

𝑅𝜇𝜈𝜌𝜎 = 𝑅̂𝜇𝜈𝜌𝜎 +𝐾𝜇𝜌𝐾𝜈𝜎 −𝐾𝜇𝜎𝐾𝜈𝜌,

(2.207)

где ∇̂𝜇 и 𝑅̂𝜇𝜈𝜌𝜎 – трехмерные ковариантная производная и тензор кривизны, по-
строенные по метрике 𝑔𝜇𝜈 . Соответствующий тензор Риччи (??) имеет следующие
линейно независимые компоненты:

𝑅00 = −𝑔𝜇𝜈𝐾̇𝜇𝜈 −𝐾𝜇𝜈𝐾𝜇𝜈 ,

𝑅0𝜇 = ∇̂𝜈𝐾
𝜈
𝜇 − 𝜕𝜇𝐾,

𝑅𝜇𝜈 = 𝑅̂𝜇𝜈 − 𝐾̇𝜇𝜈 +𝐾𝜇𝜈𝐾 − 2𝐾𝜇
𝜌𝐾𝜈𝜌,

(2.208)

где 𝑔𝜇𝜈 – матрица, обратная к 𝑔𝜇𝜈 , с помощью которой мы поднимаем пространствен-
ные индексы, и

𝐾 := 𝐾𝜇
𝜇 = −1

2
𝑔𝜇𝜈 𝑔̇𝜇𝜈 = −

˙̂𝑒

𝑒
= − 𝑑

𝑑𝑡
ln𝑒. (2.209)

– след тензора внешней кривизны. Выше 𝑒 :=
√︀

− det 𝑔𝜇𝜈 – форма пространственного
объема, и была использована формула (??).

Для скалярной кривизны (??) получаем выражение

𝑅 = 𝑅̂− 2𝑔𝜇𝜈𝐾̇𝜇𝜈 − 3𝐾𝜇𝜈𝐾𝜇𝜈 +𝐾2. (2.210)

Поскольку

𝑔𝜇𝜈𝐾̇𝜇𝜈 =
𝑑

𝑑𝑡
(𝑔𝜇𝜈𝐾𝜇𝜈) − 𝑑𝑔𝜇𝜈

𝑑𝑡
𝐾𝜇𝜈 = 𝐾̇ − 2𝐾𝜇𝜈𝐾𝜇𝜈 ,

то выражения для 𝑅00 и 𝑅 можно упростить:

𝑅00 = −𝐾̇ +𝐾𝜇𝜈𝐾𝜇𝜈 ,

𝑅 = 𝑅̂− 2𝐾̇ +𝐾𝜇𝜈𝐾𝜇𝜈 +𝐾2.
(2.211)
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Заметим также, что справедлива формула

1

𝑒

𝑑

𝑑𝑡

(︀
𝑒𝐾𝜇

𝜈
)︀

= 𝐾̇𝜇
𝜈 +

˙̂𝑒

𝑒
𝐾𝜇

𝜈 = 𝐾̇𝜇
𝜈 −𝐾𝐾𝜇

𝜈 .

Поэтому выражение для пространственной компоненты тензора Риччи с одним верх-
ним и одним нижним индексом также упрощается:

𝑅𝜇
𝜈 = 𝑅̂𝜇

𝜈 − 1

𝑒

𝑑

𝑑𝑡

(︀
𝑒𝐾𝜇

𝜈
)︀

(2.212)

Для анализа особенностей полезно знать выражение для квадрата тензора кривиз-
ны, который является геометрическим инвариантом. Несложные вычисления дают
следующий ответ

𝑅𝛼𝛽𝛾𝛿𝑅𝛼𝛽𝛾𝛿 = 4𝐾̇𝜇𝜈𝐾̇𝜌𝜎𝑔
𝜇𝜌𝑔𝜈𝜎 + 8𝐾̇𝜇𝜈𝐾

𝜇𝜌𝐾𝜈
𝜌 + 2𝐾𝜇

𝜈𝐾𝜈
𝜌𝐾𝜌

𝜎𝐾𝜎
𝜇 + 2

(︀
𝐾𝜇

𝜈𝐾𝜈
𝜇
)︀2

+

+ 8∇̂𝜇𝐾𝜈𝜌∇̂𝜇𝐾𝜈𝜌 − 8∇̂𝜇𝐾𝜈𝜌∇̂𝜈𝐾𝜇𝜌 + 𝑅̂𝜇𝜈𝜌𝜎𝑅̂𝜇𝜈𝜌𝜎 + 4𝑅̂𝜇𝜈𝜌𝜎𝐾
𝜇𝜌𝐾𝜈𝜎. (2.213)

Теперь вернемся к решению вакуумных уравнений Эйнштейна для вселенной Каз-
нера. Поскольку пространственная часть метрики (2.205) не зависит от 𝑥, то 𝑅𝜇0 = 0.
Поэтому необходимо решить только два уравнения 𝑅00 = 0 и 𝑅𝜇

𝜈 = 0. Из выраже-
ний (2.211) и (2.212) следует, что полная система уравнений движения для вселенной
Казнера имеет вид

−𝐾̇ +𝐾𝜇𝜈𝐾𝜇𝜈 = 0, (2.214)
𝑑

𝑑𝑡

(︀
𝑒𝐾𝜇

𝜈
)︀

= 0. (2.215)

Конечно, эта система уравнений является частным случаем системы уравнений Эйн-
штейна (2.200) при отсутствии полей материи, Λ = 0 и 𝑓𝑖𝑗𝑘 = 0.

Второе уравнение имеет общее решение

𝑒𝐾𝜇
𝜈 = −𝜆𝜇𝜈 = const,

где 𝜆𝜇𝜈 – некоторая постоянная матрица. Свертка полученного решения по индексам
𝜇 и 𝜈 приводит к равенствам

𝐾 = −𝜆
𝑒

= −
˙̂𝑒

𝑒
, 𝜆 := 𝜆𝜇

𝜇,

где учтено выражение для скалярной внешней кривизны (2.209). Отсюда вытекает,
что элемент объема является линейной функцией времени

𝑒 = 𝜆𝑡, (2.216)

где мы положили несущественную постоянную интегрирования равной нулю. Рас-
тяжкой координат всегда можно обратить след матрицы 𝜆 в единицу. Поэтому, не
ограничивая общности, положим 𝑒 = 𝑡. Тогда 𝜆 = 1 и 𝐾 = −1/𝑡. В этом случае

𝐾𝜇
𝜈 = −1

𝑡
𝜆𝜇

𝜈 , (2.217)

где 𝜆𝜇𝜈 – постоянная матрица с единичным следом. Подстановка этой формулы в
уравнение 𝑅00 = 0 приводит к еще одному условию на неизвестную матрицу

𝜆𝜇
𝜈𝜆𝜈

𝜇 = 1. (2.218)
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Возвращаясь к определению внешней кривизны (2.206), получаем обыкновенное ли-
нейное однородное дифференциальное уравнение на метрику

𝑔̇𝜇𝜈 =
2

𝑡
𝜆𝜇

𝜌𝑔𝜌𝜈 . (2.219)

Это уравнение определяет метрику с точностью до умножения на произвольную от-
личную от нуля постоянную. Несущественная постоянная интегрирования соответ-
ствует сдвигу времени, и будет положена равной нулю.

Обозначим через 𝑝1, 𝑝2 и 𝑝3 собственные значения матрицы 𝜆𝜇
𝜈 . Будем считать,

что они вещественны и различны. Пусть 𝑛(1)
𝜇 , 𝑛(2)

𝜇 и 𝑛(3)
𝜇 соответствующие собственные

ковекторы:
𝜆𝜇

𝜌𝑛(𝑖)
𝜌 = 𝑝𝑖𝑛

(𝑖)
𝜇 , 𝑖 = 1, 2, 3.

Тогда решение уравнения (2.219) можно представить в виде

𝑔𝜇𝜈 = −𝑡2𝑝1𝑛(1)
𝜇 𝑛(1)

𝜈 − 𝑡2𝑝2𝑛(2)
𝜇 𝑛(2)

𝜈 − 𝑡2𝑝3𝑛(3)
𝜇 𝑛(3)

𝜈 . (2.220)

Здесь мы выбрали отрицательно определенную метрику в соответствии с нашим со-
глашением. Теперь выберем векторы 𝑛(𝑖) в качестве направляющих векторов новых
координатных осей, которые обозначим 𝑥, 𝑦, 𝑧, и нормируем их на единицу. В резуль-
тате получим метрику Казнера

𝑑𝑠2 = 𝑑𝑡2 − 𝑡2𝑝1𝑑𝑥2 − 𝑡2𝑝2𝑑𝑦2 − 𝑡2𝑝3𝑑𝑧2, (2.221)

где 𝑝1, 𝑝2 и 𝑝3 – произвольные различные числа, удовлетворяющие двум условиям:

𝑝1 + 𝑝2 + 𝑝3 = 1, 𝑝21 + 𝑝22 + 𝑝23 = 1. (2.222)

Первое равенство вытекает из требования 𝜆 = 1, а второе – из условия (2.218).
Чтобы представить себе область допустимых значений параметров 𝑝1, 𝑝2 и 𝑝3,

заметим, что первое условие (2.222) определяет плоскость, а второе – сферу в ев-
клидовом пространстве (𝑝1, 𝑝2, 𝑝3) ∈ R3. Поэтому область допустимых значений па-
раметров представляет собой пересечение плоскости со сферой. По предположению,
собственные числа должны быть различны. Расположим их в порядке возрастания
𝑝1 < 𝑝2 < 𝑝3. Чтобы найти интервалы возможных значений собственных чисел, рас-
смотрим случай совпадения двух собственных чисел. Это возможно только для двух
троек чисел (−1/3, 2/3, 2/3) и (0, 0, 1). Отсюда следует, что одно из собственных чи-
сел должно быть отрицательно, а два других – положительны, причем их значения
лежат в интервалах

− 1

3
≤ 𝑝1 ≤ 0, 0 ≤ 𝑝2 ≤

2

3
,

2

3
≤ 𝑝3 ≤ 1. (2.223)

Таким образом, метрика Казнера (2.221) описывает однородное, но не изотропное
пространство-время. Форма пространственного объема 𝑒 = 𝑡 линейно растет с тече-
нием времени. Это значит, что в целом вселенная расширяется. При этом линейные
расстояния вдоль оси 𝑥 уменьшаются, а вдоль осей 𝑦 и 𝑧 – увеличиваются.

Рассмотрим некоторые свойства тензора кривизны для метрики Казнера. Для
вычислений нам понадобится явный вид тензора внешней кривизны

𝐾𝜇
𝜈 = −1

𝑡

⎛⎝𝑝1 0 0
0 𝑝2 0
0 0 𝑝3

⎞⎠ , 𝐾𝜇𝜈 =

⎛⎝𝑝1𝑡2𝑝1−1 0 0
0 𝑝2𝑡

2𝑝2−1 0
0 0 𝑝3𝑡

2𝑝3−1

⎞⎠ . (2.224)
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Простые вычисления показывают, что скалярная кривизна (2.210) для метрики Каз-
нера равна нулю, 𝑅 = 0. Это естественно, т.к. для метрики Казнера тензор Рич-
чи равен нулю, 𝑅𝛼𝛽 = 0 (вакуумные уравнения движения). Однако это не значит,
что вселенная Казнера является плоской. Действительно, квадрат тензора кривиз-
ны (2.213), который является геометрическим инвариантом, принимает вид

𝑅𝛼𝛽𝛾𝛿𝑅𝛼𝛽𝛾𝛿 = 4𝐾̇𝜇𝜈𝐾̇𝜌𝜎𝑔
𝜇𝜌𝑔𝜈𝜎 + 8𝐾̇𝜇𝜈𝐾

𝜇𝜌𝐾𝜈
𝜌 + 2𝐾𝜇

𝜈𝐾𝜈
𝜌𝐾𝜌

𝜎𝐾𝜎
𝜇 + 2

(︀
𝐾𝜇

𝜈𝐾𝜈
𝜇
)︀2
.

Отметим, что в рассматриваемом случае тензор кривизны совпадает с тензором Вей-
ля. Подстановка в это выражение тензора внешней кривизны (2.224) приводит к сле-
дующему результату

𝑅𝛼𝛽𝛾𝛿𝑅𝛼𝛽𝛾𝛿 =
4

𝑡4
(︀
2 − 2𝑝31 − 2𝑝32 − 2𝑝33 − 𝑝21𝑝

2
2 − 𝑝22𝑝

2
3 − 𝑝21𝑝

2
3

)︀
. (2.225)

В общем случае правая часть обращается в бесконечность при 𝑡 = 0. То есть реше-
ние Казнера содержит неустранимую особенность, где тензор кривизны расходится.
Заметим, что при 𝑡 = 0 метрика Казнера (2.221) также имеет особенность, т.к.

𝑔11 → ∞, 𝑔22 → 0, 𝑔33 → 0, det 𝑔 → 0.

Эта особенность соответствует большому взрыву.
Посмотрим, существуют ли среди метрик Казнера плоские. В плоском случае

полный тензор кривизны должен обратиться в нуль, 𝑅𝛼𝛽𝛾𝛿 = 0. Для этого необходи-
мо, чтобы 𝑅𝜇𝜈𝜌𝜎 = 0. Из вида пространственных компонент тензора кривизны (2.207)
вытекает необходимое условие того, чтобы метрика Казнера была плоской:

𝐾11𝐾22 = 0, 𝐾11𝐾33 = 0, 𝐾22𝐾33 = 0.

Если собственные числа упорядочены, то эта система уравнений имеет единственное
решение 𝑝1 = 𝑝2 = 0 и 𝑝3 = 1. В этом пределе метрика Казнера принимает вид

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑡2𝑑𝑧2.

После замены координат
𝜏 := 𝑡 ch 𝑧, 𝜁 := 𝑡 sh 𝑧,

метрика Казнера переходит в метрику Лоренца.
Случаи совпадающих собственных значений матрицы 𝜆𝜇

𝜈 рассмотрены в [?], §117.



Глава 3

Геометрическая теория дефектов

Многие твердые тела обладают кристаллической структурой. Однако в природе иде-
альных кристаллов нет, и большинство их физических свойств, таких как пластич-
ность, плавление, рост и др., определяется дефектами кристаллической структу-
ры. Поэтому изучение дефектов является актуальной научной проблемой, важной,
в первую очередь, для приложений. Интенсивные экспериментальные и теоретиче-
ские исследования дефектов в кристаллах начались в 30-е годы прошлого века и
продолжаются по сей день. Несмотря на десятки монографий и тысячи статей, фун-
даментальная теория дефектов в настоящее время отсутствует.

Один из перспективных подходов к созданию теории дефектов основан на гео-
метрии Римана–Картана, которая задается нетривиальной метрикой и кручением.
В этом подходе кристалл рассматривается, как непрерывная упругая среда со спи-
новой структурой. Если векторное поле смещений является гладкой функцией, то в
кристалле присутствуют только упругие напряжения, которые соответствуют диф-
феоморфизмам плоского евклидова пространства. Если поле смещений имеет разры-
вы, то мы говорим, что в среде есть дефекты упругой структуры. Дефекты упругой
структуры называются дислокациями и приводят к возникновению нетривиальной
геометрии. А именно, они соответствуют отличному от нуля тензору кручения, ко-
торый равен поверхностной плотности вектора Бюргерса.

Идея связать кручение с дислокациями возникла в пятидесятые годы [?, ?, ?, ?].
Интересно отметить, что Э. Картан ввел понятие кручения в геометрию [?], проводя
аналогию с механикой упругой среды.

Параллельно с изучением дислокаций шло интенсивное изучение другого типа
дефектов. Дело в том, что многие тела обладают не только упругими свойствами,
но и спиновой структурой. Например, ферромагнетики, жидкие кристаллы, спино-
вые стекла и др. В этом случае существуют дефекты в спиновой структуре, которые
называются дисклинациями [?]. Они возникают тогда, когда поле директора име-
ет разрывы. Наличие дисклинаций также связано с нетривиальной геометрией. А
именно, тензор кривизны равен поверхностной плотности вектора Франка.

Геометрическая теория статического распределения дефектов, которая с единой
точки зрения описывает оба типа дефектов – дислокации и дисклинации, была пред-
ложена в [?]. В отличие от других подходов единственными независимыми перемен-
ными в данном подходе являются репер и SO(3) связность. Тензоры кручения и кри-
визны имеют прямой физический смысл поверхностной плотности, соответственно,
линейных дислокаций и дисклинаций. Для репера и SO(3) связности постулируются
ковариантные уравнения равновесия, такие же, как и в модели гравитации с круче-
нием. Поскольку любое решение уравнений равновесия определено с точностью до
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общих преобразований координат и локальных SO(3) вращений, то для однознач-
ного определения решения необходимо задать систему координат (зафиксировать
калибровку). Для этой цели была предложена упругая калибровка для репера [?] и
лоренцева калибровка для SO(3) связности [?].

Подчеркнем, что в данном подходе понятие векторного поля смещений и поля
угла поворота полностью отсутствует. Эти понятия могут быть введены только в тех
областях среды, в которых дефекты отсутствуют. В этом случае уравнения равно-
весия для репера и SO(3) связности тождественно удовлетворяются, упругая калиб-
ровка сводится к уравнениям нелинейной теории упругости для вектора смещений,
а лоренцева калибровка – к уравнениям главного кирального SO(3)-поля. Другими
словами, для фиксирования калибровки выбираются две фундаментальные модели:
теория упругости и модель главного кирального SO(3) поля.

Важно отметить, что геометрическая теория дефектов описывает как отдельные
дефекты, так и их непрерывное распределение. Отдельные дислокации можно опи-
сать в рамках классической теории упругости путем наложения сложных граничных
условий. Однако при непрерывном распределении дислокаций векторное поле смеще-
ний не существует, т.к. оно имеет разрывы в каждой точке. Следовательно, описание
непрерывного распределения дислокаций в рамках классической теории упругости
невозможно. Это же относится и к описанию непрерывного распределения дискли-
наций. В геометрической теории дефектов динамическими переменными являются
репер и SO(3) связность. Эти переменные существуют и являются достаточно глад-
кими функциями и для непрерывного распределения дефектов.

3.1 Упругие деформации

Рассмотрим трехмерную бесконечную упругую среду. Мы предполагаем, что в от-
сутствие дефектов недеформированная среда инвариантна относительно трансля-
ций и вращений в некоторой системе координат. Тогда в этой системе координат 𝑦𝑖,
𝑖 = 1, 2, 3, среда описывается евклидовой метрикой 𝛿𝑖𝑗 = diag (+ + +), а система ко-
ординат является декартовой. Таким образом, в недеформированном состоянии мы
имеем евклидово пространство R3 с заданной декартовой системой координат. Мы
также предполагаем, что кручение в среде равно нулю.

Для того, чтобы определить векторное поле смещений, евклидово пространство
R3, помимо структуры многообразия, должно быть снабжено структурой векторного
пространства.

Определение. Пусть некоторая точка среды имеет в основном состоянии координа-
ты 𝑦𝑖. После деформации данная точка в исходной системе будет иметь координаты

𝑦𝑖 ↦→ 𝑥𝑖(𝑦) := 𝑦𝑖 + 𝑢𝑖(𝑥), (3.1)

где 𝑢𝑖(𝑥) – векторное поле смещений, рис. 3.1.

В теории упругости приняты обратные обозначения. Обычно пишут 𝑥𝑖 ↦→ 𝑦𝑖 =
𝑥𝑖 + 𝑢𝑖(𝑥). Это – эквивалентные записи, поскольку обе системы координат 𝑥𝑖 и 𝑦𝑖 по-
крывают все R3. Однако в теории дефектов, которая рассматривается в следующих
разделах, ситуация другая. В общем случае, только в конечном состоянии (после
создания дислокаций) упругая среда заполняет все евклидово пространство R3. При
наличии дислокаций координаты 𝑦𝑖, как правило, не покрывают все R3, т.к. часть
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Рис. 3.1: Упругие деформации.

среды может быть удалена или, наоборот, добавлена. Поэтому предпочтительнее яв-
ляется система координат, связанная с точками среды после упругой деформации и
образования дефектов.

Здесь и в дальнейшем все поля предполагаются достаточно гладко зависящими
от координат 𝑥, которые являются координатами точек среды после деформации и,
по предположению, покрывают все евклидово пространство R3.

В линейной теории упругости относительные деформации предполагаются малы-
ми, 𝜕𝑗𝑢𝑖 ≪ 1, и функции 𝑢𝑖(𝑥) – компоненты векторного поля смещений – являются
основными переменными теории упругости.

В отсутствие дефектов мы полагаем, что поле смещений является достаточно
гладким векторным полем в евклидовом пространстве R3. Наличие у поля смещений
разрывов и (или) особенностей интерпретируется, как наличие дефектов в упругой
среде.

В дальнейшем мы будем рассматривать только статические деформации, когда
поле смещений 𝑢𝑖 не зависит от времени. Тогда основные уравнения равновесия упру-
гой среды для малых деформаций имеют вид (см., например, [?])

𝜕𝑗𝜎
𝑗𝑖 + 𝑓 𝑖 = 0, (3.2)

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜖𝑘
𝑘 + 2𝜇𝜖𝑖𝑗, (3.3)

где 𝜎𝑗𝑖 – тензор напряжений (𝑖-я компонента упругой силы, действующей на еди-
ничную площадку с нормалью 𝑛𝑗), который предполагается симметричным. Тензор
малых деформаций 𝜖𝑖𝑗 задается симметризованной частной производной от вектора
смещений

𝜖𝑖𝑗 :=
1

2
(𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖). (3.4)

Опускание и подъем латинских индексов проводится с помощью евклидовой метрики
𝛿𝑖𝑗 и ее обратной 𝛿𝑖𝑗. Буквы 𝜆 и 𝜇 обозначают постоянные, характеризующие упру-
гие свойства среды, и называются коэффициентами Ламе. Функции 𝑓 𝑖(𝑥) описывают
суммарную плотность неупругих сил внутри среды. В дальнейшем мы предполагаем,
что такие силы отсутствуют: 𝑓 𝑖(𝑥) = 0. Уравнение (3.2) есть второй закон Ньюто-
на, а равенство (3.3) представляет собой закон Гука, связывающий напряжения и
деформации.

В декартовой системе координат при малых деформациях различие между верх-
ними и нижними индексами пропадает, поскольку подъем и опускание индексов про-
водится с помощью евклидовой метрики. По этой причине в теории упругости об
этом различии часто забывают, что вполне оправдано. Однако при наличии дефек-
тов понятие декартовой системы координат и евклидовой метрики отсутствует, а
подъем и опускание индексов производится с помощью римановой метрики. Поэто-
му мы делаем различие между верхними и нижними индексами, как это принято в
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дифференциальной геометрии, имея в виду последующий переход к упругим средам
с дефектами.

После подстановки закона Гука (3.3) в закон Ньютона (3.2) при 𝑓 𝑖 = 0 возникает
уравнение второго порядка на вектор смещения:

(1 − 2𝜎)△𝑢𝑖 + 𝜕𝑖𝜕𝑗𝑢
𝑗 = 0, (3.5)

где

𝜎 :=
𝜆

2(𝜆+ 𝜇)

– безразмерный коэффициент Пуассона (из физических соображений [?] на него есть
ограничения −1 ≤ 𝜎 ≤ 1/2) и △ := 𝛿𝑖𝑗𝜕𝑖𝜕𝑗 – оператор Лапласа.

В линейной теории упругости основной задачей является решение уравнений вто-
рого порядка для вектора смещений (3.5) при некоторых граничных условиях. Мно-
жество известных решений находится в прекрасном согласии с экспериментом. По-
этому можно сказать, что уравнения (3.3) и (3.2) имеют хорошую экспериментальную
основу.

Посмотрим на упругие деформации с точки зрения дифференциальной геомет-
рии. С математической точки зрения отображение (3.1) представляет собой диффео-
морфизм евклидова пространства R3. При этом евклидова метрика 𝛿𝑖𝑗 индуцирована
возвратом отображения 𝑦𝑖 ↦→ 𝑥𝑖. Это значит, что в деформированном состоянии мет-
рика в линейном приближении, 𝜕𝑖𝑢𝑗 ≪ 1, имеет вид

𝑔𝑖𝑗(𝑥) =
𝜕𝑦𝑘

𝜕𝑥𝑖
𝜕𝑦𝑙

𝜕𝑥𝑗
𝛿𝑘𝑙 ≈ 𝛿𝑖𝑗 − 𝜕𝑖𝑢𝑗 − 𝜕𝑗𝑢𝑖 = 𝛿𝑖𝑗 − 2𝜖𝑖𝑗, (3.6)

т.е. определяется тензором малых деформаций (3.4). Заметим, что в линейном при-
ближении выполнены равенства 𝜖𝑖𝑗(𝑥) = 𝜖𝑖𝑗(𝑦) и 𝜕𝑢𝑗/𝜕𝑥𝑖 = 𝜕𝑢𝑗/𝜕𝑦

𝑖.
Элемент объема среды определяется определителем метрики и имеет вид

√︀
det 𝑔𝑖𝑗.

Поэтому в общем случае упругие деформации сопровождаются сжатием или растя-
жением среды. В линейном приближении изменение объема определяется тензором
деформаций:

1 =
√︀

det 𝛿𝑖𝑗 ↦→
√︀

det 𝑔𝑖𝑗 ≈
√︀

1 − 2𝜖𝑖𝑗 ≈ 1 − 𝜖, (3.7)

где
𝜖 := 𝜖𝑖

𝑖 (3.8)

– дилатация. Мы видим, что если 𝜖 > 0, то среда при упругой деформации сжима-
ется. Если 𝜖 < 0, то происходит растяжение. Объемы сохраняются, если дилатация
равна нулю, 𝜖 = 0.

В римановой геометрии метрика однозначно определяет связность Леви-Чевиты̃︀Γ𝑖𝑗
𝑘(𝑥) (символы Кристоффеля) (??). По этим символам можно вычислить тензор

кривизны (??). Этот тензор тождественно равен нулю, ̃︀𝑅𝑖𝑗𝑘
𝑙(𝑥) = 0, т.к. кривизна

евклидова пространства равна нулю, а отображение 𝑦𝑖 ↦→ 𝑥𝑖 – диффеоморфизм. По
этой же причине равен нулю и тензор кручения. Таким образом, упругая дефор-
мация среды соответствует тривиальной геометрии Римана–Картана, т.к. тензоры
кривизны и кручения равны нулю.

Физическая интерпретация метрики (3.6) следующая. Внешний наблюдатель фик-
сирует декартову систему координат, соответствующую основному недеформирован-
ному состоянию среды. Затем происходит деформация среды, и наблюдатель обна-
руживает, что в этой системе координат метрика становится нетривиальной. Если
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предположить, что упругие возмущения в среде (фононы) распространяются вдоль
экстремалей (линий наименьшей длины), то в деформированном состоянии их тра-
ектории будут определяться уравнениями (??). Поскольку символы Кристоффеля
нетривиальны, ̃︀Γ𝑗𝑘

𝑖 ̸= 0, то траекториями фононов уже не будут прямые линии. В
этом смысле метрика (3.6) наблюдаема. Здесь проявляется существенная роль де-
картовой системы координат 𝑦𝑖, определяемой недеформированным состоянием, и с
которой связан процесс измерения.

Предположим, что некоторому напряженному состоянию упругой среды без де-
фектов соответствует метрика 𝑔𝑖𝑗(𝑥), заданная в декартовой системе координат. В
этом случае вектор смещения определяется системой дифференциальных уравнений
в частных производных (3.6). Условием интегрируемости данной системы уравнений
при заданной левой части является равенство нулю тензора кривизны. Это является
следствием теоремы ??. В линейном приближении данные условия известны в теории
упругости, как условия интегрируемости Сен–Венана.

Наряду с линейной рассматривается нелинейная теория упругости. Нелинейность
в теорию упругости, как правило, вводится двумя способами. Во-первых, можно из-
менить определение тензора деформаций. Положим

𝜖𝑖𝑗 :=
1

2
(𝛿𝑖𝑗 − 𝑔𝑖𝑗). (3.9)

Тогда тензор деформаций задается бесконечным рядом по вектору смещений. Во-
вторых, линейный закон Гука (3.3) можно заменить на нелинейное соотношение.
Здесь вариантов очень много.

Сделаем замечание, важное для дальнейшего рассмотрения. При надлежащих
граничных условиях решение уравнений теории упругости (3.2), (3.3) единственно.
С геометрической точки зрения это означает, что теория упругости фиксирует диф-
феоморфизмы, поскольку векторное поле смещений параметризует диффеоморфиз-
мы. Этот факт будет использован в геометрической теории дефектов. Уравнения
нелинейной теории упругости в смысле (3.9), переписанные для метрики или репера,
будут использованы для фиксирования системы координат.

3.2 Дислокации

Начнем с описания линейных дислокаций в упругой среде (см., например, [?, ?]). Про-
стейшие и наиболее распространенные примеры прямолинейных дислокаций изобра-
жены на рис. 3.2. Они образованы следующим образом. Разрежем среду по полуплос-
кости 𝑥2 = 0, 𝑥1 > 0. Сдвинем верхнюю часть среды, расположенную над разрезом
𝑥2 > 0, 𝑥1 > 0, на вектор 𝑏 по направлению к оси дислокации 𝑥3 и склеим берега
разреза. Вектор 𝑏 называется вектором Бюргерса. В общем случае вектор Бюргерса
может быть не постоянен на разрезе. Для краевой дислокации он меняется от нуля
до постоянного значения 𝑏 по мере удаления от оси дислокации. После склейки среда
придет в некоторое равновесное состояние, которое называется краевой дислокацией,
изображенной на рис. 3.2a.

Та же краевая дислокация возникнет, если сдвинуть нижний берег разреза в про-
тивоположном направлении от линии дислокации и затем произвести склейку.

Одну и ту же дислокацию можно получить разными способами. Например, если
в рассмотренном примере краевой дислокации вектор Бюргерса перпендикулярен
плоскости разреза и направлен от него, то перед склейкой образовавшуюся полость
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Рис. 3.2: Прямолинейные дислокации. (a) Краевая дислокация. Вектор Бюргерса
𝑏 перпендикулярен оси дислокации. (b) Винтовая дислокация. Вектор Бюргерса 𝑏
параллелен оси дислокации.

необходимо заполнить веществом. В результате, как нетрудно представить, также
возникает краевая дислокация, только повернутая вокруг оси 𝑥3 на угол 𝜋/2. Этот
пример показывает, что характеристикой дислокации является не поверхность раз-
реза, а линия дислокации (край разреза) и вектор Бюргерса.

Если произвести тот же разрез среды по полуплоскости, сдвинуть нижнюю часть
среды вдоль оси 𝑥3 и произвести склейку, то получим винтовую дислокацию, рис. 3.2b.
В этом случае вектор Бюргерса параллелен линии дислокации. Эту же винтовую
дислокацию можно получить, сдвинув перед склейкой верхний берег разреза в про-
тивоположном направлении.

С топологической точки зрения среда, содержащая дислокации, которых может
быть несколько или даже бесконечное число, представляет собой евклидово про-
странство R3. В отличие от упругих деформаций при наличии дислокаций вектор
смещений перестает быть гладкой функцией, т.к. имеются поверхности разреза. В
то же время мы предполагаем, что частные производные от вектора смещений 𝜕𝑗𝑢

𝑖

(тензор дисторсии) являются достаточно гладкими функциями на поверхности раз-
реза. С физической точки зрения такое предположение оправдано тем, что эти произ-
водные определяют тензор деформаций (3.4). В свою очередь частные производные
от тензора деформаций должны существовать и быть непрерывными функциями в
равновесном состоянии везде, за исключением, может быть, линий дислокаций, т.к.
в противном случае уравнение равновесия (3.2) не имеет смысла. Поскольку тен-
зор деформаций определяет индуцированную метрику (3.6), то мы предполагаем,
что метрика и репер являются достаточно гладкими функциями во всем евклидовом
пространстве R3, за исключением, возможно, линий дислокаций,

Основная идея геометрического подхода сводится к следующему. Для описания
отдельных дислокаций в рамках теории упругости необходимо решить уравнения
равновесия для вектора смещений с определенными граничными условиями на раз-
резах. Для небольшого числа дислокаций это возможно. Однако с увеличением коли-
чества дислокаций граничные условия настолько усложняются, что решение задачи
представляется нереальным. Кроме того, одну и ту же дислокацию можно создать с
помощью различных разрезов, что приводит к неоднозначности для векторного поля
смещений. Другим недостатком этого подхода является его непригодность для опи-
сания непрерывного распределения дислокаций, т.к. в этом случае векторное поле
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смещений просто не существует, поскольку должно иметь разрывы в каждой точ-
ке. В геометрическом подходе основная переменная – репер, который, по предполо-
жению, является достаточно гладкой функцией везде за исключением, возможно,
линий дислокаций. Для репера постулируются новые уравнения (см. раздел 3.4). В
геометрическом подходе переход от конечного числа дислокаций к их непрерывному
распределению происходит просто и естественно. При этом происходит сглаживание
сингулярностей на линиях дислокаций аналогично тому, как сглаживается распре-
деление масс для точечных частиц при переходе к непрерывной среде.

Перейдем к построению формализма геометрического подхода. Поскольку при
наличии дефектов в равновесном состоянии в общем случае у нас нет никакой сим-
метрии, то отсутствует понятие выделенной декартовой системы координат. Поэтому
рассмотрим произвольную систему координат 𝑥𝜇, 𝜇 = 1, 2, 3, в R3. Для нумерации ко-
ординат мы используем теперь греческие буквы, поскольку допускаем произвольные
преобразования координат. Тогда вектор Бюргерса можно выразить в виде интеграла
от вектора смещения: ∮︁

𝐶

𝑑𝑥𝜇𝜕𝜇𝑢
𝑖(𝑥) = −

∮︁
𝐶

𝑑𝑥𝜇𝜕𝜇𝑦
𝑖(𝑥) = −𝑏𝑖, (3.10)

где 𝐶 – замкнутый контур, охватывающий линию дислокации, рис. 3.3. Этот ин-

Рис. 3.3: Сечение среды с краевой дислокацией. 𝐶 – контур интегрирования для
вектора Бюргерса 𝑏.

теграл инвариантен относительно произвольных преобразований координат 𝑥𝜇 ↦→
𝑥𝜇

′
(𝑥) и ковариантен относительно глобальных SO(3) вращений координат 𝑦𝑖. Здесь

компоненты векторного поля смещений 𝑢𝑖(𝑥) рассматриваются относительно орто-
нормального базиса касательного пространства 𝑢 = 𝑢𝑖𝑒𝑖. Если бы мы рассматри-
вали компоненты векторного поля смещений относительно координатного базиса
𝑢 = 𝑢𝜇𝜕𝜇, то инвариантность интеграла (3.10) относительно общих преобразований
координат была бы нарушена.

В геометрическом подходе вместо частных производных от векторного поля сме-
щений 𝜕𝜇𝑢𝑖 мы вводим новую независимую переменную – репер – следующим образом

𝑒𝜇
𝑖(𝑥) :=

{︃
𝜕𝜇𝑦

𝑖, вне разреза,
lim 𝜕𝜇𝑦

𝑖, на разрезе.
(3.11)

По построению, репер является непрерывной функцией на разрезе, поскольку в рав-
новесном состоянии среды упругие силы на обоих берегах разреза должны быть
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равны. Более того, мы предполагаем, что он является достаточно гладким. Отме-
тим, что, если бы мы просто определили репер, как частную производную 𝜕𝜇𝑦

𝑖, то у
репера была бы 𝛿-образная особенность на разрезе, т.к. функции 𝑦𝑖(𝑥) испытывают
скачок. Эти 𝛿-функции в определении (3.11) отброшены.

Вектор Бюргерса по теореме Стокса можно представить в виде интеграла по
поверхности 𝑆, натянутой на замкнутый контур 𝐶,∮︁

𝐶

𝑑𝑥𝜇𝑒𝜇
𝑖 =

∫︁ ∫︁
𝑆

𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈(𝜕𝜇𝑒𝜈
𝑖 − 𝜕𝜈𝑒𝜇

𝑖) = 𝑏𝑖, (3.12)

где 𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 – элемент площади поверхности. Из определения репера (3.11) следует,
что подынтегральное выражение равно нулю всюду, за исключением линии дисло-
кации. Для краевой дислокации с постоянным вектором Бюргерса подынтегральное
выражение имеет 𝛿-образную особенность на оси 𝑧. Критерием наличия дислокации
является нарушение условия интегрируемости системы уравнений 𝜕𝜇𝑦𝑖 = 𝑒𝜇

𝑖:

𝜕𝜇𝑒𝜈
𝑖 − 𝜕𝜈𝑒𝜇

𝑖 ̸= 0. (3.13)

Если дислокаций нет, то функции 𝑦𝑖(𝑥) существуют и определяют переход к декар-
товой системе координат.

В геометрической теории дефектов поле 𝑒𝜇𝑖 отождествляется с репером. Далее,
сравним подынтегральное выражение в (3.12) с выражением для тензора кручения
в переменных Картана (??)

𝑇𝜇𝜈
𝑖 = 𝜕𝜇𝑒𝜈

𝑖 − 𝜕𝜈𝑒𝜇
𝑗 − 𝑒𝜇

𝑗𝜔𝜈𝑗
𝑖 + 𝑒𝜈

𝑗𝜔𝜇𝑗
𝑖. (3.14)

Они отличаются только слагаемыми, содержащими SO(3) связность. Это дает осно-
вание ввести следующий постулат. В геометрической теории дефектов вектор Бюр-
герса, соответствующий некоторой поверхности 𝑆, определяется интегралом от тен-
зора кручения:

𝑏𝑖 :=

∫︁ ∫︁
𝑆

𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈𝑇𝜇𝜈𝑖. (3.15)

Это определение инвариантно относительно общих преобразований координат 𝑥𝜇 и
ковариантно относительно глобальных вращений. Таким образом, в геометрической
теории дефектов тензор кручения имеет прямой физический смысл: он равен поверх-
ностной плотности вектора Бюргерса.

В геометрической теории дефектов выражение для вектора Бюргерса (3.15) яв-
ляется постулатом, и все предыдущие построения – не более, чем наводящие сообра-
жения.

Физический смысл SO(3) связности будет дан в разделе 3.3, а сейчас мы покажем,
каким образом данное определение сводится к выражению для вектора Бюргерса
(3.12), полученному в рамках теории упругости. Если тензор кривизны SO(3) связ-
ности равен нулю, то по теореме ?? связность локально тривиальна, и существует
такое SO(3) вращение, что 𝜔𝜇𝑖

𝑗 = 0. В этом случае мы возвращаемся к выражению
(3.12).

Если SO(3) связность равна нулю и репер является достаточно гладким, то с
каждым контуром можно однозначно связать вектор Бюргерса. При этом его можно
выразить как поверхностный интеграл от тензора кручения. Поверхностный инте-
грал зависит только от граничного контура, но не от поверхности в силу теоремы
Стокса.
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Рис. 3.4: Точечный дефект – вакансия, возникает, когда из среды вырезается шар и
граничная сфера стягивается в точку.

Мы показали, что наличие линейных дислокаций приводит к нетривиальному
кручению. В геометрической теории дефектов равенство нулю тензора кручения
𝑇𝜇𝜈

𝑖 = 0 естественно рассматривать, как критерий отсутствия дислокаций. Тогда
под термин дислокация попадают не только линейные дислокации, но и, по сути
дела, произвольные дефекты в упругой среде. Они получаются с помощью произ-
вольных разрезов среды и склеек. При этом часть среды может быть удалена или,
наоборот, добавлена, если образовались полости. Например, точечные дефекты – ва-
кансии и примеси также являются дислокациями. В первом случае из евклидова
пространства R3 вырезается шар вещества и граничная сфера стягивается в точку
(рис. 3.4). В случае примеси точка евклидова пространства раздувается до сферы
и образовавшаяся шаровидная полость заполняется таким же веществом. Точечные
дефекты характеризуются массой удаленного или добавленного вещества, которая
также определяется репером:

𝑀 := 𝜌0

∫︁
R3

𝑑𝑥
(︁
det 𝑒𝜇

𝑖 − det
∘
𝑒𝜇

𝑖
)︁
,

∘
𝑒𝜇

𝑖 := 𝜕𝜇𝑦
𝑖, (3.16)

где 𝑦𝑖(𝑥) – функции перехода к декартовой системе координат в R3, 𝜌0 – плотность
массы среды в равновесном состоянии, которую мы предполагаем постоянной. Масса
определяется разностью двух интегралов, каждый из которых по отдельности рас-
ходится. Первый интеграл равен объему среды с дефектами, а второй интеграл –
объему евклидова пространства. Тензор кручения для вакансии и примеси равен ну-
лю всюду за исключением одной точки, где он имеет 𝛿-образную особенность. Для
точечных дефектов понятие вектора Бюргерса отсутствует.

Согласно данному определению масса примеси положительна, так как вещество
добавляется к среде, а масса вакансии отрицательна, поскольку часть вещества уда-
лена.

В трехмерном пространстве помимо точечных и линейных дислокаций существу-
ют также поверхностные дефекты. В геометрическом подходе все они относятся к
дислокациям, т.к. связаны с нетривиальным тензором кручения.

3.3 Дисклинации
В предыдущем разделе мы связали дислокации в упругой среде с тензором кручения.
При этом была введена SO(3) связность. Ниже мы покажем, что кривизна SO(3)
связности определяет поверхностную плотность вектора Франка, характеризующего
другие хорошо известные дефекты – линейные дисклинации в спиновой структуре
среды [?].
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Пусть в каждой точке среды задано единичное векторное поле 𝑛𝑖(𝑥), (𝑛𝑖𝑛𝑖 = 1).
Например, для ферромагнетиков 𝑛𝑖 имеет смысл магнитного момента, связанного с
каждой точкой среды (рис. 3.5a). Для нематических жидких кристаллов единичное
векторное поле 𝑛𝑖 вместе с отношением эквивалентности 𝑛𝑖 ∼ −𝑛𝑖 описывает поле
директора (рис. 3.5b).

Рис. 3.5: Примеры сред со спиновой структурой: (a) ферромагнетик, (b) нематиче-
ский жидкий кристалл.

Зафиксируем некоторое направление в среде 𝑛𝑖
0. Тогда поле 𝑛𝑖(𝑥) в точке 𝑥 может

быть однозначно задано полем 𝜔𝑖𝑗(𝑥) = −𝜔𝑗𝑖(𝑥), принимающем значения в алгебре
вращений so(3) (угол вращения):

𝑛𝑖 = 𝑛𝑗
0𝑆𝑗

𝑖(𝜔),

где 𝑆𝑗
𝑖 ∈ SO(3) – матрица вращений, соответствующая элементу алгебры 𝜔𝑖𝑗. Здесь

мы используем следующую параметризацию группы трехмерных вращений элемен-
тами ее алгебры (??),

𝑆𝑖
𝑗 = ( e(𝜔𝜀))𝑖

𝑗 = cos𝜔 𝛿𝑗𝑖 +
(𝜔𝜀)𝑖

𝑗

𝜔
sin𝜔 +

𝜔𝑖𝜔
𝑗

𝜔2
(1 − cos𝜔) ∈ SO(3), (3.17)

где (𝜔𝜀)𝑖
𝑗 := 𝜔𝑘𝜀𝑘𝑖

𝑗 и 𝜔 :=
√
𝜔𝑖𝜔𝑖 – модуль вектора 𝜔𝑖. Псевдовектор 𝜔𝑘 := 𝜔𝑖𝑗𝜀

𝑖𝑗𝑘/2,
где 𝜀𝑖𝑗𝑘 – полностью антисимметричный тензор третьего ранга, 𝜀123 = 1, направлен
вдоль оси вращения, а его длина равна углу поворота. Поле 𝜔𝑖𝑗(𝑥) ∈ so(3) мы будем
называть спиновой структурой вещества.

Если среда обладает спиновой структурой, то в ней возможны дефекты, кото-
рые называются дисклинациями. Для линейных дисклинаций, параллельных оси 𝑥3,
векторное поле 𝑛 лежит в перпендикулярной плоскости 𝑥1, 𝑥2. Простейшие примеры
линейных дисклинаций показаны на рис. 3.6. Каждая линейная дисклинация харак-
теризуется вектором Франка с компонентами

Θ𝑖 := 𝜖𝑖𝑗𝑘Ω𝑗𝑘, (3.18)

где

Ω𝑖𝑗 :=

∮︁
𝐶

𝑑𝑥𝜇𝜕𝜇𝜔
𝑖𝑗, (3.19)

и интеграл берется по замкнутому контуру 𝐶, охватывающему линию дисклинации.
Длина вектора Франка равна полному углу поворота поля 𝑛𝑖 при обходе вокруг
дисклинации.

Векторное поле 𝑛𝑖(𝑥) задает отображение евклидова пространства в сферу R3 →
S2. Для линейных дисклинаций, параллельных оси 𝑥3, это отображение сужено до
отображения плоскости R2 в окружность S1. Ясно, что в этом случае полный угол
поворота |Θ| :=

√
Θ𝑖Θ𝑖 должен быть кратен 2𝜋.
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Рис. 3.6: Распределение единичного векторного поля в плоскости 𝑥1, 𝑥2 для линейных
дисклинаций, параллельных оси 𝑥3, при |Θ| = 2𝜋 (a) и |Θ| = 4𝜋 (b).

Для нематических жидких кристаллов у нас есть отношение эквивалентности
𝑛𝑖 ∼ −𝑛𝑖. Поэтому для линейных дисклинаций, параллельных оси 𝑥3, поле директо-
ра задает отображение плоскости в проективную прямую R2 → RP1. В этом случае
длина вектора Франка должна быть кратна 𝜋. Соответствующие примеры дискли-
наций показаны на рис. 3.7.

Рис. 3.7: Распределение поля директора в плоскости 𝑥1, 𝑥2 для линейных дисклина-
ций, параллельных оси 𝑥3, при |Θ| = 𝜋 (a) и |Θ| = 3𝜋 (b).

Как и в случае поля смещений для дислокаций, поле 𝜔𝑖𝑗(𝑥), принимающее значе-
ния в алгебре Ли so(3), при наличии дисклинаций не является непрерывной функ-
цией в R3. Сделаем разрез в R3, ограниченный линией дисклинации. Тогда можно
считать поле 𝜔𝑖𝑗(𝑥) достаточно гладким во всем пространстве за исключением разре-
за. Предположим, что все частные производные от 𝜔𝑖𝑗(𝑥) имеют одинаковый предел
при приближении к разрезу с обеих сторон. Тогда определим новое поле

𝜔𝜇
𝑖𝑗 :=

{︃
𝜕𝜇𝜔

𝑖𝑗, вне разреза,
lim 𝜕𝜇𝜔

𝑖𝑗, на разрезе.
(3.20)

По построению функции 𝜔𝜇
𝑖𝑗 являются достаточно гладкими везде, за исключением,

возможно, линии дисклинации. Тогда вектор Франка можно представить поверх-
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ностным интегралом

Ω𝑖𝑗 =

∮︁
𝐶

𝑑𝑥𝜇𝜔𝜇
𝑖𝑗 =

∫︁ ∫︁
𝑆

𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈(𝜕𝜇𝜔𝜈
𝑖𝑗 − 𝜕𝜈𝜔𝜇

𝑖𝑗), (3.21)

где 𝑆 – произвольная поверхность с краем 𝐶. Если поле 𝜔𝜇
𝑖𝑗 задано, то условием

интегрируемости системы уравнений 𝜕𝜇𝜔𝑖𝑗 = 𝜔𝜇
𝑖𝑗 является равенство

𝜕𝜇𝜔𝜈
𝑖𝑗 − 𝜕𝜈𝜔𝜇

𝑖𝑗 = 0. (3.22)

Это равенство дает критерий отсутствия дисклинаций.
В геометрической теории дефектов мы отождествляем поле 𝜔𝜇

𝑖𝑗 с SO(3)-связ-
ностью. В выражении для кривизны (??)

𝑅𝜇𝜈
𝑖𝑗 = 𝜕𝜇𝜔𝜈

𝑖𝑗 − 𝜕𝜈𝜔𝜇
𝑖𝑗 − 𝜔𝜇

𝑖𝑘𝜔𝜈𝑘
𝑗 + 𝜔𝜈

𝑖𝑘𝜔𝜇𝑘
𝑗 (3.23)

слагаемые с производными совпадают с (3.22) поэтому мы постулируем ковариант-
ный критерий отсутствия дисклинаций в виде равенства нулю тензора кривизны
SO(3) связности:

𝑅𝜇𝜈
𝑖𝑗 = 0.

Одновременно мы даем физическую интерпретацию тензору кривизны как поверх-
ностной плотности вектора Франка:

Ω𝑖𝑗 :=

∫︁ ∫︁
𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈𝑅𝜇𝜈

𝑖𝑗. (3.24)

Это определение приводит к предыдущему выражению для вектора Франка (3.21) в
случае, когда вращение вектора 𝑛 происходит в фиксированной плоскости. В этом
случае вращения сужены до подгруппы SO(2) ⊂ SO(3). Поскольку группа вращений
плоскости SO(2) является абелевой, то квадратичные слагаемые в выражении для
кривизны (??) исчезают и мы получаем прежнее выражение для вектора Франка
(3.21). В этом можно убедиться с помощью прямой проверки.

Предложение 3.3.1. Если вращение директора происходит в фиксированной плос-
кости, то тензор кривизны линеен по компонентам SO(3) связности.

Доказательство. В трехмерном пространстве существует полностью антисиммет-
ричный тензор третьего ранга 𝜀𝑖𝑗𝑘, 𝜀123 := 1, (см. приложение ??). Поэтому SO(3)
связность 𝜔𝜇

𝑖𝑗 можно параметризовать полем 𝜔𝜇𝑘, имеющим только два индекса:

𝜔𝜇𝑘 :=
1

2
𝜔𝜇

𝑖𝑗𝜀𝑖𝑗𝑘 ⇔ 𝜔𝜇
𝑖𝑗 = 𝜀𝑖𝑗𝑘𝜔𝜇𝑘. (3.25)

Соответствующий тензор кривизны (3.23) имеет вид

𝑅𝜇𝜈𝑘 := 𝑅𝜇𝜈
𝑖𝑗𝜀𝑖𝑗𝑘 = 𝜕𝜇𝜔𝜈𝑘 − 𝜕𝜈𝜔𝜇𝑘 + 2𝜔𝜇𝑖𝜔𝜈𝑗𝜀

𝑖𝑗
𝑘. (3.26)

Если вращение поля директора происходит в одной плоскости, например, 𝑥, 𝑦, то
компоненты спиновой структуры, имеющие индекс вдоль оси 𝑧, равны нулю, 𝜔𝑖3 =
−𝜔3𝑖. Поэтому 𝜔𝜇1 = 0 и 𝜔𝜇2 = 0. Тогда из выражения (3.26) следует, что последнее
слагаемое равно нулю.

В геометрической теории дефектов равенство (3.24) является постулатом, а все
предыдущие построения – наводящими соображениями.

Таким образом, мы описали среду с дислокациями (дефекты упругой среды) и
дисклинациями (дефекты спиновой структуры) в рамках геометрии Римана–Картана.
При этом мы отождествили тензор кручения с поверхностной плотностью дислока-
ций, а тензор кривизны – с поверхностной плотностью дисклинаций. Соответствие
между физическими и геометрическими объектами подытожено в Таблице 3.1.
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Упругие деформации 𝑅𝜇𝜈
𝑖𝑗 = 0 𝑇𝜇𝜈

𝑖 = 0
Дислокации 𝑅𝜇𝜈

𝑖𝑗 = 0 𝑇𝜇𝜈
𝑖 ̸= 0

Дисклинации 𝑅𝜇𝜈
𝑖𝑗 ̸= 0 𝑇𝜇𝜈

𝑖 = 0
Дислокации и дисклинации 𝑅𝜇𝜈

𝑖𝑗 ̸= 0 𝑇𝜇𝜈
𝑖 ̸= 0

Таблица 3.1: Соответствие между физическими и геометрическими объектами в
геометрической теории дефектов.

3.4 Свободная энергия

До сих пор мы обсуждали только соответствие между физическими и геометрически-
ми объектами. Для завершения построения геометрической теории дефектов необхо-
димо постулировать уравнения равновесия, описывающие статическое распределение
дефектов в среде. Единственными и независимыми переменными в геометрическом
подходе являются репер 𝑒𝜇

𝑖 и SO(3) связность 𝜔𝜇
𝑖𝑗. В отличие от предыдущих гео-

метрических подходов мы полностью отказываемся от поля смещений 𝑢𝑖 и спиновой
структуры 𝜔𝑖𝑗 как полей, входящих в систему уравнений равновесия. В общем слу-
чае непрерывного распределения дефектов их просто не существует. Тем не менее
на определенном этапе и при определенных условиях их можно восстановить, но об
этом пойдет речь в следующих разделах.

Выражение для свободной энергии было получено в [?]. Мы предполагаем, что
уравнения равновесия должны быть ковариантны относительно общих преобразова-
ний координат и локальных SO(3) вращений, не выше второго порядка и следовать
из вариационного принципа. Мы также требуем инвариантности уравнений равно-
весия относительно пространственных отражений. Тогда выражение для свободной
энергии, приводящее к уравнениям равновесия, должно быть равно интегралу по
объему от скалярной функции (лагранжиана), квадратичной по тензору кручения и
кривизны, которые заданы равенствами (3.14) и (3.23). В трехмерном пространстве
существует три независимых инварианта, квадратичных по тензору кручения, и три
независимых инварианта, квадратичных по тензору кривизны. Сюда же можно до-
бавить скалярную кривизну и “космологическую” постоянную Λ. Таким образом мы
получаем восьмипараметрический лагранжиан общего вида

1
√
𝑔
𝐿 = − 𝜅𝑅 +

1

4
𝑇𝑖𝑗𝑘(𝛽1𝑇

𝑖𝑗𝑘 + 𝛽2𝑇
𝑘𝑖𝑗 + 𝛽3𝑇

𝑗𝛿𝑖𝑘)+

+
1

4
𝑅𝑖𝑗𝑘𝑙(𝛾1𝑅

𝑖𝑗𝑘𝑙 + 𝛾2𝑅
𝑘𝑙𝑖𝑗 + 𝛾3𝑅

𝑖𝑘𝛿𝑗𝑙) − Λ,
√
𝑔 = det 𝑒𝜇

𝑖, (3.27)

где 𝜅, 𝛽1,2,3 и 𝛾1,2,3 – некоторые постоянные, введен след тензора кручения 𝑇𝑗 := 𝑇𝑖𝑗
𝑖,

тензор Риччи 𝑅𝑖𝑘 := 𝑅𝑖𝑗𝑘
𝑗 и скалярная кривизна 𝑅 := 𝑅𝑖

𝑖. Здесь и в дальнейшем
переход от греческих индексов к латинским и наоборот осуществляется с помощью
репера и его обратного. Например,

𝑅𝑖𝑗𝑘𝑙 := 𝑅𝜇𝜈𝑘𝑙𝑒
𝜇
𝑖𝑒

𝜈
𝑗, 𝑇𝑖𝑗𝑘 := 𝑇𝜇𝜈𝑘𝑒

𝜇
𝑖𝑒

𝜈
𝑗.

Спецификой трех измерений является то обстоятельство, что полный тензор кривиз-
ны взаимно однозначно определяется своим тензором Риччи (??) и имеет три непри-
водимые компоненты. Поэтому лагранжиан содержит только три независимых ин-
варианта, квадратичных по тензору кривизны. Лагранжиан Гильберта–Эйнштейна
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̃︀𝑅, который также приводит к уравнениям второго порядка для репера, нет никакой
необходимости добавлять к свободной энергии (3.27) ввиду тождества (??).

Таким образом, наиболее общий лагранжиан зависит от восьми постоянных и
приводит к очень сложным уравнениям равновесия. В настоящее время мы не зна-
ем, какие именно значения постоянных описывают те или иные среды. Поэтому, что-
бы упростить ситуацию, сделаем физически разумные предположения. А именно,
потребуем, чтобы уравнения равновесия допускали следующие три типа решений.

1. Существуют решения, описывающую среду только с дислокациями,
𝑅𝜇𝜈

𝑖𝑗 = 0, 𝑇𝜇𝜈
𝑖 ̸= 0.

2. Существуют решения, описывающие среду только с дисклинациями,
𝑅𝜇𝜈

𝑖𝑗 ̸= 0, 𝑇𝜇𝜈
𝑖 = 0.

3. Существуют решения, описывающие среду без дислокаций и дисклинаций,
𝑅𝜇𝜈

𝑖𝑗 = 0, 𝑇𝜇𝜈
𝑖 = 0.

Оказывается, что эти простые предположения уменьшают число независимых пара-
метров в выражении для свободной энергии с восьми до двух. Докажем это утвер-
ждение. Лагранжиан (3.27) приводит к следующим уравнениям равновесия:

1
√
𝑔

𝛿𝐿

𝛿𝑒𝜇𝑖
=𝜅 (𝑅𝑒𝜇𝑖 − 2𝑅𝑖

𝜇) + 𝛽1

(︂
∇𝜈𝑇

𝜈𝜇
𝑖 −

1

4
𝑇𝑗𝑘𝑙𝑇

𝑗𝑘𝑙𝑒𝜇𝑖 + 𝑇 𝜇𝑗𝑘𝑇𝑖𝑗𝑘

)︂
+

+ 𝛽2

(︂
−1

2
∇𝜈(𝑇𝑖

𝜇𝜈 − 𝑇𝑖
𝜈𝜇) − 1

4
𝑇𝑗𝑘𝑙𝑇

𝑙𝑗𝑘𝑒𝜇𝑖 −
1

2
𝑇 𝑗𝜇𝑘𝑇𝑘𝑖𝑗 +

1

2
𝑇 𝑗𝑘𝜇𝑇𝑘𝑖𝑗

)︂
+

+ 𝛽3

(︂
−1

2
∇𝜈(𝑇 𝜈𝑒𝜇𝑖 − 𝑇 𝜇𝑒𝜈𝑖) −

1

4
𝑇𝑗𝑇

𝑗𝑒𝜇𝑖 +
1

2
𝑇 𝜇𝑇𝑖 +

1

2
𝑇 𝑗𝑇𝑖𝑗

𝜇

)︂
+

+ 𝛾1

(︂
−1

4
𝑅𝑗𝑘𝑙𝑚𝑅

𝑗𝑘𝑙𝑚𝑒𝜇𝑖 +𝑅𝜇𝑗𝑘𝑙𝑅𝑖𝑗𝑘𝑙

)︂
+

+ 𝛾2

(︂
−1

4
𝑅𝑗𝑘𝑙𝑚𝑅

𝑙𝑚𝑗𝑘𝑒𝜇𝑖 +𝑅𝑘𝑙𝜇𝑗𝑅𝑖𝑗𝑘𝑙

)︂
+

+ 𝛾3

(︂
−1

4
𝑅𝑗𝑘𝑅

𝑗𝑘𝑒𝜇𝑖 +
1

2
𝑅𝜇𝑗𝑅𝑖𝑗 +

1

2
𝑅𝑗𝑘𝑅𝑗𝑖𝑘

𝜇

)︂
+ Λ𝑒𝜇𝑖 = 0, (3.28)

1
√
𝑔

𝛿𝐿

𝛿𝜔𝜇
𝑖𝑗

=𝜅

(︂
1

2
𝑇𝑖𝑗

𝜇 + 𝑇𝑖𝑒
𝜇
𝑗

)︂
+ 𝛽1

1

2
𝑇 𝜇

𝑗𝑖 + 𝛽2
1

4
(𝑇𝑖

𝜇
𝑗 − 𝑇𝑖𝑗

𝜇) +

+ 𝛽3
1

4
𝑇𝑗𝑒

𝜇
𝑖 + 𝛾1

1

2
∇𝜈𝑅

𝜈𝜇
𝑖𝑗 + 𝛾2

1

2
∇𝜈𝑅𝑖𝑗

𝜈𝜇+

+ 𝛾3
1

4
∇𝜈 (𝑅𝜈

𝑖𝑒
𝜇
𝑗 −𝑅𝜇

𝑖𝑒
𝜈
𝑗) − (𝑖↔ 𝑗) = 0, (3.29)

где ковариантная производная действует с SO(3) связностью на латинские индексы
и с символами Кристоффеля – на греческие. Например,

∇𝜈𝑇
𝜌𝜇

𝑖 := 𝜕𝜈𝑇
𝜌𝜇

𝑖 + ̃︀Γ𝜈𝜎
𝜌𝑇 𝜎𝜇

𝑖 + ̃︀Γ𝜈𝜎
𝜇𝑇 𝜌𝜎

𝑖 − 𝜔𝜈𝑖
𝑗𝑇 𝜌𝜇

𝑗,

∇𝜈𝑅
𝜌𝜇

𝑖𝑗 := 𝜕𝜈𝑅
𝜌𝜇

𝑖𝑗 + ̃︀Γ𝜈𝜎
𝜌𝑅𝜎𝜇

𝑖𝑗 + ̃︀Γ𝜈𝜎
𝜇𝑅𝜌𝜎

𝑖𝑗 − 𝜔𝜈𝑖
𝑘𝑅𝜌𝜇

𝑘𝑗 − 𝜔𝜈𝑗
𝑘𝑅𝜌𝜇

𝑖𝑘.

Первое требование к классу решений уравнений равновесия состоит в том, чтобы
они допускали решения, описывающие наличие в среде только дислокаций. Это озна-
чает наличие решений с нулевым тензором кривизны, что соответствует отсутствию
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дисклинаций. Подстановка условия 𝑅𝜇𝜈
𝑖𝑗 = 0 в уравнение (3.29) для SO(3) связности

дает три независимых уравнения для неприводимых компонент тензора кручения:

(12𝜅+ 2𝛽1 − 𝛽2 − 2𝛽3)𝑇𝑖 = 0,

(𝜅− 𝛽1 − 𝛽2)𝑇
* = 0, (3.30)

(4𝜅+ 2𝛽1 − 𝛽2)𝑊𝑖𝑗𝑘 = 0.

Здесь 𝑇𝑖 (= след), 𝑇 * (= полностью антисимметричная часть) и 𝑊𝑖𝑗𝑘 – неприводимые
компоненты тензора кручения:

𝑇𝑖𝑗𝑘 = 𝑊𝑖𝑗𝑘 + 𝑇 *𝜖𝑖𝑗𝑘 +
1

2
(𝛿𝑖𝑘𝑇𝑗 − 𝛿𝑗𝑘𝑇𝑖),

где

𝑇 * :=
1

6
𝑇𝑖𝑗𝑘𝜖

𝑖𝑗𝑘, 𝑇𝑗 := 𝑇𝑖𝑗
𝑖,

𝑊𝑖𝑗𝑘 := 𝑇𝑖𝑗𝑘 − 𝑇 *𝜖𝑖𝑗𝑘 −
1

2
(𝛿𝑖𝑘𝑇𝑗 − 𝛿𝑗𝑘𝑇𝑖), 𝑊𝑖𝑗𝑘𝜖

𝑖𝑗𝑘 = 0, 𝑊𝑖𝑗
𝑖 = 0.

В общем случае при наличии дислокаций все неприводимые компоненты тензора
кручения отличны от нуля (𝑇𝑖, 𝑇 *, 𝑊𝑖𝑗𝑘 ̸= 0) и уравнения (3.30) имеют единственное
решение

𝛽1 = −𝜅, 𝛽2 = 2𝜅, 𝛽3 = 4𝜅. (3.31)

При этих константах связи первые четыре слагаемые в лагранжиане (3.27) с точ-
ностью до дивергенции равны лагранжиану Гильберта–Эйнштейна 𝜅 ̃︀𝑅(𝑒) как след-
ствие тождества (??). При этом уравнение (3.28) сводится к уравнениям Эйнштейна
с космологической постоянной

̃︀𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈 ̃︀𝑅− Λ

2𝜅
𝑔𝜇𝜈 = 0. (3.32)

Таким образом, первое условие выполнено.
Согласно второму условию уравнения равновесия должны допускать решения

с нулевым кручением 𝑇𝜇𝜈
𝑖 = 0. В этом случае тензор кривизны обладает допол-

нительной симметрией относительно перестановки первой и второй пары индексов,
𝑅𝑖𝑗𝑘𝑙 = 𝑅𝑘𝑙𝑖𝑗, и уравнение (3.29) принимает вид

(𝛾1 + 𝛾2 +
1

4
𝛾3)∇𝜈 (𝑅s𝜈

𝑖𝑒
𝜇
𝑗 −𝑅s𝜇

𝑖𝑒
𝜈
𝑗 −𝑅s𝜈

𝑗𝑒
𝜇
𝑖 +𝑅s𝜇

𝑗𝑒
𝜈
𝑖) +

+
1

6
(𝛾1 + 𝛾2 + 4𝛾3) (𝑒𝜈𝑖𝑒

𝜇
𝑗 − 𝑒𝜇𝑖𝑒

𝜈
𝑗)∇𝜈𝑅 = 0. (3.33)

Здесь мы разложили тензор Риччи на неприводимые компоненты, выделив след и
антисимметричную часть:

𝑅𝑖𝑗 = 𝑅s
𝑖𝑗 +𝑅a

𝑖𝑗 +
1

3
𝑅𝛿𝑖𝑗,

где
𝑅s

𝑖𝑗 :=
1

2
(𝑅𝑗𝑖 +𝑅𝑗𝑖) −

1

3
𝛿𝑖𝑗𝑅, 𝑅a

𝑖𝑗 :=
1

2
(𝑅𝑖𝑗 −𝑅𝑗𝑖).

Напомним, что при нулевом кручении тензор Риччи симметричен: 𝑅a
𝑖𝑗 = 0. Свертка

уравнения (3.33) с 𝑒𝜇𝑗 приводит к уравнению

(𝛾1 + 𝛾2 +
1

4
𝛾3)∇𝜈𝑅

s𝜈
𝜇 +

1

3
(𝛾1 + 𝛾2 + 4𝛾3)∇𝜇𝑅 = 0.
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В общем случае отличной от нуля кривизны ковариантные производные ∇𝜈𝑅
s𝜈

𝜇 и
∇𝜇𝑅 отличны от нуля и независимы. Поэтому мы получаем два уравнения на кон-
станты связи

𝛾1 + 𝛾2 +
1

4
𝛾3 = 0, 𝛾1 + 𝛾2 + 4𝛾3 = 0,

которые имеют единственное решение

𝛾1 = −𝛾2 = 𝛾, 𝛾3 = 0. (3.34)

В этом случае уравнение (3.28) для репера при ненулевом кручении также сводится
к уравнениям Эйнштейна (3.32).

Последнее требование наличия решений с нулевой кривизной и кручением вы-
полняется только при нулевой космологической постоянной Λ = 0.

Таким образом, простые и физически осмысленные требования определяют двух-
параметрический лагранжиан

1
√
𝑔
𝐿 = −𝜅 ̃︀𝑅 + 2𝛾𝑅a

𝑖𝑗𝑅
a𝑖𝑗, (3.35)

который равен сумме лагранжиана Гильберта–Эйнштейна для репера и квадрата
антисимметричной компоненты тензора Риччи. Отметим, что ̃︀𝑅(𝑒) и 𝑅a

𝑖𝑗(𝑒, 𝜔) по-
строены для различных метрических связностей.

Действие (свободная энергия) в геометрической теории дефектов имеет вид

𝑆 :=

∫︁
𝑑𝑥

√
𝑔
(︀
− 𝜅 ̃︀𝑅 + 2𝛾𝑅a

𝑖𝑗𝑅
a𝑖𝑗)︀. (3.36)

Заметим, что если отказаться от требования инвариантности свободной энергии
относительно пространственных отражений, то возникают дополнительные инвари-
анты, например, 𝑅𝑖𝑗𝑇𝑘𝜀

𝑖𝑗𝑘. Эта возможность требует отдельного исследования.
Выражение (3.35) в геометрической теории дефектов определяет плотность сво-

бодной энергии и приводит к уравнениям равновесия (уравнения Эйлера–Лагранжа).
В геометрическом подходе вектор смещения и спиновая структура вообще не входят
в выражение для свободной энергии (3.35).

3.5 Фиксирование калибровки
В геометрическом подходе единственными переменными являются репер 𝑒𝜇𝑖 и SO(3)
связность 𝜔𝜇𝑖

𝑗. Поле смещений 𝑢𝑖 и спиновую структуру 𝜔𝑖
𝑗 можно ввести только в

тех областях среды, где дефекты отсутствуют. Действительно, из условия отсутствия
дисклинаций (𝑅𝜇𝜈𝑖

𝑗 = 0) следует, что SO(3) связность является чистой калибровкой
(??), т.е. существует спиновая структура 𝜔𝑖

𝑗. Если, вдобавок, отсутствуют дислока-
ции (𝑇𝜇𝜈𝑖 = 0), то существует поле смещений такое, что репер равен его частным
производным (??). В этом и только в этом случае можно ввести поле смещений и
спиновую структуру. Ниже мы покажем, что это можно сделать таким образом, что-
бы были выполнены уравнения нелинейной теории упругости и уравнения главного
кирального SO(3)-поля.

Уравнения Эйлера–Лагранжа для свободной энергии (3.35) ковариантны отно-
сительно общих преобразований координат в R3 и локальных SO(3) вращений. Это
значит, что любое решение уравнений равновесия определено с точностью до диф-
феоморфизмов и локальных вращений. Чтобы геометрическая теория дефектов име-
ла предсказательную силу, необходимо зафиксировать систему координат (выбрать
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калибровку, как принято говорить в теории калибровочных полей). Это позволит
из каждого класса эквивалентных решений выбрать по одному представителю. По-
сле этого мы скажем, что данное решение уравнений Эйлера–Лагранжа описывает
распределение дефектов в среде в лабораторной системе координат.

Начнем с фиксирования диффеоморфизмов. Для этой цели выберем упругую
калибровку, которая была предложена в [?]. Данный вопрос имеет принципиальное
значение, и мы остановимся на нем подробно.

Из уравнений линейной теории упругости в отсутствие неупругих сил, 𝑓 𝑖 = 0, сле-
дует нековариантное уравнение второго порядка на вектор смещения (3.5). Его мож-
но переписать в терминах индуцированной метрики (3.6), для которой мы получим
нековариантное уравнение первого порядка. Это уравнение мы и выберем в качестве
калибровочного условия, фиксирующего диффеоморфизмы. Отметим, что калибро-
вочное условие не определено однозначно, т.к. индуцированная метрика нелинейна
по вектору смещений, и различные уравнения для метрики могут иметь одно и то
же линейное приближение. Приведем, например, два возможных выбора:

𝑔𝜇𝜈
∘
∇𝜇𝑔𝜈𝜌 +

𝜎

1 − 2𝜎
𝑔𝜇𝜈

∘
∇𝜌𝑔𝜇𝜈 = 0, (3.37)

∘
𝑔𝜇𝜈

∘
∇𝜇𝑔𝜈𝜌 +

𝜎

1 − 2𝜎

∘
∇𝜌𝑔

t = 0, (3.38)

где ∘
𝑔𝜇𝜈 – евклидова метрика в той системе координат, в которой проводится решение

задачи, и введено обозначение для следа метрики 𝑔t :=
∘
𝑔𝜇𝜈𝑔𝜇𝜈 .

Калибровочные условия (3.37), (3.38), несмотря на их формальный вид, нару-
шают общую ковариантность, поскольку понимаются следующим образом. Метрика
∘
𝑔𝜇𝜈 – евклидова метрика, записанная в произвольной системе координат, например, в

цилиндрической или сферической. Ковариантная производная
∘
∇𝜇 построена по сим-

волам Кристоффеля, соответствующим метрике ∘
𝑔𝜇𝜈 , и, следовательно,

∘
∇𝜇

∘
𝑔𝜈𝜌 = 0.

Метрика 𝑔𝜇𝜈 – это метрика, описывающая дислокации (точное решение уравнений
равновесия для свободной энергии (3.35)). Если мы хотим записать калибровочное
условие, например, для декартовой системы координат, то выбираем ∘

𝑔𝜇𝜈 = 𝛿𝜇𝜈 . Тогда
калибровочное условие (3.38) примет вид

𝛿𝜇𝜈𝜕𝜇𝑔𝜈𝜌 +
𝜎

1 − 2𝜎
𝜕𝜌(𝛿

𝜇𝜈𝑔𝜇𝜈) = 0. (3.39)

Если сюда подставить линейное приближение для метрики (3.6), то получим в точ-
ности уравнение (3.5). Уравнение (3.39) явно нарушает общую ковариантность, что
и требуется от калибровочного условия, фиксирующего систему координат.

Калибровочные условия (3.37) и (3.38) отличаются тем, что в первом случае про-
изводится свертка с метрикой дислокации 𝑔𝜇𝜈 , а во втором случае – c евклидовой
метрикой ∘

𝑔𝜇𝜈 , что не меняет линейного приближения. Оба калибровочных условия в
линейном приближении по вектору смещений (3.6) приводят к уравнению (3.5), что
уже было продемонстрировано в декартовой системе координат.

С геометрической точки зрения мы имеем следующее. Среда с дислокациями
диффеоморфна евклидову пространству R3, снабженному двумя метриками ∘

𝑔𝜇𝜈 и
𝑔𝜇𝜈 . Метрика ∘

𝑔𝜇𝜈 является плоской евклидовой метрикой записанной в произвольной
системе координат. Метрика 𝑔𝜇𝜈 не является плоской и описывает распределение
дислокаций в той же системе координат. На самом деле метрика ∘

𝑔𝜇𝜈 нужна только
для фиксирования системы координат, в которой измеряется метрика 𝑔𝜇𝜈 .
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Если решение уравнений равновесия удовлетворяет одному из условий (3.37) или
(3.38), записанному, например, в цилиндрической системе координат, то будем го-
ворить, что найдено решение в цилиндрической системе координат. При этом мы
предполагаем, что распределение дислокаций упругой среды в лабораторной цилин-
дрической системе координат описывается именно этим решением. Аналогично мож-
но искать решения в декартовой, сферической или другой системе координат.

Калибровочные условия можно записать и для репера 𝑒𝜇
𝑖, который определен

уравнением 𝑔𝜇𝜈 := 𝑒𝜇
𝑖𝑒𝜈

𝑗𝛿𝑖𝑗 (??). Здесь возникает дополнительный произвол, т.к. ре-
пер определен с точностью до локальных вращений. Эта инвариантность приводит
к тому, что для репера возможны различные линейные приближения по вектору
смещений. Рассмотрим две возможности в декартовой системе координат:

𝑒𝜇𝑖 ≈ 𝛿𝜇𝑖 − 𝜕𝜇𝑢𝑖, (3.40)

𝑒𝜇𝑖 ≈ 𝛿𝜇𝑖 −
1

2
(𝜕𝜇𝑢𝑖 + 𝜕𝑖𝑢𝜇), (3.41)

где индекс опущен с помощью символа Кронекера. Этим возможностям и условию
(3.38) на метрику соответствует два калибровочных условия на репер:

∘
𝑔𝜇𝜈

∘
∇𝜇𝑒𝜈𝑖 +

1

1 − 2𝜎

∘
𝑒𝜇𝑖

∘
∇𝜇𝑒

t = 0, (3.42)

∘
𝑔𝜇𝜈

∘
∇𝜇𝑒𝜈𝑖 +

𝜎

1 − 2𝜎

∘
𝑒𝜇𝑖

∘
∇𝜇𝑒

t = 0, (3.43)

где 𝑒t :=
∘
𝑒𝜇𝑖𝑒𝜇

𝑖 – след репера. Приведенные условия отличаются коэффициентом
перед вторым слагаемым. Отметим, что в криволинейной системе координат в кова-
риантную производную

∘
∇𝜇 необходимо включить также плоскую SO(3) связность,

действующую на индексы 𝑖, 𝑗. Можно выписать также и другие возможные калибро-
вочные условия, которые имеют то же линейное приближение. Вопрос о правильном
выборе калибровки в настоящее время открыт. На данном этапе мы хотим толь-
ко продемонстрировать, что систему координат необходимо зафиксировать, и что
калибровочное условие зависит от коэффициента Пуассона, который является экс-
периментально наблюдаемой величиной.

Калибровочные условия (3.42), (3.43) представляют собой дифференциальные
уравнения первого порядка и содержат определенный произвол. Поэтому для од-
нозначного фиксирования решения необходимо дополнительно наложить граничные
условия на репер для каждой конкретной задачи.

Если дефектов нет, то 𝑇𝜇𝜈𝑖 = 0, 𝑅𝜇𝜈𝑗
𝑖 = 0, и уравнения равновесия выполняют-

ся, т.к. эти условия удовлетворяют уравнениям Эйлера–Лагранжа для лагранжиана
(3.35). В этом и только в этом случае можно ввести вектор смещения, и для него упру-
гая калибровка сведется к уравнениям нелинейной теории упругости. При наличии
дефектов поля смещений не существует, и упругая калибровка просто определяет
репер.

При выборе функционала свободной энергии мы потребовали, чтобы условия
𝑅𝜇𝜈

𝑖𝑗 = 0 и 𝑇𝜇𝜈
𝑖 = 0 удовлетворяли уравнениям Эйлера–Лагранжа. И это важно,

так как в противном случае на вектор смещения появилось бы дополнительное усло-
вие (уравнения Эйлера–Лагранжа) помимо уравнений теории упругости, следующих
из упругой калибровки.

Подчеркнем еще раз важное обстоятельство. В геометрической теории дефектов
мы предполагаем, что существует выделенная лабораторная система координат, в
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которой проводятся измерения. Эта система координат связана со средой без дефек-
тов и упругих напряжений и соответствует плоскому евклидову пространству R3.
Калибровочные условия (3.37), (3.38) и (3.42), (3.43) записаны именно в этом евкли-
довом пространстве R3, и содержат измеряемую величину – коэффициент Пуассона
𝜎. Это обстоятельство существенно отличает геометрическую теорию дефектов от
моделей гравитации, в которых все системы координат считаются равноправными.

Упругая калибровка есть уравнения нелинейной теории упругости, в которой тен-
зор деформаций предполагается определенным через индуцированную метрику (3.9),
а закон Гука сохраняется линейным. Обобщение на случай нелинейной зависимости
тензора деформаций от напряжений очевидно.

Упругая калибровка используется для фиксирования диффеоморфизмов. Посколь-
ку выражение для свободной энергии (3.35) инвариантно также относительно ло-
кальных SO(3) вращений, то их тоже необходимо фиксировать. С этой целью была
предложена лоренцева калибровка для связности [?]

𝛿𝜇𝜈𝜕𝜇𝜔𝜈𝑗
𝑖 = 0. (3.44)

Калибровка (3.44) записана в лабораторной декартовой системе координат и имеет
глубокий физический смысл. А именно, допустим, что дисклинаций нет (𝑅𝜇𝜈𝑗

𝑖 = 0).
Тогда SO(3) связность представляет собой чистую калибровку

𝜔𝜇𝑗
𝑖 = 𝜕𝜇𝑆

−1
𝑗
𝑘𝑆𝑘

𝑖, 𝑆𝑗
𝑖 ∈ SO(3).

В этом случае лоренцева калибровка сведется к уравнениям главного кирального
SO(3)-поля

𝛿𝜇𝜈𝜕𝜇
(︀
𝜕𝜈𝑆

−1
𝑗
𝑘𝑆𝑘

𝑖
)︀

= 0 (3.45)

для спиновой структуры 𝜔𝑖𝑗(𝑥), через которую выражается матрица вращений с по-
мощью формулы (3.17). В этом случае уравнения (3.45) представляют собой систему
нелинейных уравнений в частных производных второго порядка для спиновой струк-
туры.

Замечание. Модели главного кирального поля (см., например, [?, ?, ?, ?, ?]), для
различных групп и в разном числе измерений привлекают большое внимание в мате-
матической физике, поскольку допускают решения в виде топологических солитонов
и находят широкое применение в физике.

Таким образом, лоренцева калибровка (3.44) означает следующее. При отсутствии
дисклинаций уравнения равновесия тождественно удовлетворяются и существует по-
ле спиновой структуры 𝜔𝑖𝑗, которое удовлетворяет уравнениям главного кирального
поля. Тем самым мы предполагаем, что спиновая структура среды в отсутствие де-
фектов описывается моделью главного кирального SO(3)-поля.

Модель главного кирального поля не является единственной, которую можно ис-
пользовать для фиксирования локальных вращений. Для этой же цели можно ис-
пользовать модель Скирма [?]. Уравнения Эйлера–Лагранжа этой модели нетрудно
переписать в терминах SO(3) связности и использовать их в качестве калибровочного
условия.

Существуют и другие модели для спиновых структур. Распределение магнитных
моментов в ферромагнетиках и поле директора в жидких кристаллах описывают-
ся с помощью выражения для свободной энергии, зависящего непосредственно от
векторного 𝑛-поля [?, ?]. В последнее время большое внимание привлекает также
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модель Фаддеева для 𝑛-поля [?]. Открытым остается вопрос о том, существуют ли
такие калибровочные условия на SO(3) связность, которые в отсутствие дисклинаций
приводили бы к этим моделям.

Таким образом, в геометрической теории дефектов мы ставим следующую задачу.
Найти решение уравнений Эйлера–Лагранжа для свободной энергии (3.35), которое
удовлетворяет упругой калибровке для репера и лоренцевой калибровке для SO(3)
связности. В разделах (3.7.2) и (3.8.2) мы решим задачу для клиновой дислокации в
рамках классической теории упругости и геометрической теории дефектов, а затем
сравним полученные результаты.

3.6 Асимметричная теория упругости

В предыдущем разделе мы использовали теорию упругости и модель главного ки-
рального SO(3)-поля для фиксирования инвариантности свободной энергии (3.35) в
геометрической теории дефектов. Это – не единственная возможность, т.к. для фик-
сирования калибровки можно применить и другие модели. В настоящем разделе мы
покажем, как для фиксирования инвариантности относительно диффеоморфизмов
и локальных вращений может быть использована другая модель – асимметричная
теория упругости.

В начале прошлого века братья Коссера разработали теорию упругой среды, каж-
дая точка которой характеризуется не только своим положением, но и ориентацией в
пространстве [?]. То есть в каждой точке среды задан репер (рис. 3.8). С физической

Рис. 3.8: Каждая точка среды Коссера характеризуется не только своим положением,
но и ориентацией в пространстве.

точки зрения это означает, что каждый атом в кристаллической решетке является
не точкой, а протяженным объектом, имеющим ориентацию. В этом случае тензор
напряжений 𝜎𝑖𝑗 уже не будет симметричным, и соответствующая теория называется
асимметричной теорией упругости. Современное изложение этого подхода приведено
в [?]. Покажем, что асимметричная теория упругости естественным образом вкла-
дывается в геометрическую теорию дефектов.

Основными переменными в асимметричной теории упругости являются вектор
смещений 𝑢𝑖(𝑥) и угол поворота 𝜔𝑖(𝑥). Направление псевдовектора 𝜔𝑖 совпадает с
осью вращения элемента среды, а его длина равна углу поворота. Угол поворота
дуален к полю спиновой структуры, 𝜔𝑖𝑗 = 𝜀𝑖𝑗𝑘𝜔

𝑘, рассмотренной в разделе 3.3.
Среда Коссера характеризуется тензором напряжений 𝜎𝑖𝑗(𝑥) (плотность упругих

сил, действующих на площадку с нормалью 𝑖 в направлении 𝑗) и тензором мо-
ментных напряжений 𝜇𝑖𝑗(𝑥) (плотность момента сил, действующих на площадку с
нормалью 𝑖 в направлении 𝑗). Среда Коссера находится в равновесии, если в каждой
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точке уравновешены силы и моменты сил [?]:

𝜕𝑗𝜎
𝑗𝑖 + 𝑓 𝑖 = 0, (3.46)

𝜀𝑖𝑗𝑘𝜎𝑗𝑘 + 𝜕𝑗𝜇
𝑗𝑖 +𝑚𝑖 = 0, (3.47)

где 𝑓 𝑖(𝑥) и 𝑚𝑖(𝑥) – плотности неупругих внешних сил и моментов. Из уравнения
(3.47) следует, что тензор упругих напряжений симметричен тогда и только тогда,
когда выполнено условие 𝜕𝑗𝜇𝑗𝑖 +𝑚𝑖 = 0.

Поле смещений и угол поворота однозначно определяют тензор деформаций 𝜖𝑖𝑗(𝑥)
и тензор изгиба-кручения 𝜅𝑖𝑗(𝑥)

𝜖𝑖𝑗 := 𝜕𝑖𝑢𝑗 − 𝜔𝑖𝑗,

𝜅𝑖𝑗 := 𝜕𝑖𝜔𝑗, 𝜔𝑖𝑗 := 𝜀𝑖𝑗𝑘𝜔
𝑘.

(3.48)

В общем случае тензоры деформаций и изгиба-кручения никакой симметрии по ин-
дексам не имеют.

Закон Гука в среде Коссера заменяется двумя линейными соотношениями, связы-
вающими тензоры напряжений и моментных напряжений с тензорами деформаций
и изгиба-кручения:

𝜎𝑖𝑗 = 2𝜇𝜖{𝑖𝑗} + 2𝛼𝜖[𝑖𝑗] + 𝜆𝛿𝑖𝑗𝜖𝑘
𝑘, (3.49)

𝜇𝑖𝑗 = 2𝛾𝜅{𝑖𝑗} + 2𝜖𝜅[𝑖𝑗] + 𝛽𝛿𝑖𝑗𝜅𝑘
𝑘, (3.50)

где 𝜇, 𝜆 – постоянные Ламе, и 𝛼, 𝛽, 𝛾, 𝜖 – четыре новые упругие постоянные, характе-
ризующие среду. Фигурные и квадратные скобки означают соответственно симмет-
ризацию и антисимметризацию индексов.

Асимметричная теория упругости сводится к симметричной теории упругости,
рассмотренной в разделе 3.1, в случае, когда

𝜔𝑖𝑗 =
1

2
(𝜕𝑖𝑢𝑗 − 𝜕𝑗𝑢𝑖). (3.51)

Тогда тензор деформаций (3.48) симметричен и имеет тот же вид (3.4), что и ранее.
При этом уравнение (3.49) переходит в закон Гука (3.3), а уравнение (3.46) – в закон
Ньютона (3.2). Уравнение (3.47) вместе с (3.49) и (3.50) сводится к равенству

(𝛾 + 𝜖)𝜀𝑖𝑗𝑘△𝜕𝑗𝑢𝑘 +𝑚𝑖 = 0.

Первый член равен нулю, как следствие уравнения (3.5). Таким образом, для спи-
новой структуры вида (3.51) и 𝑚𝑖 = 0 мы возвращаемся к симметричной теории
упругости.

Уравнения (3.46), (3.47), (3.49) и (3.50) вместе с граничными условиями опреде-
ляют равновесное состояние среды Коссера. Покажем, как эта модель вкладывается
в геометрическую теорию упругости. Прежде всего заметим, что в отсутствие де-
фектов (𝑇𝜇𝜈𝑖 = 0, 𝑅𝜇𝜈

𝑖𝑗 = 0) существуют поля 𝑢𝑖 и 𝜔𝑖𝑗. Тогда репер и SO(3) связность
в линейном приближении определяются тензорами деформаций и изгиба-кручения:

𝑒𝜇
𝑖 = 𝜕𝜇𝑦

𝑗𝑆𝑗
𝑖(𝜔) ≈ (𝛿𝑗𝜇 − 𝜕𝜇𝑢

𝑗)(𝛿𝑖𝑗 + 𝜔𝑗
𝑖) ≈ 𝛿𝑖𝜇 − 𝜖𝜇

𝑖, (3.52)

𝜔𝜇
𝑖𝑗 ≈ 𝜕𝜇𝜔

𝑖𝑗 = 𝜀𝑖𝑗𝑘𝜅𝜇𝑘. (3.53)

Отметим, что соотношения (3.48) можно рассматривать как уравнения относи-
тельно вектора смещений и угла поворота при заданных 𝜖𝑖𝑗(𝑥) и 𝜅𝑖𝑗(𝑥). Соответству-
ющие условия интегрируемости были получены в [?]. Эти условия интегрируемости
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являются линейным приближением равенств 𝑇𝜇𝜈
𝑖 = 0 и 𝑅𝜇𝜈

𝑖𝑗 = 0, определяющих
отсутствие дефектов.

Если неупругие силы и моменты в среде отсутствуют (𝑓 𝑖 = 0, 𝑚𝑖 = 0), то асим-
метричная теория упругости сводится к уравнениям второго порядка на вектор сме-
щения и поворота:

(𝜇+ 𝛼)△𝑢𝑖 + (𝜇− 𝛼 + 𝜆)𝜕𝑖𝜕𝑗𝑢
𝑗 − 2𝛼𝜕𝑗𝜔

𝑗𝑖 = 0, (3.54)
(𝛾 + 𝜖)△𝜔𝑖 + (𝛾 − 𝜖+ 𝛽)𝜕𝑖𝜕𝑗𝜔

𝑗 + 2𝛼𝜀𝑖𝑗𝑘(𝜕𝑗𝑢𝑘 − 𝜔𝑗𝑘) = 0. (3.55)

Перепишем эти уравнения для репера и SO(3) связности:

(𝜇+ 𝛼)
∘
∇𝜇𝑒𝜇

𝑖 + (𝜇− 𝛼 + 𝜆)
∘
∇𝑖𝑒𝑇 − (𝜇− 𝛼)𝜔𝜇

𝜇𝑖 = 0, (3.56)
1

2
(𝛾 + 𝜖)𝜀𝑖𝑗𝑘

∘
∇𝜇𝜔𝜇𝑗𝑘 +

1

2
(𝛾 − 𝜖+ 𝛽)𝜀𝜇𝑗𝑘

∘
∇𝑖𝜔𝜇𝑗𝑘 + 2𝛼𝜀𝑖𝜇𝑗𝑒𝜇𝑗 = 0. (3.57)

Конечно, это не единственные уравнения, которые в линейном приближении совпа-
дают с уравнениями (3.54), (3.55). В настоящее время у нас нет аргументов для одно-
значного выбора. Полученные нелинейные уравнения асимметричной теории упруго-
сти можно использовать в качестве калибровочных условий в геометрической теории
дефектов. При этом мы имеем шесть уравнений для фиксирования диффеоморфиз-
мов (три параметра) и локальных SO(3) вращений (три параметра). Таким образом
асимметричная теория упругости естественным образом вкладывается в геометри-
ческую теорию дефектов.

В разделе 3.5 рассмотрены упругая калибровка для репера и лоренцева калибров-
ка для SO(3) связности. В этом случае при отсутствии дефектов спиновые перемен-
ные среды не взаимодействуют с упругими напряжениями. В асимметричной теории
упругости упругие напряжения непосредственно влияют на спиновую структуру, и
наоборот.

3.7 Дислокации в теории упругости
В настоящем разделе мы опишем несколько простейших дислокаций в рамках теории
упругости. Это сделано для того, чтобы в дальнейшем сравнить полученные ответы
с результатами геометрической теории дефектов.

3.7.1 Винтовая дислокация

Винтовая дислокация изображена на рис.3.2b. В этом случае вектор Бюргерса па-
раллелен оси 𝑧 := 𝑥3 и направлен в ту же сторону 𝑏 = (0, 0, 𝑏), 𝑏 > 0. Исходя из
симметрии задачи, будем решать задачу в цилиндрической системе координат. Ре-
шение ищем в виде

{𝑢𝑖} = {𝑢𝑟 = 0, 𝑢𝜙 = 0, 𝑢𝑧 = 𝑐𝜙}, 𝑐 = const. (3.58)

Для винтовой дислокации необходимо решить уравнения равновесия (3.5) вместе с
граничными условиями

𝑢𝑧
⃒⃒
𝜙=0

= 0, 𝑢𝑧
⃒⃒
𝜙=2𝜋

= 𝑏, (3.59)

которые означают, что нижний берег разреза сдвинут вдоль оси 𝑧 на вектор Бюргерса
𝑏.
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Используя явные выражения для лапласиана и дивергенции в цилиндрических
координатах (??)–(??), получаем, что для векторного поля смещений (3.58) справед-
ливы равенства:

△𝑢𝑟 = 0, △𝑢𝜙 = 0, △𝑢𝑧 = 0, ∇𝑖𝑢
𝑖 = 0.

Поэтому уравнения равновесия выполнены.
Постоянная 𝑐 находится из граничных условий (3.59): 𝑐 = 𝑏/2𝜋. Таким образом,

векторное поле смещений для винтовой дислокации имеет вид

𝑢𝑧 = 𝑢𝑧 =
𝑏

2𝜋
𝜙. (3.60)

Как видим, результат не зависит от упругих свойств среды.
Теперь вычислим метрику среды с винтовой дислокацией. Пусть

{𝑥𝜇} = (𝑟, 𝜙, 𝑧) ∈ R3

– цилиндрическая система координат в среде после создания дислокации. Из опре-
деления вектора смещений (3.1) следует, что до создания дислокации каждая точка
среды имела имела декартовы координаты

{𝑦𝑖} =
(︀
𝑥, 𝑦, 𝑧 − 𝑏𝜙/(2𝜋)

)︀
∈ R3,

где
𝑥 := 𝑟 cos𝜙, 𝑦 := 𝑟 sin𝜙.

Теперь вычислим репер по формуле (3.11)

𝑒𝜇
𝑖 := 𝜕𝜇𝑦

𝑖 =

⎛⎝ cos𝜙 sin𝜙 0
−𝑟 sin𝜙 𝑟 cos𝜙 − 𝑏

2𝜋

0 0 1

⎞⎠ . (3.61)

Определитель репера равен det 𝑒𝜇
𝑖 = 𝑟 как и в плоском случае.

Заметим, что вектор смещений (3.60) имеет скачок при 𝜙 = 2𝜋. При его диффе-
ренцировании по углу 𝜙 возникает 𝛿-функция, которую мы отбросили в соответствии
с общим рецептом раздела 3.2. В результате получили репер, который является глад-
ким всюду за исключением начала координат, где он вырожден.

Репер (3.140) определяет метрику винтовой дислокации

𝑔𝜇𝜈 := 𝑒𝜇
𝑖𝑒𝜈

𝑗𝛿𝑖𝑗 =

⎛⎜⎝1 0 0

0 𝑟2 + 𝑏2

4𝜋2 − 𝑏
2𝜋

0 − 𝑏
2𝜋

1

⎞⎟⎠ . (3.62)

Ее определитель равен det 𝑔𝜇𝜈 = 𝑟2, как и следовало ожидать.
Теперь вычислим компоненты тензора кручения. Здесь надо проявить осторож-

ность, т.к. необходимо уловить 𝛿-функцию на оси 𝑧 := 𝑥3. Проведем вычисления в
декартовых координатах, потому что цилиндрические координаты не подходят, по-
скольку они вырождены на оси 𝑧.

Пусть 𝑥 := (𝑥, 𝑦) = (𝑟, 𝜙 – двумерный вектор в плоскости, перпендикулярной оси
дислокации. Напомним, что фундаментальное решение 𝐺 (функция Грина) уравне-
ния Лапласа на плоскости

△𝐺 = 𝑏𝛿(𝑥),
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где △ := 𝜕2𝑥𝑥 + 𝜕2𝑦𝑦 и 𝛿(𝑥) – двумерная 𝛿-функция, имеет вид (см., например, [?])

𝐺 =
𝑏

2𝜋
ln

1

𝑟
. (3.63)

Его частные производные имеют вид

𝐺𝑥 = − 𝑏

2𝜋

𝑥

𝑟2
, 𝐺𝑦 = − 𝑏

2𝜋

𝑦

𝑟2
.

Репер для винтовой дислокации в декартовой системе координат {𝑥𝜇} = (𝑥, 𝑦, 𝑧)
можно выразить через функцию Грина

𝑒𝜇
𝑖 = 𝜕𝜇𝑦

𝑖 =

⎛⎜⎝1 0 𝑏
2𝜋

𝑦
𝑟2

0 1 − 𝑏
2𝜋

𝑦
𝑟2

0 0 1

⎞⎟⎠ =

⎛⎝1 0 −𝐺𝑦

0 1 𝐺𝑥

0 0 1

⎞⎠ . (3.64)

При нулевой SO(3) связности, 𝜔𝑖𝑗
𝜇 = 0, тензор кручения (3.14) имеет вид

𝑇𝜇𝜈
𝑖 = 𝜕𝜇𝑒𝜈

𝑖 − 𝜕𝜈𝑒𝜇
𝑖.

Прямые вычисления показывают, что для репера (3.64) все компоненты кручения
равны нулю за исключением одной:

𝑇𝑥𝑦
𝑧 = 𝐺𝑥𝑥 +𝐺𝑦𝑦 = △𝐺 = 𝑏𝛿(𝑥). (3.65)

Его интегрирование по плоскости 𝑥, 𝑦 дает вектор Бюргерса

𝑏𝑧 =

∫︁
𝑑𝑥𝑑𝑦 𝑇𝑥𝑦

𝑧 = 𝑏,

что согласуется с общим определением (3.15).

3.7.2 Клиновая дислокация

Под клиновой дислокацией мы понимаем бесконечную упругую среду, которая то-
пологически совпадает с евклидовым пространством R3 и построена следующим об-
разом. Берется бесконечная упругая среда без дефектов из которой вырезается бес-
конечный клин с углом −2𝜋𝜃, 𝜃 < 0. Для определенности мы считаем, что острие
клина совпадает с осью 𝑧 := 𝑥3 – осью (ядром) дислокации (рис. 3.9). Затем края
разреза симметрично сдвигаются и склеиваются. После этого среда под действием
упругих сил приходит в равновесное состояние. Если клин из среды вырезается, то
угол дефицита будем считать отрицательным: −1 < 𝜃 < 0. При положительных 𝜃
клин вставляется. Таким образом, первоначально упругая среда занимает область,
бо́льшую или меньшую евклидова пространства R3 в зависимости от знака угла де-
фицита 𝜃, которая в цилиндрических координатах 𝑟, 𝜙, 𝑧 задается неравенствами:

0 < 𝑟 <∞, 0 < 𝜙 < 2𝜋𝛼, −∞ < 𝑧 <∞, 𝛼 := 1 + 𝜃. (3.66)

Отметим, что клиновую дислокацию часто называют дисклинацией. В нашем
подходе такое название представляется неестественным, поскольку клиновая дисло-
кация связана с нетривиальным кручением. Вдобавок термин дисклинация исполь-
зуется для дефектов спиновой структуры.
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Рис. 3.9: Клиновая дислокация с углом дефицита 2𝜋𝜃. При отрицательных и поло-
жительных 𝜃 клин соответственно вырезается и вставляется.

Перейдем к математической постановке задачи для клиновой дислокации в рам-
ках теории упругости. Чтобы избежать расходящихся выражений, которые возника-
ют для бесконечной среды, будем считать, что клиновая дислокация представляет
собой цилиндр конечного радиуса 𝑎. Эта задача обладает трансляционной инвари-
антностью вдоль оси 𝑧 и вращательной инвариантностью в плоскости 𝑥, 𝑦. Поэтому
будем использовать цилиндрическую систему координат. Пусть

𝑢𝑖 = (𝑢𝑟, 𝑢𝜙, 𝑢𝑧) (3.67)

– компоненты ковектора смещения относительно ортонормального базиса в цилин-
дрической системе координат. Этот ковектор в области (3.66) удовлетворяет уравне-
нию равновесия, которое следует после подстановки (3.3) в уравнение (3.2),

(1 − 2𝜎)△𝑢𝑖 +
∘
∇𝑖

∘
∇𝑗𝑢

𝑗 = 0, (3.68)

где
∘
∇𝑖 – ковариантная производная для плоской евклидовой метрики в рассматри-

ваемой системе координат.
Выражения для дивергенции и лапласиана от ковектора смещения в цилиндри-

ческой системе координат были получены ранее (??)–(??). Исходя из симметрии за-
дачи, будем искать решение уравнения (3.68) в виде

𝑢𝑟 = 𝑢(𝑟), 𝑢𝜙 = 𝐴(𝑟)𝜙, 𝑢𝑧 = 0, (3.69)

где 𝑢(𝑟) и 𝐴(𝑟) – две неизвестные функции только от радиуса. Поставим следующие
граничные условия:

𝑢𝑟|𝑟=0 = 0, 𝑢𝜙|𝑟=0 = 0, 𝑢𝜙|𝜙=0 = 0, 𝑢𝜙|𝜙=2𝜋𝛼 = −2𝜋𝜃𝑟, 𝜕𝑟𝑢𝑟|𝑟=𝑎 = 0. (3.70)

Первые четыре условия являются геометрическими и соответствуют процессу созда-
ния дислокации. Первые два условия – это условие отсутствия смещения оси дис-
локации. Третье и четвертое условия описывают склейку берегов разреза в линей-
ном приближении. Последнее условие имеет простой физический смысл: отсутствие
внешних сил на границе среды.

Неизвестную функцию𝐴(𝑟) находим из предпоследнего граничного условия (3.70)

𝐴(𝑟) = − 𝜃

1 + 𝜃
𝑟.
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Теперь нужно решить уравнения равновесия (3.68). Явные выражения для лапла-
сиана ковекторного поля и дивергенции в цилиндрической системе координат были
получены ранее (??)–(??). Прямая подстановка векторного поля смещений (3.69)
показывает, что 𝜙 и 𝑧 компоненты уравнения равновесия (3.68) тождественно удо-
влетворяются, а радиальная компонента сводится к уравнению

𝜕𝑟(𝑟𝜕𝑟𝑢) − 𝑢

𝑟
= 𝐷, 𝐷 := −1 − 2𝜎

1 − 𝜎

𝜃

1 + 𝜃
= const,

правая часто которого определяется углом дефицита и коэффициентом Пуассона.
Общее решение этого уравнения зависит от двух постоянных интегрирования

𝑢 =
𝐷

2
𝑟 ln𝑟 + 𝑐1𝑟 +

𝑐2
𝑟
, 𝑐1,2 = const.

Постоянная интегрирования 𝑐2 = 0 в силу граничного условия в нуле. Константу
𝑐1 находим из последнего граничного условия (3.70). В итоге получаем известное
решение рассматриваемой задачи [?]

𝑢𝑟 =
𝐷

2
𝑟 ln

𝑟

e𝑎
,

𝑢𝜙 = − 𝜃

1 + 𝜃
𝑟𝜙.

(3.71)

В выражении для 𝑢𝑟 буква e обозначает основание натурального логарифма. От-
метим, что радиальная компонента вектора смещений в пределе 𝑎→ ∞ расходится.
Это значит, что для описания клиновой дислокации в рамках теории упругости необ-
ходимо рассматривать цилиндр конечного радиуса.

Линейная теория упругости применима в области малых относительных удлине-
ний, которые для клиновой дислокации равны

𝑑𝑢𝑟
𝑑𝑟

= − 𝜃

1 + 𝜃

1 − 2𝜎

2(1 − 𝜎)
ln
𝑟

𝑎
,

1

𝑟

𝑑𝑢𝜙
𝑑𝜙

= − 𝜃

1 + 𝜃
.

Это значит, что мы вправе ожидать верных результатов для поля смещений при
малых углах дефицита (𝜃 ≪ 1) и вблизи края цилиндра (𝑟 ∼ 𝑎).

Найдем метрику, индуцированную клиновой дислокацией, в линейном прибли-
жении по углу дефицита 𝜃. Вычисления можно провести, воспользовавшись общей
формулой (3.6) или известным выражением для вариации формы метрики (см. раз-
дел ??)

𝛿𝑔𝜇𝜈 = −
∘
∇𝜇𝑢𝜈 −

∘
∇𝜈𝑢𝜇. (3.72)

После несложных вычислений по формуле (3.72), получим следующее выражение
для двумерной части метрики в плоскости 𝑥, 𝑦:

𝑑𝑙2 =

(︂
1 + 𝜃

1 − 2𝜎

1 − 𝜎
ln
𝑟

𝑎

)︂
𝑑𝑟2 + 𝑟2

(︂
1 + 𝜃

1 − 2𝜎

1 − 𝜎
ln
𝑟

𝑎
+ 𝜃

1

1 − 𝜎

)︂
𝑑𝜙2. (3.73)

С этой метрикой мы сравним метрику, полученную путем решения трехмерных урав-
нений Эйнштейна в разделе 3.8.2.
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3.7.3 Краевая дислокация

В природе клиновые дислокации встречаются относительно редко, т.к. требуют до-
бавления или удаления большого количества вещества, что связано с большими энер-
гетическими затратами. Тем не менее их изучение представляет большой интерес, т.к.
другие прямолинейные дислокации можно представить в виде суперпозиции клино-
вых дислокаций. В этом смысле клиновые дислокации являются элементарными.
Покажем это на примере краевой дислокации – одним из наиболее распространен-
ных дефектов.

Краевая дислокация, ядро которой совпадает с осью 𝑧, изображена на рис. 3.10a.
Она возникает в результате разреза среды по полуплоскости 𝑦 = 0, 𝑥 > 0, сдвига

Рис. 3.10: Краевая дислокация с вектором Бюргерса 𝑏, направленным к оси дислока-
ции (a). Краевая дислокация, как диполь, состоящий из двух клиновых дислокаций
с положительным и отрицательным углом дефицита (b).

нижнего берега разреза к оси 𝑧 на постоянный (вдали от ядра дислокации) вектор
Бюргерса 𝑏 с последующей склейкой берегов разреза. Чтобы найти поле смещений
краевой дислокации можно решить соответствующую краевую задачу для уравне-
ния равновесия (3.68) [?]. Однако, зная явный вид вектора смещения для клиновой
дислокации, мы поступим иначе.

Краевая дислокация представляет собой диполь, состоящий из двух близко рас-
положенных параллельных клиновых дислокаций с положительным 2𝜋𝜃 и отрица-
тельным −2𝜋𝜃 углом дефицита, как показано на рис. 3.10b. Будем считать, что оси
первой и второй клиновой дислокации параллельны оси 𝑧 и пересекают плоскость
𝑥, 𝑦 соответственно в точках с координатами (0, ℎ) и (0,−ℎ). Расстояние между ося-
ми клиновых дислокаций равно 2ℎ. Тем самым мы заменили бесконечную среду на
цилиндр конечного радиуса 𝑎 ≫ ℎ. Ниже мы увидим, что окончательные ответы не
зависят от 𝑎 и могут быть продолжены на все пространство.

Из выражений для поля смещений (3.71) следует, что вдали от начала координат
(𝑟 ≫ ℎ) поле смещений клиновых дислокаций с точностью до членов первого порядка
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малости по 𝜃 и ℎ/𝑟 имеет вид

𝑢(1)𝑥 ≈ −𝜃
[︂

1 − 2𝜎

2(1 − 𝜎)
𝑥 ln

𝑟 − ℎ sin𝜙

e𝑅
− (𝑦 − ℎ)

(︂
𝜙− ℎ cos𝜙

𝑟

)︂]︂
,

𝑢(1)𝑦 ≈ −𝜃
[︂

1 − 2𝜎

2(1 − 𝜎)
(𝑦 − ℎ) ln

𝑟 − ℎ sin𝜙

e𝑅
+ 𝑥

(︂
𝜙− ℎ cos𝜙

𝑟

)︂]︂
,

(3.74)

𝑢(2)𝑥 ≈ 𝜃

[︂
1 − 2𝜎

2(1 − 𝜎)
𝑥 ln

𝑟 + ℎ sin𝜙

e𝑅
− (𝑦 + ℎ)

(︂
𝜙+

ℎ cos𝜙

𝑟

)︂]︂
,

𝑢(2)𝑦 ≈ 𝜃

[︂
1 − 2𝜎

2(1 − 𝜎)
(𝑦 + ℎ) ln

𝑟 + ℎ sin𝜙

e𝑅
+ 𝑥

(︂
𝜙+

ℎ cos𝜙

𝑟

)︂]︂
.

(3.75)

Поскольку уравнения теории упругости линейны, то для нахождения поля смеще-
ний краевой дислокации достаточно сложить поля смещений (3.74) и (3.75). После
несложных вычислений с точностью до смещения всей среды как целого на посто-
янный вектор вдоль оси 𝑦, получим поле смещений для краевой дислокации

𝑢𝑥 = 𝑏

[︂
arctg

𝑦

𝑥
+

1

2(1 − 𝜎)

𝑥𝑦

𝑥2 + 𝑦2

]︂
,

𝑢𝑦 = −𝑏
[︂

1 − 2𝜎

2(1 − 𝜎)
ln
𝑟

e𝑎
+

1

2(1 − 𝜎)

𝑥2

𝑥2 + 𝑦2

]︂
,

(3.76)

где для модуля вектора Бюргерса введено обозначение

𝑏 := |𝑏| = −2ℎ𝜃.

Этот результат совпадает с выражением для поля смещений, полученного путем пря-
мого решения уравнений теории упругости [?]. Тем самым мы доказали, что краевая
дислокация является диполем, состоящим их двух параллельных клиновых дисло-
каций с углами дефицита противоположных знаков.

Найдем метрику, индуцированной краевой дислокацией. Используя формулу (3.72),
в линейном приближении по 𝜃 и ℎ/𝑟 получим метрику в плоскости 𝑥, 𝑦

𝑑𝑙2 =

(︂
1 +

1 − 2𝜎

1 − 𝜎

𝑏

𝑟
sin𝜙

)︂(︀
𝑑𝑟2 + 𝑟2𝑑𝜙2

)︀
− 2𝑏 cos𝜙

1 − 𝜎
𝑑𝑟𝑑𝜙. (3.77)

Заметим, что индуцированная метрика для краевой дислокации не зависит от ради-
уса цилиндра 𝑎 и, следовательно, может быть продолжена на всю плоскость 𝑥, 𝑦.

3.8 Линейные дислокации в геометрической теории
дефектов

Теперь опишем простейшие дислокации в рамках геометрической теории дефектов
и сравним полученные результатами с теми, которые были получены в теории упру-
гости в разделе 3.7.

3.8.1 Параллельные клиновые дислокации

В настоящем разделе описано произвольное распределение параллельных прямоли-
нейных клиновых дислокаций в рамках геометрической теории дефектов. Решение
этой задачи в теории упругости неизвестно.
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При отсутствии дисклинаций (𝑅𝜇𝜈𝑖
𝑗 = 0) SO(3) связность является чистой ка-

либровкой, и уравнения равновесия для SO(3) связности (3.29) тождественно удо-
влетворяются. Явный вид SO(3) связности в этом случае однозначно определяется
полем спиновой структуры 𝜔𝑖𝑗. В силу лоренцевой калибровки (3.44) поле 𝜔𝑖𝑗 удо-
влетворяет уравнениям главного кирального поля. Решение этой системы уравнений
задает тривиальную SO(3) связность. Таким образом, при отсутствии дисклинаций
задача сводится к решению уравнений Эйнштейна для репера в упругой калибровке
и решению модели главного кирального поля для описания спиновой структуры. По-
сле этого можно вычислить тензор кручения по формуле (??), который определяет
поверхностную плотность вектора Бюргерса. Для простоты положим 𝜔𝜇

𝑖𝑗 = 0.
Поскольку дисклинации отсутствуют (тензор кривизны равен нулю), то мы имеем

пространство абсолютного параллелизма. Тогда вся геометрия определяется репером
𝑒𝜇

𝑖, который однозначно задает тензор кручения (??) при нулевой SO(3) связности.
Здесь мы предполагаем, что тривиальная SO(3) связность равна нулю. Репер 𝑒𝜇𝑖 удо-
влетворяет трехмерным уравнениям Эйнштейна с евклидовой сигнатурой метрики,
которые следуют из выражения для свободной энергии (3.35) при 𝑅𝜇𝜈𝑗

𝑖 = 0,

̃︀𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈 ̃︀𝑅 = −1

2
𝑇𝜇𝜈 . (3.78)

Здесь в правую часть уравнений Эйнштейна мы добавили источник дислокаций 𝑇𝜇𝜈
(в гравитации, это – тензор энергии-импульса материи).

Отметим, что без источника дислокаций модель была бы тривиальной. Действи-
тельно, при 𝑇𝜇𝜈 = 0 из уравнений Эйнштейна (3.78) следует, что скалярная кривизна
и тензор Риччи равны нулю: ̃︀𝑅 = 0, ̃︀𝑅𝜇𝜈 = 0. Поскольку в трехмерном пространст-
ве полный тензор кривизны взаимно однозначно определяется тензором Риччи (??),
то отсюда следует, что без источников он также обращается в нуль. Обращение в
нуль полного тензора кривизны и означает тривиальность модели, поскольку в этом
случае дефектов просто нет. Аналогичное утверждение хорошо известно в грави-
тации. Обычно его формулируют следующим образом: “Трехмерная гравитация не
описывает динамических, т.е. распространяющихся, степеней свободы”.

Для наших целей необходимо найти решение уравнений Эйнштейна (3.78) для
произвольного числа клиновых дислокаций. Уравнения Эйнштейна представляют
собой систему нелинейных дифференциальных уравнений в частных производных
второго порядка. Точных решений, даже в трехмерном пространстве, известно не
так много. Замечательное точное решение, описывающее произвольное статическое
распределение точечных частиц хорошо известно в трехмерной гравитации для мет-
рики лоренцевой сигнатуры (+−−) [?, ?, ?]. Получим аналог этого решения для ев-
клидовой сигнатуры метрики и покажем, что в геометрической теории дефектов оно
описывает произвольное распределение параллельных клиновых дислокаций. Тем
самым сначала мы рассмотрим общий случай произвольного числа клиновых дисло-
каций, а затем подробно остановимся на интересующем нас примере одной клиновой
дислокации. Это сделано намеренно, поскольку решение в более общем случае не
вносит существенных усложнений. В то же время произвольное распределение кли-
новых дислокаций представляет гораздо больший интерес для приложений. Так, в
предыдущем разделе было показано, что краевая дислокация представляется дипо-
лем, состоящим из двух параллельных клиновых дислокаций разных знаков.

Рассмотрим упругую среду с произвольным распределением параллельных кли-
новых дислокаций. Выберем систему координат таким образом, чтобы ось 𝑧 := 𝑥3

была параллельна осям дислокаций, а оси {𝑥𝛼} = {𝑥, 𝑦}, 𝛼 = 1, 2 были перпендику-
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лярны оси 𝑧. Тогда метрика примет блочно диагональный вид

𝑑𝑠2 = 𝑑𝑙2 +𝑁2𝑑𝑧2, (3.79)

где
𝑑𝑙2 := 𝑔𝛼𝛽𝑑𝑥

𝛼𝑑𝑥𝛽

– двумерная метрика на плоскости 𝑥, 𝑦. Благодаря трансляционной симметрии вдоль
оси 𝑧 двумерная метрика 𝑔𝛼𝛽(𝑥, 𝑦) и функция 𝑁(𝑥, 𝑦) не зависят от 𝑧. При этом мы
не предполагаем никакой вращательной симметрии.

Отвлекаясь от физической аргументации, можно сказать проще. Рассмотрим блоч-
но диагональную метрику вида (3.79), которая обладает трансляционной инвариант-
ностью вдоль оси 𝑧. А затем покажем, что соответствующее решение уравнений Эйн-
штейна действительно описывает произвольное распределение параллельных клино-
вых дислокаций.

Тензор кривизны для метрики (3.79) имеет следующие компоненты:

̃︀𝑅𝛼𝛽𝛾
𝛿 = 𝑅

(2)
𝛼𝛽𝛾

𝛿, ̃︀𝑅𝛼𝑧𝛾
𝑧 =

1

𝑁
∇𝛼∇𝛾𝑁,̃︀𝑅𝛼𝛽𝛾

𝑧 = ̃︀𝑅𝛼𝑧𝛾
𝛿 = 0,

где 𝑅(2)
𝛼𝛽𝛾

𝛿 – тензор кривизны для двумерной метрики 𝑔𝛼𝛽, и ∇𝛼 – двумерная ковари-
антная производная с символами Кристоффеля также для двумерной метрики 𝑔𝛼𝛽.
Тензор Риччи с скалярная кривизна имеют следующие компоненты:

̃︀𝑅𝛼𝛽 = 𝑅
(2)
𝛼𝛽 +

1

𝑁
∇𝛼∇𝛽𝑁,̃︀𝑅𝛼𝑧 = 0,̃︀𝑅𝑧𝑧 = 𝑁∇𝛼∇𝛼𝑁,̃︀𝑅 = 𝑅(2) +

2

𝑁
∇𝛼∇𝛼𝑁,

где ∇𝛼 := 𝑔𝛼𝛽∇𝛽.
Выберем источник дислокаций в следующем виде

𝑇𝑧𝑧 =
4𝜋√︀
𝑔(2)

n∑︁
i=1

𝜃i𝛿(𝑟 − 𝑟i),

𝑇𝛼𝛽 = 𝑇𝛼𝑧 = 𝑇𝑧𝛼 = 0,

(3.80)

где 𝛿(𝑟 − 𝑟i) := 𝛿(𝑥 − 𝑥i)𝛿(𝑦 − 𝑦i) – двумерная 𝛿-функция на плоскости 𝑥, 𝑦 с но-
сителем в точке 𝑟i(𝑥i, 𝑦i). Появление множителя 𝑔(2) := det 𝑔𝛼𝛽 перед знаком суммы
связано с тем, что 𝛿-функция с точки зрения общих преобразований координат явля-
ется не функцией, а скалярной плотностью. Ниже показано, что решение уравнений
Эйнштейна с таким источником описывает n клиновых параллельных дислокаций
с углами дефицита 𝜃i, которые пересекают плоскость 𝑥, 𝑦 в точках (𝑥i, 𝑦i). В трех-
мерной гравитации такой источник соответствует частицам с массами 𝑚i := 2𝜋𝜃i,
покоящимся в точках 𝑟i.

Уравнения Эйнштейна (3.78) с источником (3.80) для блочно диагональной мет-
рики (3.79) сводятся к четырем уравнениям:

∇𝛼∇𝛽𝑁 − 𝑔𝛼𝛽∇𝛾∇𝛾𝑁 = 0, (3.81)

−1

2
𝑁3𝑅(2) = − 2𝜋√︀

𝑔(2)

∑︁
i=1

𝜃i𝛿(𝑟 − 𝑟i), (3.82)
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где 𝑅(2) – двумерная скалярная кривизна.
Метрика вида (3.79) все еще инвариантна относительно преобразований коор-

динат на плоскости 𝑥, 𝑦. Используя эту оставшуюся инвариантность, зафиксируем
конформную калибровку на плоскости (локально это всегда возможно)

𝑔𝛼𝛽 = e2𝜑𝛿𝛼𝛽, (3.83)

где 𝜑(𝑥, 𝑦) – некоторая функция.
В конформной калибровке уравнение (3.81) принимает вид

𝜕𝛼𝜕𝛽𝑁 = 0.

При постоянных граничных условиях для 𝑁 на границе плоскости 𝑥, 𝑦 это уравне-
ние имеет единственное решение 𝑁 = const. Изменив масштаб координаты 𝑧, можно
положить 𝑁 = 1 без ограничения общности. Тогда уравнение (3.82) сводится к урав-
нению Пуассона

△𝜑 = 2𝜋
∑︁

i

𝜃i𝛿(𝑟 − 𝑟i), (3.84)

которое имеет хорошо известное общее решение (см., например, [?]

𝜑 =
∑︁

i

𝜃i ln|𝑟 − 𝑟i| +
1

2
ln𝐶, 𝐶 = const > 0.

Следовательно, метрика в плоскости 𝑥, 𝑦 имеет вид

𝑑𝑙2 = 𝐶
∏︁
i

|𝑟 − 𝑟i|2𝜃i(𝑑𝑟2 + 𝑟2𝑑𝜙2), 0 < 𝑟 <∞, 0 < 𝜙 < 2𝜋, (3.85)

где полярные координаты 𝑟, 𝜙 покрывают всю плоскость R2 и не более того (что
важно !). Любое решение уравнений Эйнштейна определено с точностью до выбора
системы координат, поскольку уравнения ковариантны. Воспользуемся этим и поло-
жим 𝐶 = 1, чего всегда можно добиться путем выбора масштаба 𝑟.

Таким образом, метрика

𝑑𝑠2 =
∏︁
i

|𝑟 − 𝑟i|2𝜃i(𝑑𝑟2 + 𝑟2𝑑𝜙2) + 𝑑𝑧2 (3.86)

является точным решением нелинейных уравнений Эйнштейна, описывающим, как
мы увидим, произвольное распределение параллельных клиновых дислокаций. Фи-
зический смысл данного решения будет ясен из дальнейшего рассмотрения.

Отметим, что переход к непрерывному распределению дислокаций в геометриче-
ском подходе прост. Для этого вместо 𝛿-образных источников в правую часть урав-
нений Эйнштейна нужно подставить непрерывное распределение источников дисло-
каций. Простейшие примеры будут рассмотрены в разделе 3.8.4.

В заключение данного раздела вычислим плотность энергии произвольного рас-
пределения клиновых дислокаций. По определению она равна интегралу от плотно-
сти свободной энергии

𝐸 :=

∫︁
𝑑𝑥𝑑𝑦𝑑𝑧

√
𝑔 ̃︀𝑅 =

∫︁
𝑑𝑧

∫︁
𝑑𝑥𝑑𝑦 𝑁2 det

√︀
𝑔(2)

(︂
𝑅(2) +

2

𝑁
∇𝛼∇𝛼𝑁

)︂
=

=

∫︁
𝑑𝑧

∫︁
𝑑𝑥𝑑𝑦 4𝜋

∑︁
i

𝜃i𝛿(𝑟 − 𝑟i) = 4𝜋

∫︁
𝑑𝑧

∑︁
i

𝜃i,

где мы воспользовались равенством 𝑁 = 1 и уравнением равновесия (3.82). Таким
образом, линейная плотность энергии клиновых дислокаций с точностью до посто-
янной равна сумме углов дефицита всех дислокаций.
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3.8.2 Клиновая дислокация в геометрическом подходе

Чтобы показать, что метрика (3.85) действительно описывает произвольное распре-
деление клиновых дислокаций, рассмотрим подробнее одну клиновую дислокацию с
источником в начале координат,

𝑇𝑧𝑧 :=
4𝜋√︀
𝑔(2)

𝜃𝛿(𝑟). (3.87)

Соответствующая двумерная метрика (3.85) при 𝐶 = 1 имеет вид

𝑑𝑙2 = 𝑟2𝜃(𝑑𝑟2 + 𝑟2𝑑𝜙2). (3.88)

Перейдем в новую систему координат

𝑟 :=
1

𝛼
𝑟𝛼, 𝜙 := 𝛼𝜙, 𝛼 := 1 + 𝜃, (3.89)

в которой метрика становится евклидовой

𝑑𝑙2 = 𝑑𝑟2 + 𝑟2𝑑𝜙2. (3.90)

Однако теперь область изменения полярного угла отличается от 2𝜋: 0 < 𝜙 < 2𝜋𝛼, и
покрывает плоскость 𝑥, 𝑦 с вырезанным или добавленным клином 2𝜋𝜃, что зависит
от знака угла дефицита 𝜃.

Поскольку в новой системе координат 𝑟, 𝜙 метрика совпадает с евклидовой, то
здесь мы имеем евклидову плоскость с вырезанным или добавленным клином, т.к.
угол 𝜙 меняется в интервале (0, 2𝜋𝛼). Переход к координатам 𝑟, 𝜙 (3.89) обознача-
ет склейку берегов образовавшегося клина, что соответствует конусу. Поэтому обе
метрики (3.88) и (3.90) описывают один и тот же геометрический объект – кониче-
скую особенность. Очевидно, что тензоры кручения и кривизны равны нулю всюду,
за исключением начала координат.

Возникновение конической особенности в точности совпадает с созданием кли-
новой дислокации в теории дефектов. Нетрудно убедиться в том, что общее реше-
ние (3.85) описывает произвольное распределение конических особенностей с углами
дефицита 𝜃i, расположенными в точках 𝑟i. Следовательно, это решение описывает
произвольное распределение параллельных клиновых дислокаций.

В дальнейшем нам понадобится еще один вид метрики конической особенности.
Для этого совершим преобразование координат

𝑓 := 𝛼𝑟, 𝜙 :=
1

𝛼
𝜙. (3.91)

Тогда метрика (3.90) примет вид

𝑑𝑙2 =
1

𝛼2
𝑑𝑓 2 + 𝑓 2𝑑𝜙2, 𝛼 := 1 + 𝜃, (3.92)

где 0 < 𝑓 <∞ и 0 < 𝜙 < 2𝜋. Это – еще одна часто используемая форма метрики для
конической особенности.

С качественной точки зрения создание клиновой дислокации совпадает с опре-
делением конической особенности. Однако существует количественное расхождение,
поскольку метрика (3.92) зависит только от угла дефицита 𝜃 и не может совпадать



124 ГЛАВА 3. ГЕОМЕТРИЧЕСКАЯ ТЕОРИЯ ДЕФЕКТОВ

с индуцированной метрикой (3.73), полученной в рамках теории упругости. Это рас-
хождение связано с тем, что в теории упругости после вырезания клина и склей-
ки берегов разреза (создания конической сингулярности) мы требуем, чтобы среда
пришла в равновесие, т.е. вектор смещения в положении равновесия удовлетворял
уравнениям равновесия. В то же время для конической особенности плоскость 𝑥, 𝑦
после склейки может быть деформирована произвольным образом. С формальной
точки зрения это проявляется в том, что индуцированная метрика (3.73), получен-
ная в рамках теории упругости, явно зависит от коэффициента Пуассона, который
отсутствует в теории гравитации.

Для решения этой проблемы в [?] была предложена упругая калибровка. Выберем
упругую калибровку (3.43), как самую простую в случае клиновой дислокации. Эту
задачу можно решать двумя способами. Во-первых, калибровочное условие можно
подставить непосредственно в уравнения Эйнштейна. Во-вторых, можно найти ре-
шение в какой-то удобной системе координат, а затем найти такое преобразование
координат, чтобы было выполнено калибровочное условие.

Поскольку точное решение для метрики известно (3.92), то проще следовать вто-
рому пути. Метрике (3.92) можно поставить в соответствие репер

𝑒𝑟
𝑟 =

1

𝛼
, 𝑒𝜙

𝜙 = 𝑓.

Здесь шляпка над индексом означает, что он относится к ортонормальной системе
координат, а индекс без шляпки является координатным. Компоненты этого репера
являются квадратными корнями из соответствующих компонент метрики и поэтому
имеют симметричное линейное приближение (3.41). Поскольку клиновая дислокация
инвариантна относительно вращений в плоскости 𝑥, 𝑦, то совершим преобразование
радиальной координаты 𝑓 ↦→ 𝑓(𝑟). После преобразования компоненты репера примут
вид

𝑒𝑟
𝑟 =

𝑓 ′

𝛼
, 𝑒𝜙

𝜙 = 𝑓, (3.93)

где штрих обозначает дифференцирование по 𝑟. Репер, соответствующий евклидовой
метрике в цилиндрической системе координат, выберем в виде

∘
𝑒𝑟

𝑟 = 1,
∘
𝑒𝜙

𝜙 = 𝑟. (3.94)

Ему соответствуют символы Кристоффеля
∘
Γ𝜇𝜈

𝜌 и SO(3) связность ∘
𝜔𝜇𝑖

𝑗, которые
определяют ковариантную производную. Выпишем только нетривиальные компонен-
ты:

∘
Γ𝑟𝜙

𝜙 =
∘
Γ𝜙𝑟

𝜙 =
1

𝑟
,

∘
Γ𝜙𝜙

𝑟 = −𝑟,
∘
𝜔𝜙𝑟

𝜙 = − ∘
𝜔𝜙𝜙

𝑟 = 1.

Подстановка репера (3.93) в калибровочное условие (3.43) приводит к дифференци-
альному уравнению Эйлера на функцию перехода

𝑓 ′′

𝛼
+
𝑓 ′

𝛼𝑟
− 𝑓

𝑟2
+

𝜎

1 − 2𝜎

(︂
𝑓 ′′

𝛼
+
𝑓 ′

𝑟
− 𝑓

𝑟2

)︂
= 0. (3.95)

Его общее решение зависит от двух постоянных 𝐶1,2:

𝑓 = 𝐶1𝑟
𝛾1 + 𝐶2𝑟

𝛾2 , (3.96)
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где показатели степени 𝛾1,2 определяются квадратным уравнением

𝛾2 + 2𝛾𝜃𝑏− 𝛼 = 0, 𝑏 :=
𝜎

2(1 − 𝜎)
,

которое при 𝜃 > −1 имеет действительные корни разных знаков: положительный
корень 𝛾1 и отрицательный корень 𝛾2.

График функции 𝑏(𝜎) приведен на рис. 3.11 слева. Напомним, что на коэффици-
ент Пуассона имеются термодинамические ограничения −1 ≤ 𝜎 ≤ 1/2 [?]. Поэтому
значения 𝑏 ограничены отрезком −1/4 ≤ 𝑏 ≤ 1/2.

Рис. 3.11: Слева. График функции 𝑏(𝜎). Справа. Графики функций 𝛾(𝜃) для отри-
цательных −1/4 < 𝑏 < 0, нулевого 𝑏 = 0 и положительных значений 0 < 𝑏 < 1/2.

Для фиксирования постоянных интегрирования наложим граничные условия на
репер

𝑒𝑟
𝑟
⃒⃒
𝑟=𝑎

= 1, 𝑒𝜙
𝜙
⃒⃒
𝑟=0

= 0. (3.97)

Первое граничное условие соответствует последнему граничному условию на век-
тор смещения (3.70) (отсутствие внешних сил на поверхности цилиндра), а второе –
отсутствию угловой составляющей у тензора деформации в ядре дислокации. Урав-
нения (3.97) задают постоянные интегрирования

𝐶1 =
𝛼

𝛾1𝑎𝛾1−1
𝐶2 = 0. (3.98)

Таким образом, полученный репер определяет метрику

𝑑𝑙2 =
(︁𝑟
𝑎

)︁2𝛾−2
(︂
𝑑𝑟2 +

𝛼2𝑟2

𝛾2
𝑑𝜙2

)︂
, (3.99)

где мы, для простоты, отбросили у положительного корня 𝛾1 индекс:

𝛾 := −𝜃𝑏+
√
𝜃2𝑏2 + 1 + 𝜃 > 0.

Это и есть решение поставленной задачи. Найденное решение справедливо при всех
углах дефицита 𝜃 и всех 0 < 𝑟 < 𝑎. Полученная метрика зависит от трех постоянных:
𝜃, 𝜎 и 𝑎. Зависимость от угла дефицита 𝜃 появилась благодаря тому, что он входит в
правую часть уравнений Эйнштейна (3.78). Зависимость от коэффициента Пуассона
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возникла вследствие упругой калибровки (3.43), и, наконец, зависимость от радиуса
цилиндра следует из граничного условия (3.97).

На рис. 3.11 справа приведены графики функций 𝛾(𝜃) для отрицательных −1/4 <
𝑏 < 0, нулевого 𝑏 = 0 и положительных значений 0 < 𝑏 < 1/2. Для положительных
значений 𝑏 график функции имеет асимптоту 𝛾 = 1/(2𝑏) при 𝜃 → ∞.

Если клиновая дислокация отсутствует, то 𝜃 = 0, 𝛼 = 1, 𝛾 = 1, и метрика (3.99)
переходит в евклидову метрику 𝑑𝑙2 = 𝑑𝑟2 + 𝑟2𝑑𝜙2, что и следовало ожидать.

Если выполнено равенство

𝛾 = 𝛼 ⇔ 𝜃(1 + 𝜃)

1 − 𝜎
= 0, (3.100)

то метрика клиновой дислокации (3.99) примет вид

𝑑𝑙2 =
(︁𝑟
𝑎

)︁2(𝛼−1)

(𝑑𝑟2 + 𝑟2𝑑𝜙2).

Эта метрика отличается от метрики (3.88) только на постоянный множитель, ко-
торый всегда можно абсорбировать за счет растяжки радиальной координаты. По-
скольку на коэффициент Пуассона существует ограничение −1 ≤ 𝜎 ≤ 1/2, то второе
уравнение (3.100) имеет два решения: 𝜃 = 0 и 𝜃 = −1. В первом случае дислокация
отсутствует, а второй случай является предельным и соответствует удалению всего
вещества, что также не представляет интереса.

Сравним метрику (3.99), полученную в рамках геометрического подхода, с инду-
цированной метрикой из теории упругости (3.73). Во-первых, она имеет более про-
стой вид. Во-вторых, в линейном приближении по 𝜃 справедливо равенство

𝛾 ≈ 1 + 𝜃
1 − 2𝜎

2(1 − 𝜎)
, (3.101)

и метрика (3.99), как нетрудно проверить, действительно совпадает с метрикой (3.73),
полученной в рамках теории упругости. Мы видим, что индуцированная метрика
(3.73) является только линейным приближением для метрики, полученной в геомет-
рической теории дефектов, которая, к тому же, имеет более простой вид. Вне рамок
теории возмущений мы наблюдаем существенные различия. В частности, метрика
(3.73) сингулярна в начале координат, в то время как метрика (3.99), найденная вне
рамок теории возмущений, регулярна.

Тензоры напряжений и деформаций связаны между собой законом Гука (3.3). По-
скольку тензор деформаций является линейным приближением для индуцированной
метрики, то возникает экспериментальная возможность проверки формулы (3.99).
Для этого необходимо измерить поле напряжений для одиночной клиновой дисло-
кации. Тем самым геометрическая теория дефектов может быть экспериментально
подтверждена или опровергнута.

Задача восстановления поля смещений по заданной метрике сводится к решению
дифференциальных уравнений (3.6), в правую часть которых необходимо подставить
метрику (3.99), с граничными условиями (3.70). На этой задаче мы останавливаться
не будем. Отметим, что в геометрической теории дефектов сложный этап нахож-
дения вектора смещений там, где он существует, просто отсутствует и не является
необходимым.
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3.8.3 Конформные отображения

Для упрощения формул все вычисления настоящего раздела проведены в конформ-
ной калибровке для двумерной части метрики. Поэтому результаты не зависят от
коэффициента Пуассона.

В рамках геометрической теории дефектов можно решить задачу описания про-
извольного числа параллельных клиновых дислокаций с помощью теории функций
комплексного переменного. Рассмотрим трехмерное евклидово пространство R3 с де-
картовой системой координат 𝑥, 𝑦, 𝑍. Пусть произвольное число n параллельных кли-
новых дислокаций с углами дефицита 𝜃i, i = 1, . . . ,n, расположены параллельно оси
𝑍. Введем на плоскости 𝑥, 𝑦 комплексные координаты 𝑧 := 𝑥 + 𝑖𝑦. Пусть дислока-
ции пересекают плоскость 𝑥, 𝑦 в точках 𝑧i. Тогда нетривиальная двумерная часть
метрики (3.86) на плоскости комплексного переменного 𝑧 примет вид

𝑑𝑙2 = 𝑑𝑧𝑑𝑧
∏︁
i

[︀
(𝑧 − 𝑧i)(𝑧 − 𝑧i)

]︀𝜃i
, (3.102)

где черта обозначает комплексное сопряжение.
Процесс создания клиновых дислокаций можно описать, если найти такое преоб-

разование координат, где метрика станет евклидовой. Это преобразование является
конформным отображением комплексной плоскости 𝑧 ↦→ 𝑤(𝑧). Нетрудно проверить,
что евклидова метрика

𝑑𝑙2 = 𝑑𝑤𝑑𝑤̄, (3.103)

после преобразования

𝑤 := 𝑢+ 𝑖𝑣 = e𝑖𝜑
∫︁ 𝑧

𝑧0

𝑑𝜁
∏︁
i

(𝜁 − 𝑧i)
𝜃i + 𝐶. (3.104)

где 𝑧0 – некоторая фиксированная точка и 𝜑 ∈ R и 𝐶 ∈ C – произвольные числа,
переходит в метрику (3.102). Контур интегрирования в (3.104) не должен пересекать
и содержать петли вокруг точек 𝑧i. При 𝜃i > −1 интеграл в правой части сходится.
Ниже мы проанализируем этот интеграл в нескольких простых случаях.

Если все клиновые дислокации пересекают плоскость 𝑧 в точках, лежащих на оси
𝑥, т.е. im 𝑧i = 0, то интеграл (3.104) хорошо известен в теории функции комплексно-
го переменного и называется интегралом Кристоффеля–Шварца (см., например, [?]).
Он конформно отображает верхнюю полуплоскость 𝑧 > 0 на многоугольник, одна
вершина которого лежит в бесконечности, а остальные – в точках 𝑤i. Каждая точка
𝑧i отображается в вершину 𝑤i с внутренним углом 𝜋(1 + 𝜃i). В общем случае, ко-
гда im 𝑧i ̸= 0 для некоторых дислокаций, конформное отображение (3.104) является
более сложным.

Полный угол дефицита (или заряд), нормированный на 2𝜋, равен

Θ :=
n∑︁

i=1

𝜃i. (3.105)

Из физических соображений вытекает, что Θ > −1, потому что нельзя удалить боль-
ше вещества, чем все R3. Полный вектор Бюргерса (дипольный момент) и квадру-
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польный момент, нормированные на 2𝜋, имеют вид

𝐵 :=
n∑︁

i=1

𝜃i𝑧i, (3.106)

𝑀 :=
1

2

n∑︁
i,j=1

(𝜃i𝜃j − 𝜃i𝛿ij) 𝑧i𝑧j =
1

2
𝐵2 − 1

2

∑︁
i

𝜃i𝑧
2
i . (3.107)

В данном определении полный вектор Бюргерса и квадрупольный момент рассмат-
риваются как комплексные числа. В следующем разделе мы определим вектор Бюр-
герса как вектор, который имеет такую же абсолютную величину |𝐵|, но отличается
от вектора, соединяющего начало координат с точкой 𝐵 в комплексной плоскости.

Интеграл (3.104) имеет разные асимптотики при 𝑧 → ∞ в зависимости от полного
угла дефицита. Выпишем три первых члена разложения для возможных значений
Θ:

𝑤 ≈ e𝑖𝜑
(︂

1

1 + Θ
𝑧1+Θ − 𝐵

Θ
𝑧Θ +

𝑀

Θ − 1
𝑧Θ−1

)︂
+ 𝐶, Θ ̸= 0, 1, (3.108)

𝑤 ≈ e𝑖𝜑
(︂
𝑧 −𝐵 ln𝑧 − 𝑀

𝑧

)︂
+ 𝐶, Θ = 0, (3.109)

𝑤 ≈ e𝑖𝜑
(︂

1

2
𝑧2 −𝐵𝑧 +𝑀 ln𝑧

)︂
+ 𝐶, Θ = 1. (3.110)

При Θ ̸= 0, 1, 2, . . . логарифмических слагаемых в разложении нет. В случае Θ = 0
вещество не добавляется и не удаляется из среды. При этом логарифм появляется
при векторе Бюргерса. Квадрупольное слагаемое имеет логарифмический вид для
Θ = 1. Значения Θ = 2, 3, . . . определяют положение слагаемого с логарифмом в
разложении 𝑤(𝑧) в высших членах разложения, которые отброшены.

Разложения (3.108)–(3.110) показывают, что любая экстремаль, уходящая в бес-
конечность в плоскости 𝑧 также уходит в бесконечность в плоскости 𝑤. В таких
случаях экстремали, очевидно, являются полными. Если экстремаль не уходит в бес-
конечность, то она также полна, т.к. либо замкнута, либо может быть продолжена до
бесконечного значения канонического параметра внутри ограниченной области (при
этом предполагается, что экстремали продолжаются через коническую особенность
естественным образом).

Поведение функции 𝑤(𝑧) на больших расстояниях в главном приближении опре-
деляется первыми слагаемыми в разложениях (3.108)–(3.110). В этом случае двумер-
ная часть метрики принимает вид

𝑑𝑙2 = 𝑑𝑤𝑑𝑤̄ = (𝑧𝑧)Θ𝑑𝑧𝑑𝑧,

что совпадает с метрикой (3.88) для отдельной клиновой дислокации, записанной в
комплексных координатах. Поэтому в дальнейшем мы рассмотрим детально только
дипольное и квадрупольное приближение.

Интеграл (3.104) задает конформное отображение между комплексной плоско-
стью 𝑧 (сечение среды, содержащей произвольное число клиновых дислокаций) и
плоскостью 𝑤 (сечение среды с евклидовой метрикой до создания дислокаций). Плос-
кость 𝑤 имеет разрезы, наглядно показывающие процесс создания дислокаций. Ниже
мы рассмотрим несколько простейших случаев, описывающих небольшое число кли-
новых дислокаций.
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Интеграл Кристоффеля–Шварца зависит от двух постоянных 𝜑 и 𝐶. Для опре-
деленности, предположим, что точка 𝑧1 всегда совпадает с началом координат плос-
кости 𝑧, и ни одна из точек 𝑧i, i = 2, 3, . . . , не лежит на отрицательной части веще-
ственной оси. Тогда постоянные 𝜑 и 𝐶 можно выбрать таким образом, чтобы образ 𝑤1

совпал с началом координат плоскости 𝑤, и отрицательная часть оси 𝑥 отображалась
в отрицательную часть вещественной оси 𝑢.

Клиновая дислокация

Простейший пример отображения Кристоффеля–Шварца (3.104) дает клиновая дис-
локация, описанная в разделе 3.8.2. В этом случае мы имеем только одну ось дисло-
кации, расположенную в начале координат

𝑧1 = 0, 𝜃1 = 𝜃.

Интеграл Кристоффеля–Шварца для клиновой дислокации явно берется

𝑤 =
e−𝑖𝜋𝜃

1 + 𝜃
𝑧1+𝜃. (3.111)

Соответствующее конформное отображение показано на рис. 3.12. Интеграл Крис-

Рис. 3.12: Конформное отображение Кристоффеля–Шварца для клиновой дислока-
ции углом дефицита 𝜃 < 0.

тоффеля–Шварца отображает верхнюю полуплоскость переменного 𝑧 на двууголь-
ник, одна вершина которого расположена в бесконечности, а вторая – в начале ко-
ординат 𝑤1 = 0. Внутренний угол двуугольника равен 𝜋(1 + 𝜃). Если продолжить
конформное отображение на нижнюю полуплоскость, то вся плоскость 𝑧 с разрезом
вдоль положительной вещественной оси отображается на плоскость 𝑤, из которой
удален клин с углом дефицита 2𝜋𝜃 при −1 < 𝜃 < 0. Этот пример конформного отоб-
ражения явно следует процессу создания клиновой дислокации. Мы берем бесконеч-
ную упругую среду (плоскость 𝑤), вырезаем клин с углом 2𝜋|𝜃| для отрицательных
𝜃 < 0 и отождествляем точки разреза, соответствующие одной и той же точке в
плоскости 𝑧. Для положительных углов дефицита 𝜃 > 0 необходимо сделать разрез
в плоскости 𝑤, раздвинуть берега разреза и вставить клин вещества без упругих
напряжений.
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Краевая дислокация

Диполь, состоящий из двух клиновых дислокаций с углами дефицита противопо-
ложного знака, см. раздел 3.7.3, характеризуется постоянным вектором Бюргерса 𝐵,
который мы определим немного позже. Для того, чтобы построить соответствующее
конформное отображение, выберем следующее положение клиновых дислокаций:

𝑧1 = 0, 𝑧2 = ℎ,

𝜃1 = −𝜃, 𝜃2 = 𝜃,
(3.112)

где imℎ = 0. Для определенности положим 0 < 𝜃 < 1. Тогда интеграл Кристоффеля–
Шварца (3.104) принимает вид

𝑤 =

∫︁ 𝑧

0

𝑑𝜁

(︂
𝜁 − ℎ

𝜁

)︂𝜃

. (3.113)

Здесь постоянные 𝜑 и 𝐶 выбраны таким образом, что 𝑤1(𝑧1) = 0. Положение вто-
рой вершины в верхней полуплоскости 𝑤 (см. рис. 3.13) выражается через гамма-

Рис. 3.13: Конформное отображение Кристоффеля–Шварца для диполя из двух кли-
новых дислокаций, которые представляют одну краевую дислокацию

функцию

𝑤2 =

∫︁ ℎ

0

𝑑𝜁

(︂
𝜁 − ℎ

𝜁

)︂𝜃

= ℎ e𝑖𝜋𝜃
∫︁ 1

0

𝑑𝑥

(︂
1 − 𝑥

𝑥

)︂𝜃

= ℎ e𝑖𝜋𝜃Γ(1 − 𝜃)Γ(1 + 𝜃). (3.114)

Напомним, что гамма-функцией называется решение следующего функциональ-
ного уравнения [?]

Γ(𝑧 + 1) = 𝑧Γ(𝑧), 𝑧 ∈ C, Γ(1) = 1. (3.115)

Для нее справедливо следующее интегральное представление

Γ(𝑧) =

∫︁ ∞

0

𝑑𝑡 e−𝑡𝑡𝑧−1, im 𝑡 = 0. (3.116)

На рис. 3.13 показано конформное отображение для 1/2 < 𝜃 < 1. На плоскости
𝑧 мы имеем разрез вдоль положительной части вещественной оси. Верхняя полу-
плоскость отображается на треугольник в верхней полуплоскости 𝑤, одна вершина
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которого лежит в бесконечности. Нижняя полуплоскость 𝑧 отображается симмет-
рично на треугольник в нижней полуплоскости 𝑤. Вся же плоскость переменного 𝑧
отображается на плоскость 𝑤, из которой удалена полоса, как показано на рисунке.
Определим вектор Бюргерса, как вектор, соединяющий две точки 𝑤− и 𝑤+, которые
соответствуют нижнему и верхнему берегам разреза для одной точки на плоскости 𝑧.
Для краевой дислокации с 𝑥 > 𝑧2 – это постоянный вектор. Длина нормированного
вектора равна

2𝜋|𝐵| := 𝑤+ − 𝑤− = 2 im𝑤2. (3.117)

Это определение пригодно для произвольного распределения клиновых дислокаций.
В случае краевой дислокации будем считать, что вектор Бюргерса имеет начало в
точке 𝑤− и конец – в 𝑤+.

В общем случае разрез можно определить как ломаную, соединяющую последова-
тельность точек 𝑧1, . . . , 𝑧n,∞, включающую бесконечно удаленную точку. Конечно,
соответствующий вектор Бюргерса может быть непостоянным.

Используя выражение (3.114) и свойства гамма-функций, мы получаем вектор
Бюргерса для краевой дислокации:

2𝜋|𝐵| = 2ℎΓ(1 − 𝜃)Γ(1 + 𝜃) sin (𝜋𝜃) = 2𝜋ℎ𝜃.

Этот замечательный результат показывает, что нормированный вектор Бюргерса
равен произведению ℎ𝜃. Заметим, что это точный результат для диполя из двух
клиновых дислокаций, и он совпадает с определением (3.106) в разложении интеграла
Кристоффеля–Шварца на больших расстояниях для произвольного распределения
клиновых дислокаций.

Теперь получим двумерную часть метрики краевой дислокации в конформной
калибровке (3.83) на больших расстояниях 𝑟 ≫ ℎ. Из уравнения (3.113) вытекает
равенство дифференциалов

𝑑𝑤 =

(︂
𝑧 − ℎ

𝑧

)︂𝜃

𝑑𝑧.

Поэтому метрика на больших расстояниях принимает вид

𝑑𝑙2 = 𝑑𝑤𝑑𝑤̄ =

(︂
(𝑧 − ℎ)(𝑧 − ℎ)

𝑧𝑧

)︂𝜃

𝑑𝑧𝑑𝑧 ≈
(︂

1 − 2𝐵 cos 𝜃

𝑟

)︂
(𝑑𝑟2 + 𝑟2𝑑𝜙2), (3.118)

где 𝐵 = ℎ𝜃 – модуль нормированного вектора Бюргерса, и мы учли только первую
поправку. Эта метрика отличается от метрики (3.77) для краевой дислокации, по-
лученной в рамках теории упругости, потому что записана в конформной, а не в
упругой калибровке. Кроме того вектор Бюргерса в рассматриваемом случае парал-
лелен оси 𝑦, а в предыдущем – оси 𝑥.

Сравним конформное отображение для диполя из двух клиновых дислокаций с
конформным отображением (3.109) в дипольном приближении, возникающем при
Θ = 0 и 𝐵 ̸= 0,

𝑤 = 𝑧 −𝐵 ln𝑧 + 𝑖𝜋𝐵, (3.119)

где, для определенности, мы зафиксировали постоянные. Элементарный анализ дает
конформное отображение, показанное на рис. 3.14. Здесь верхняя полуплоскость 𝑧
отображается на верхнюю полуплоскость 𝑤 с горизонтальным разрезом от 𝑤2 до
бесконечности, как показано на рисунке. Начало координат 𝑧1 = 0 отображается
в бесконечно удаленную точку 𝑤1(𝑧1) = ∞. Это конформное отображение имеет
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Рис. 3.14: Конформное отображение в дипольном приближении (краевая дислока-
ция).

менее прозрачный физический смысл, зато является более универсальным, в том
смысле, что не зависит от деталей распределения клиновых дислокаций на малых
расстояниях.

Квадрупольная дислокация

Чистое квадрупольное приближение можно реализовать с помощью четырех клино-
вых дислокаций:

𝑧1 = 0, 𝑧2 = ℎ 𝑧3 = 𝑙 𝑧4 = 𝑙 + ℎ,

𝜃1 = −𝜃, 𝜃2 = 𝜃, 𝜃3 = 𝜃 𝜃4 = −𝜃,

где ℎ, 𝑙 и 𝜃 некоторые положительные постоянные. Для определенности, предполо-
жим, что 𝑙 > ℎ и 0 < 𝜃 < 1. Для такого распределения клиновых дислокаций только
квадрупольный момент отличен от нуля:

Θ = 0, 𝐵 = 0, 𝑀 = 𝜃𝑙ℎ.

Соответствующее конформное отображение задается интегралом Кристоффеля–Шварца

𝑤 =

∫︁ 𝑧

0

𝑑𝜁

[︂
(𝜁 − ℎ)(𝜁 − 𝑙)

𝜁(𝜁 − 𝑙 − ℎ)

]︂𝜃
. (3.120)

Его нельзя вычислить в элементарных функциях, но можно проанализировать каче-
ственно. Расположение вершин многоугольника в плоскости 𝑤 задается сходящимися
интегралами:

𝑤2 = ℎ e𝑖𝜋𝜃
∫︁ 1

0

𝑑𝑥

[︂
(1 − 𝑥)(𝑝− 𝑥)

𝑥(𝑝+ 1 − 𝑥)

]︂𝜃
,

𝑤3 = 𝑤2 + (𝑙 − ℎ)

∫︁ 1

0

𝑑𝑥

[︂
𝑥(1 − 𝑥)

(𝑞 + 𝑥)(𝑞 + 1 − 𝑥)

]︂𝜃
,

𝑤4 = 𝑤3 + ℎ e−𝑖𝜋𝜃

∫︁ 1

0

𝑑𝑥

[︂
(1 − 𝑥)(𝑝− 𝑥)

𝑥(𝑝+ 1 − 𝑥)

]︂𝜃
,
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где

𝑝 :=
𝑙

ℎ
> 1, 𝑞 :=

ℎ

𝑙 − ℎ
> 1.

При этом 𝑤(𝑧1) = 0. Отсюда следует, что четвертая вершина лежит на вещественной
оси: im𝑤4 = 0. Нижняя полуплоскость отображается симметрично. Соответствую-
щее конформное отображение показано на рис. 3.15. Оно имеет ясную физическую

Рис. 3.15: Конформное отображение для четырех клиновых дислокаций, представ-
ляющих квадрупольную дислокацию.

интерпретацию: квадрупольная дислокация возникает после удаления шестиуголь-
ной призмы из бесконечной среды и склейки точек разреза, лежащих на одной вер-
тикали.

В квадрупольном приближении Θ = 0, 𝐵 = 0, и 𝑀 ̸= 0, и конформное отоб-
ражение (3.109) для произвольного распределения клиновых дислокаций принимает
вид

𝑤 = 𝑧 − 𝑀

𝑧
, (3.121)

где, для определенности, мы зафиксировали постоянные. Чтобы описать данное кон-
формное отображение, посмотрим во что переходят окружности 𝑧 = 𝑟 e𝑖𝜙 на плоско-
сти 𝑤:

𝑤 = 𝑟 e𝑖𝜙 − 𝑀

𝑟
e−𝑖𝜙 =

(︂
𝑟 − 𝑀

𝑟

)︂
cos𝜙+ 𝑖

(︂
𝑟 +

𝑀

𝑟

)︂
sin𝜙, 𝑟 = const.

Перепишем данное уравнение для вещественной и мнимой части

𝑢 =

(︂
𝑟 − 𝑀

𝑟

)︂
cos𝜙,

𝑣 =

(︂
𝑟 +

𝑀

𝑟

)︂
sin𝜙,

⇒
(︁𝑢
𝑎

)︁2

+
(︁𝑣
𝑏

)︁2

= 1,

где введены постоянные

𝑎 := 𝑟 − 𝑀

𝑟
, 𝑏 := 𝑟 +

𝑀

𝑟
.

Отсюда следует, что конформное отображение (3.121) переводит окружности в эл-
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Рис. 3.16: Конформное отображение для квадрупольного приближения.

липсы, как показано на рис. 3.16. Окружности, радиус которых превышает
√
𝑀 отоб-

ражаются в эллипсы с сохранением ориентации, т.е. проходятся в одну сторону, и
внешняя часть комплексной плоскости |𝑧| >

√
𝑀 отображается на всю плоскость 𝑤

с разрезом вдоль мнимой оси. Внутренние окружности 0 < |𝑧| <
√
𝑀 также отобра-

жаются в эллипсы, которые тоже покрывают всю плоскость 𝑤, но ориентация при
этом меняется. Мы видим, что функция (3.121) отображает всю плоскость 𝑧 на ри-
манову поверхность, состоящую из двух экземпляров плоскости 𝑤, которые сшиты
вдоль разреза. Читатель без труда может представить себе создание квадрупольной
дислокации.

3.8.4 Непрерывное распределение линейных дислокаций

Одним из основных преимуществ геометрического подходя является возможность
описания непрерывного распределения дислокаций и дисклинаций. Для простоты
формул мы будем использовать не упругую калибровку, а конформную калибровку
для двумерной части метрики (3.83).

Клиновые дислокации

В качестве первого примера рассмотрим вращательно симметричное распределение
параллельных клиновых дислокаций (см. раздел 3.8.1). Предположим, что они од-
нородно распределены внутри диска радиуса 𝑎, перпендикулярного линиям дисло-
каций, со следующим источником

𝑇𝑧𝑧 :=
2𝜌√︀
𝑔(2)

, (3.122)

где мы выписали единственную нетривиальную компоненту и

𝜌(𝑟) :=

{︃
𝑞, 𝑟 ≤ 𝑎,

0, 𝑟 > 𝑎.

Нормированный полный угол дефицита для такого распределения равен

Θ =
1

2
𝑞𝑎2.
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Трехмерные уравнения Эйнштейна (3.78) с источником (3.122) анализируются так
же, как и для параллельных клиновых дислокаций в разделе 3.8.1. В результате
для конформного множителя 𝜑 двумерной части метрики получаем единственное
уравнение

△𝜑 = 𝜌(𝑟).

Общее решение данного уравнения имеет вид

𝜑(𝑟) =
1

2𝜋

∫︁
𝑑𝑠⃗𝜌(𝑠⃗) ln|𝑠⃗− 𝑟⃗|.

Интеграл в правой части берется:

𝜑(𝑟) =

⎧⎪⎨⎪⎩
𝑞

2
𝑎2 ln𝑎− 𝑞𝑎2

4
+
𝑞𝑟2

4
, 𝑟 ≤ 𝑎,

𝑞

2
𝑎2 ln𝑟, 𝑟 > 𝑎.

(3.123)

Вне дислокаций интервал принимает вид

𝑑𝑙2 = 𝑟𝑞𝑎
2

(𝑑𝑟2 + 𝑟2𝑑𝜙2). (3.124)

Это значит, что рассматриваемое непрерывное распределение клиновых дислокаций
снаружи имеет тот же вид, что и одна клиновая дислокация (??) с углом дефици-
та Θ. Поэтому траектории фононов на больших расстояниях выглядят так же, как
для одной клиновой дислокации. Этот результат трудно предугадать заранее, т.к.
уравнения Эйнштейна нелинейны, и принципа суперпозиции для решений в общем
случае нет. Заметим, что метрика (3.124) определяет точное решение трехмерных
уравнений Эйнштейна (после добавления 𝑑𝑧2).

Краевые дислокации

В разделе 3.7.3 мы доказали, что краевая дислокация представляет собой диполь,
состоящий из двух клиновых дислокаций противоположного знака. Для определен-
ности выберем расположение дислокаций в том виде (3.112), как это было сдела-
но при анализе конформных отображений. Тогда уравнения Эйнштейна сведутся к
уравнению Пуассона для конформного множителя

△𝜑 = 2𝜋𝜃𝛿(𝑟 − ℎ) − 2𝜋𝜃𝛿(𝑟), 𝜃 > 0, (3.125)

где мы ввели двумерный вектор ℎ := (ℎ, 0), и необходимо рассмотреть предел ℎ→ 0
при условии 2𝜋|𝐵| = 2𝜋ℎ𝜃 = const. Для вычисления предела преобразуем правую
часть уравнения. Пусть 𝑓(𝑟) ∈ 𝒟′(R2) – пробная функция [?]. Тогда справедливы
равенства:∫︁

𝑑𝑟 𝑓(𝑟)
[︀
𝛿(𝑟 − ℎ) − 𝛿(𝑟)

]︀
= 𝑓(ℎ) − 𝑓(0) ≈ (ℎ∇𝑓)

⃒⃒
𝑟=0

= −
∫︁
𝑑𝑟 𝑓(𝑟)

(︀
ℎ∇𝛿(𝑟)

)︀
,

где ∇ – двумерный градиент. Поэтому в пределе ℎ → 0 уравнение Пуассона (3.125)
принимает вид

△𝜑 = −2𝜋𝜃
(︀
ℎ∇𝛿(𝑟)

)︀
. (3.126)

Таким образом, получено уравнение для одной краевой дислокации, расположенной
в начале координат.
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Если мы имеем непрерывное распределение краевых дислокаций, то после замены
𝛿-функции на некоторое распределение уравнение (3.126) примет вид

△𝜑 = −2𝜋∇𝛽, (3.127)

где 𝛽(𝑟) – плотность распределения краевых дислокаций. В каждой точке вектор 𝛽
отличается от вектора Бюргерса соответствующей краевой дислокации направлени-
ем, а их модули равны. Для краевой дислокации (3.112) вектор ℎ параллелен вектору
𝜕𝑥, а вектор Бюргерса (3.117) – вектору 𝜕𝑦, т.е. они перпендикулярны.

Нетрудно проверить, что к уравнению Пуассона (3.127) приводит следующий ис-
точник в трехмерных уравнениях Эйнштейна

𝑇𝑧𝑧 = −4𝜋∇𝛽√︀
𝑔(2)

,

остальные компоненты которого равны нулю.
Рассмотрим простейший случай. Пусть задано распределение 𝛽(𝑟) :=

(︀
𝛽𝑥(𝑟), 𝛽𝑦(𝑟)

)︀
.

Предположим, что векторы Бюргерса всех краевых дислокаций направлены вдоль
оси 𝑦. Тогда 𝛽𝑦 = 0, и мы выберем однородное распределение краевых дислокаций
внутри круга радиуса 𝑎:

𝛽𝑥 =

{︃
𝛽, 𝑟 ≤ 𝑎, 𝛽 = const,

0, 𝑟 > 𝑎.

Для такого распределения

∇𝛽 = −𝛽 cos𝜙 𝛿(𝑎− 𝑟),

где мы продифференцировали ступеньку по радиусу и получили 𝛿-функцию. Тогда
решение уравнения (3.127) примет вид

𝜑 = −
∫︁ ∞

0

𝑑𝑟′𝑟′
∫︁ 2𝜋

0

𝑑𝜙′[︀− 𝛽 cos𝜙′ 𝛿(𝑎− 𝑟′)
]︀1

2
ln
[︀
𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos (𝜙′ − 𝜙)

]︀
=

=

⎧⎪⎨⎪⎩
−𝜋𝛽𝑟 cos𝜙, 𝑟 ≤ 𝑎,

−𝜋𝛽𝑎
2 cos𝜙

𝑟
, 𝑟 > 𝑎.

(3.128)

На больших расстояниях от распределения дислокаций, 𝑟 ≫ 𝑎, пространство описы-
вается асимптотически плоской метрикой

𝑑𝑙2 = e−
2𝜋𝛽𝑎2 cos𝜙

𝑟 (𝑑𝑟2 + 𝑟2𝑑𝜙2) ≈
(︂

1 − 2𝐵 cos𝜙

𝑟

)︂
(𝑑𝑟2 + 𝑟2𝑑𝜙2), (3.129)

где
𝐵 := 𝛽𝜋𝑎2. (3.130)

Мы видим, что модуль полного вектора Бюргерса равен плотности 𝛽, умноженной на
площадь круга 𝜋𝑎2, что интуитивно ясно. Метрика (3.129) совпадает с метрикой для
краевой дислокации (3.118), полученной при рассмотрении конформных отображе-
ний. Таким образом, на больших расстояниях в первом приближении непрерывное
распределение краевых дислокаций ведет себя так же, как одна краевая дислокация
с полным вектором Бюргерса (3.130).
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Принцип суперпозиции в данном случае работает только для первого члена раз-
ложения линейного элемента. Остальные поправки отличают непрерывное распре-
деление краевых дислокаций от одной краевой дислокации. Вторая поправка лег-
ко находится в комплексных координатах. Действительно, конформный множитель
(3.128) вне распределения дислокаций приводит к метрике

𝑑𝑙2 = e−
2𝐵 cos𝜙

𝑟 𝑑𝑧𝑑𝑧 = e−𝐵( 1
𝑧
+ 1

𝑧 )𝑑𝑧𝑑𝑧.

Ее можно записать в плоском виде 𝑑𝑙2 = 𝑑𝑤𝑑𝑤̄, где

𝑤 :=

∫︁ 𝑧

𝑑𝜁 e−
𝐵
𝜁 =

∫︁ 𝑧

𝑑𝜁

(︂
1 − 𝐵

𝜁
+
𝐵2

2𝜁2
− . . .

)︂
≈ 𝑧 −𝐵 ln𝑧 − 𝐵2

2𝑧
.

Это разложение дает квадрупольную поправку 𝑀 = 𝐵2/2 к непрерывному распре-
делению краевых дислокаций, что следует из разложения (3.109).

3.8.5 Разрезание и склеивание

Рассмотрим евклидово пространство R3. Произведем произвольные разрезы, дефор-
мируем среду каким либо образом вне разрезов и затем произведем склейку, доба-
вив или удалив часть среды в случае необходимости. В результате возникнет дефект
упругой среды – одна или несколько дислокаций. Этот процесс можно описать в
явном виде с помощью координатных преобразований. Если задано преобразование
координат, то можно вычислить индуцированный репер и метрику, соответствующие
данной дислокации. Вне разрезов тензоры кручения и кривизны данного репера (мет-
рики) равны нулю, т.к. в этих частях среды имеются только упругие деформации,
которые описывают диффеоморфизмы. Следовательно, вне разрезов уравнения рав-
новесия (??) удовлетворены с нулевой правой частью. Они также удовлетворяются на
поверхностях склейки, поскольку по предположению склейка репера производится
достаточно гладко. Таким образом, источники дислокаций в правой части уравне-
ний равновесия могут возникнуть только на краях разрезов: на линиях (линейные
дислокации) и в точках (точечные дислокации). Поскольку размерность носителей
источников меньше трех, то они должны иметь 𝛿-образный характер.

Это верно для отдельных дислокаций или их конечного числа. Для непрерыв-
ного распределения дислокаций нетривиальная правая часть уравнений равновесия
может возникнуть на поверхностях или в объеме.

Ниже с помощью координатных преобразований мы опишем пример создания
комбинированной клиновой и винтовой дислокации без анализа особенности на линии
дислокации.

Рассмотрим трехмерное евклидово пространство R3 с декартовой 𝑋, 𝑌, 𝑍 и ци-
линдрической 𝑅,Φ, 𝑍 системами координат. Евклидова метрика имеет вид

𝑑𝑠2 = 𝑑𝑋2 + 𝑑𝑌 2 + 𝑑𝑍2 = 𝑑𝑅2 +𝑅2𝑑Φ2 + 𝑑𝑍2. (3.131)

Совершим преобразование координат 𝑅,Φ, 𝑍 ↦→ 𝑓, 𝜙, 𝑧, заданное следующими фор-
мулами:

𝑅 :=
𝑓

𝛼
,

Φ := 𝛼𝜙,

𝑍 := 𝑧 − 𝑐𝜙, 𝛼 > 0, 𝑐 = const,

(3.132)
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где радиальная координата обозначена буквой 𝑓 , имея в виду дальнейшее преобра-
зование координат 𝑓 ↦→ 𝑟 = 𝑟(𝑓). В новых координатах евклидова метрика примет
вид

𝑑𝑠2 =
1

𝛼2
𝑑𝑓 2 + (𝑓 2 + 𝑐2)𝑑𝜙2 + 𝑑𝑧2 − 2𝑐 𝑑𝜙𝑑𝑧. (3.133)

Эта метрика описывает дислокацию и, по предположению, определена во всем ев-
клидовом пространстве за исключением оси 𝑧:

0 < 𝑓 <∞, 0 < 𝜙 < 2𝜋, −∞ < 𝑧 <∞. (3.134)

Данной области определения конечных координат отвечает следующая область опре-
деления исходных координат в евклидовом пространстве:

0 < 𝑅 <∞, 0 < Φ < 2𝜋𝛼, −∞ < 𝑧 <∞. (3.135)

Обратим внимание на область определения угловой координаты. При 0 < 𝛼 < 1
областью (3.135) является не все, а только часть евклидова пространства. Если 𝛼 > 1,
то область определения выходит за пределы евклидова пространства.

Теперь можно описать процесс склейки. У нас есть отображение

𝑦 = (𝑅,Φ, 𝑍) ↦→ 𝑥 = (𝑓, 𝜑, 𝑧).

В исходном пространстве, точки которого обозначены координатами 𝑦, мы отож-
дествляем те точки среды, которые отображаются в одну точку 𝑥 многообразия с
дислокациями. В рассматриваемом случае – это точки, лежащие на полуплоскостях
Φ = 0 и Φ = 2𝜋𝛼, что следует из области определения (3.135). Следовательно, в
исходном евклидовом пространстве мы делаем разрез по полуплоскости 𝑋,𝑍, край
которой совпадает с осью 𝑍, раздвигаем берега разреза на угол 2𝜋𝜃 при 𝜃 > 0, где
𝛼 := 1 + 𝜃, вставляем в образовавшуюся полость клин того же вещества. Кроме
того перед склейкой точки нижнего берега разреза сдвигаются параллельно вдоль
оси 𝑍 на вектор Бюргерса 𝑏 := 2𝜋𝑐, что следует из формул преобразования коор-
динат (3.132). Описанный процесс создания комбинированной клиновой и винтовой
дислокации показан на рис. 3.17.

Рис. 3.17: Комбинированная клиновая и винтовая дислокация с углом дефицита 𝜃 и
вектором Бюргерса 𝑏.
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Таким образом, при 𝑐 = 0 метрика (3.133) описывает клиновую дислокацию, а при
𝛼 = 1 – винтовую (3.62). Строго говоря, полный вектор Бюргерса для комбинирован-
ной дислокации будет переменным. У него есть постоянная компонента 𝑏 := 2𝜋𝑐 вдоль
оси 𝑧, соответствующая винтовой дислокации, и переменная компонента −2𝜋𝜃𝑟, при
𝜃 ≪ 1, которая соответствует клиновой дислокации.

Мы построили метрику, описывающую комбинированную клиновую и винтовую
дислокацию, с помощью процедуры разрезания и склеивания. Для того, чтобы учесть
теорию упругости, необходимо переписать полученную метрику в упругой калибров-
ке, рассмотренной в разделе 3.5. Метрике (3.133) поставим в соответствие репер

𝑒𝜇
𝑖 =

⎛⎝ 1
𝛼

0 0

0 𝑓 −𝑐
0 0 1

⎞⎠ , (3.136)

для которого линейное приближение по вектору смещения имеет вид (3.41). Теперь
сделаем замену радиальной координаты 𝑓 ↦→ 𝑟 так, чтобы удовлетворить упругой
калибровке. После подстановки репера (3.136) в калибровочное условие (3.43) для
функции 𝑓(𝑟) возникает уравнение Эйлера (3.95) такое же, что и для клиновой дис-
локации. Его решение при граничных условиях (3.97) имеет тот же вид

𝑓 =
𝛼

𝛾𝑎𝛾−1
𝑟𝛾, (3.137)

где

𝛾 := −𝜃𝑏̂+

√︁
𝜃2𝑏̂2 + 1 + 𝜃, 𝑏̂ :=

𝜎

2(1 − 𝜎)
,

где постоянную 𝑏̂ мы пометили шляпкой, чтобы отличать ее от модуля вектора Бюр-
герса. В итоге получаем метрику в упругой калибровке

𝑑𝑠2 =
(︁𝑟
𝑎

)︁2𝛾−2

𝑑𝑟2 +

[︂(︁𝑟
𝑎

)︁2𝛾−2 𝛼2𝑟2

𝛾2
+ 𝑐2

]︂
𝑑𝜙2 + 𝑑𝑧2 − 2𝑐 𝑑𝜙𝑑𝑧, (3.138)

которая описывает комбинированную клиновую и винтовую дислокацию.
Комбинированную клиновую и винтовую дислокацию нетрудно описать в рамках

теории упругости. Фактически, все вычисления уже проделаны в разделах 3.7.1 и
3.7.2, где были по отдельности рассмотрены винтовая и клиновая дислокации. Что-
бы найти векторное поле смещений в рассматриваемом случае, достаточно просто
сложить смещения для клиновой и винтовой дислокаций, т.к. мы рассматриваем ли-
нейную теорию упругости.

Напомним, что смещения для клиновой дислокации равны (3.71)

𝑢wedge
𝑟 = −𝜃 1 − 2𝜎

2(1 − 𝜎)
𝑟 ln

𝑟

e𝑎
, 𝑢wedge

𝜙 = −𝜃𝑟𝜙, 𝑢wedge
𝑧 = 0. (3.139)

где мы удержали только линейные по 𝜃 слагаемые, которых достаточно в линейном
приближении.

Для винтовой дислокации смещения имеют вид (3.60)

𝑢screw
𝑟 = 0, 𝑢screw

𝜙 = 0, 𝑢screw
𝑧 = 𝑐𝜙 =

𝑏

2𝜋
𝜙.

Полное векторное поле смещений равно сумме

𝑢 = 𝑢wedge + 𝑢screw
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и приводит к индуцированной метрике

𝑑𝑠2 =

(︂
1 + 𝜃

1 − 2𝜎

1 − 𝜎
ln
𝑟

𝑎

)︂
𝑑𝑟2+

[︂
𝑟2

(︂
1 + 𝜃

1 − 2𝜎

1 − 𝜎
ln
𝑟

𝑎
+ 𝜃

1

1 − 𝜎

)︂
+ 𝑐2

]︂
𝑑𝜙2+𝑑𝑧2−2𝑐 𝑑𝜙𝑑𝑧,

(3.140)
где мы, опять же, удержали только линейные по 𝜃 слагаемые.

Метрика для комбинированной клиновой и винтовой дислокации (3.140) приме-
нима только для малых углов дефицита, 𝜃 ≪ 1, и вблизи края цилиндра, 𝑟 ∼ 𝑎, где
малы относительные смещения. Точная метрика (3.138), полученная в рамках гео-
метрической теории дефектов, имеет более простой вид, применима для всех углов
дефицита 𝜃 > −1 и для всех значений радиуса 0 < 𝑟 < 𝑎. Нетрудно проверить, что
в линейном приближении по 𝜃 точная метрика воспроизводит метрику (3.140), по-
лученную в рамках теории упругости. Вычисления здесь аналогичны тем, которые
были описаны для клиновой дислокации в разделе 3.8.2. Это говорит о преимуществе
геометрического подхода.

3.9 Рассеяние фононов на клиновых дислокациях
Фононами в твердом теле называются частицы, возникающие при вторичном кванто-
вании волновых уравнений для упругих колебаний. Поэтому, строго говоря, задача о
рассеянии фононов на дислокациях является квантовомеханической. Ниже мы рас-
смотрим только классические аспекты этой задачи.

Волновое уравнение для функции 𝑤(𝑡, 𝑥) в среде со статическим распределением
дислокаций имеет вид

𝑔𝛼𝛽∇̃𝛼∇̃𝛽𝑤 = 0, (3.141)

где 𝑔𝛼𝛽 – метрика, обратная к метрике

𝑔𝛼𝛽 =

(︂
1 0
0 −𝑔𝜇𝜈

)︂
(3.142)

и ̃︀∇ – ковариантная производная. Выше мы обозначаем четырехмерные координаты
греческими буквами из начала алфавита {𝑥𝛼} := {𝑥0, 𝑥1, 𝑥2, 𝑥3}, а буквами из середи-
ны греческого алфавита – только пространственные координаты {𝑥𝜇} := {𝑥1, 𝑥2, 𝑥3}.
По четырехмерной метрике (3.142) можно вычислить символы Кристоффеля (??),
которые определяют систему нелинейных обыкновенных уравнений для экстрема-
лей 𝑥𝛼(𝜏) (линий экстремальной длины, которые в римановой геометрии совпадают
с геодезическими, см. раздел ??). Для метрики блочно диагонального вида (3.142)
эти уравнения расщепляются:

𝑥̈0 = 0, (3.143)

𝑥̈𝜇 = −̃︀Γ𝜈𝜌
𝜇𝑥̇𝜈 𝑥̇𝜌, (3.144)

где точки обозначают дифференцирование по каноническому параметру и ̃︀Γ𝜈𝜌
𝜇 –

трехмерные символы Кристоффеля, построенные по трехмерной метрике 𝑔𝜇𝜈 , кото-
рая, напомним, для статического распределения дефектов зависит только от про-
странственных координат. Пусть {𝑥𝛼(𝜏)} – произвольная экстремаль в четырехмер-
ном пространстве-времени. Тогда для метрики (3.142) ее естественная проекция на
пространство {𝑥𝛼(𝜏)} ↦→ {0, 𝑥𝜇(𝜏)} также является экстремалью, но уже для про-
странственной части метрики 𝑔𝜇𝜈 .
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Уравнения для экстремалей (3.143), (3.144) инвариантны относительно линейных
преобразований канонического параметра 𝜏 . Поэтому из уравнения (3.143) следует,
что, не ограничивая общности, канонический параметр можно отождествить с вре-
менем: 𝜏 = 𝑐𝑡 = 𝑥0, где 𝑐 – скорость распространения колебаний.

При анализе асимптотик решений волнового уравнения (3.141) полезны пред-
ставления о фронтах волны и лучах, как это делается в геометрической оптике [?].
Мы не будем останавливаться на математических аспектах этого подхода, который
нетривиален и сложен [?], и дадим лишь физическое описание. В эйкональном (высо-
кочастотном) приближении (см. раздел ??) фононы распространяются вдоль лучей,
совпадающих с нулевыми экстремалями для четырехмерной метрики 𝑔𝛼𝛽. Форма лу-
чей, которые мы отождествляем с траекториями фононов, определяется трехмерной
метрикой 𝑔𝜇𝜈 . Это значит, что в эйкональном приближении траектории поперечных
и продольных фононов (см. раздел 3.11) в среде с дефектами одинаковы и определя-
ются уравнениями (3.144). Отличие сводится к тому, что скорости распространения
поперечных и продольных фононов различны и равны соответственно 𝑐t и 𝑐l.

Заметим, что экстремали 𝑥(𝑡) являются бихарактеристиками к волновому урав-
нению (3.141) (см. раздел ??).

Другой подход к анализу экстремалей основан на принципе наименьшего дей-
ствия. В разделе ?? было показано, что уравнения (3.144) следуют из лагранжиана

𝐿 =
1

2
𝑔𝜇𝜈 𝑥̇

𝜇𝑥̇𝜈 , (3.145)

который равен кинетической энергии точечной частицы с единичной массой, дви-
жущейся по риманову многообразию. Конечно, при этом мы отождествили канони-
ческий параметр с временно́й координатой. Мы видим, что и фононы, и точечные
частицы движутся вдоль одних и тех же траекторий. Разница сводится только к
скорости движения. Хотя член с потенциальной энергией в лагранжиане (3.145) от-
сутствует, движение частиц нетривиально, т.к. метрика явно зависит от точки мно-
гообразия. Уравнение (3.144) представляет собой второй закон Ньютона, в котором
сила квадратична по скорости. В связи с этим движение фононов в присутствии дис-
локаций сильно отличается от ньютонова движения частиц в потенциальном поле.
Например, в дальнейшем мы покажем наличие нового типа замкнутых траекторий.

В случаях, когда симметрий задачи недостаточно для нахождения достаточного
числа интегралов движения, на помощь приходит уравнение Гамильтона–Якоби (см.
раздел ??). Лагранжиан (3.145) приводит к гамильтониану

𝐻 =
1

2
𝑔𝜇𝜈𝑝𝜇𝑝𝜈 ,

где 𝑔𝜇𝜈 – обратная метрика и 𝑝𝜇:= 𝜕𝐿/𝜕𝑥̇𝜇 – канонический импульс. Тогда уравнение
Гамильтона–Якоби для функции действия 𝑆(𝑥, 𝑡) принимает вид

𝜕𝑆

𝜕𝑡
+

1

2
𝑔𝜇𝜈

𝜕𝑆

𝜕𝑥𝜇
𝜕𝑆

𝜕𝑥𝜈
= 0. (3.146)

Для укороченной функции действия (см. раздел ??)

𝑊 (𝑥) := 𝑆(𝑥, 𝑡) + 𝐸𝑡, 𝐸 = const,

уравнение Гамильтона–Якоби упрощается

1

2
𝑔𝜇𝜈

𝜕𝑊

𝜕𝑥𝜇
𝜕𝑊

𝜕𝑥𝜈
= 𝐸. (3.147)
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Здесь 𝐸 обозначает полную (в рассматриваемом случае кинетическую) энергию фо-
нона. Это уравнение решено в разделе 3.9.3 для произвольного распределения n
параллельных клиновых дислокаций.

3.9.1 Рассеяние на одной клиновой дислокации

При наличии одной клиновой дислокации метрика пространства в цилиндрических
координатах 𝑟, 𝜙, 𝑧 имеет вид

𝑔𝜇𝜈 =

⎛⎜⎜⎜⎝
(︁
𝑟
𝑎

)︁2𝛾−2

0 0

0 𝛼2𝑟2

𝛾2

(︁
𝑟
𝑎

)︁2𝛾−2

0

0 0 1

⎞⎟⎟⎟⎠ (3.148)

где нетривиальная часть метрики в плоскости 𝑟, 𝜙 была получена ранее (3.99). Об-
ратная метрика также является блочно диагональной

𝑔𝜇𝜈 =

⎛⎜⎜⎜⎝
(︁
𝑎
𝑟

)︁2𝛾−2

0 0

0
𝛾2

𝛼2𝑟2

(︁
𝑎
𝑟

)︁2𝛾−2

0

0 0 1

⎞⎟⎟⎟⎠
Символы Кристоффеля для метрики (3.148) вычисляются по формулам (??). В

результате получаем, что только четыре символа Кристоффеля отличны от нуля:

̃︀Γ𝑟𝑟
𝑟 =

𝛾 − 1

𝑟
, ̃︀Γ𝜙𝜙

𝑟 = −𝛼
2𝑟

𝛾
, ̃︀Γ𝑟𝜙

𝜙 = ̃︀Γ𝜙𝑟
𝜙 =

𝛾

𝑟
.

В эйкональном приближении фононы распространяются вдоль экстремалей 𝑥𝜇(𝑡)
(здесь мы положили скорость фононов равной единице, 𝑐 = 1), определяемых урав-
нениями (3.144). В рассматриваемом случае эти уравнения принимают вид

𝑟 = −𝛾 − 1

𝑟
𝑟̇2 +

𝛼2

𝛾
𝑟𝜙̇2, (3.149)

𝜙 = −2𝛾

𝑟
𝑟̇𝜙̇, (3.150)

𝑧 = 0, (3.151)

где точка обозначает дифференцирование по времени 𝑡. Из последнего уравнения
следует, что фононы двигаются вдоль оси 𝑧 с постоянной скоростью, что соответ-
ствует трансляционной инвариантности метрики вдоль 𝑧. Это значит, что рассеяние
фононов на клиновой дислокации, как и следовало ожидать, сводится к двумерной
задаче в плоскости 𝑟, 𝜙.

Систему уравнений для 𝑟(𝑡) и 𝜙(𝑡) (3.149) и (3.150) можно явно проинтегриро-
вать. С этой целью найдем два первых интеграла. Во-первых, для любой метрики
уравнения для экстремалей имеют интеграл

𝑔𝜇𝜈 𝑥̇
𝜇𝑥̇𝜈 = const.

Отсюда следует равенство

𝑟2𝛾−2𝑟̇2 +
𝛼2

𝛾2
𝑟2𝛾𝜙̇2 = 𝐶0 = const > 0. (3.152)
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Во-вторых, инвариантность метрики относительно вращений вокруг оси 𝑧 приво-
дит к существованию дополнительного интеграла. Он строится следующим образом.
Инвариантности метрики соответствует вектор Киллинга, который в цилиндриче-
ских координатах имеет простой вид 𝐾 = 𝜕𝜙. Непосредственной проверкой можно
доказать, что

𝑔𝜇𝜈𝐾
𝜇𝑥̇𝜈 = const.

В рассматриваемом случае это приводит к закону сохранения

𝑟2𝛾𝜙̇ = 𝐶1 = const. (3.153)

Исследуем форму экстремалей 𝑟 = 𝑟(𝜙). Из уравнений (3.152), (3.153) можно
найти первые производные

𝑟̇ = ±𝑟−2𝛾+1

√︃
𝐶0𝑟2𝛾 −

𝛼2

𝛾2
𝐶2

1 , (3.154)

𝜙̇ = 𝐶1𝑟
−2𝛾. (3.155)

Допустимые значения радиальной координаты 𝑟, при которых подкоренное выраже-
ние неотрицательно, будут найдены позже. Отсюда следует уравнение, определяю-
щее форму нерадиальных (𝐶1 ̸= 0) экстремалей,

𝑑𝑟

𝑑𝜙
=
𝑟̇

𝜙̇
= ±𝑟

√︃
𝐶0

𝐶2
1

𝑟2𝛾 − 𝛼2

𝛾2
. (3.156)

Это уравнение легко интегрируется, и в результате получаем явную формулу для
экстремалей: (︂

𝑟

𝑟𝑚

)︂2𝛾

sin 2[𝛼(𝜙+ 𝜙0)] = 1, (3.157)

где

𝑟𝑚 :=

(︂
𝐶1𝛼√
𝐶0𝛾

)︂1/𝛾

= const > 0, 𝜙0 = const.

Постоянная 𝑟𝑚 положительна и определяет минимальное расстояние, на которое экс-
тремаль подходит к ядру дислокации, т.е. 𝑟 ≥ 𝑟𝑚. Только при этих значениях 𝑟
подкоренное выражение в (3.156) неотрицательно. Постоянная интегрирования 𝜙0

произвольна и соответствует инвариантности задачи относительно вращений вокруг
оси дислокации.

Уравнения для экстремалей (3.149), (3.150) имеют также вырожденные решения

1

𝛾
𝑟𝛾 = ±

√︀
𝐶0(𝑡+ 𝑡0), 𝜙 = const, 𝑡0 = const, (3.158)

которые соответствуют радиальному движению фононов. Такие траектории неустой-
чивы в том смысле, что вблизи них нет нерадиальных экстремалей.

Отметим, что экстремали в виде окружности (𝑟 = const) отсутствуют как след-
ствие уравнения (3.149), хотя интегралы движения (3.152), (3.153) и допускают такое
решение. Это связано с тем, что при получении первого интеграла (3.152) уравнение
(3.149) умножается на 𝑟̇.

Проанализируем форму нерадиальных экстремалей (3.157). Для каждой экстре-
мали радиус 𝑟 сначала убывает от бесконечности до минимального значения 𝑟𝑚, а
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затем возрастает от 𝑟𝑚 до бесконечности. При этом, не ограничивая общности, мож-
но считать, что аргумент синуса в (3.157) меняется 0 до 𝜋. Это следует из того,
что в среде до создания дислокаций экстремалями являются прямые линии. Таким
образом, получаем область изменения полярного угла

0 ≤ 𝜙+ 𝜙0 ≤
𝜋

𝛼
. (3.159)

Это значит, что экстремаль приходит из бесконечности под углом −𝜙0 и уходит на
бесконечность под углом 𝜋/𝛼− 𝜙0. Это соответствует углу рассеяния

𝜒 := 𝜋 − 𝜋

𝛼
=

𝜋𝜃

1 + 𝜃
. (3.160)

Отметим, что угол рассеяния фононов зависит только от угла дефицита 𝜃 и не зави-
сит от упругих свойств среды. Угол рассеяния имеет простую физическую интерпре-
тацию. Для положительных 𝜃 среда разрезается и раздвигается. В образовавшуюся
полость вставляется клин из той же среды без упругих напряжений. Затем происхо-
дит склейка и клин сжимается. Коэффициент сжатия среды для каждой окружности
с центром в начале координат из соображений симметрии равен 1/(1 + 𝜃). Поэтому
угол рассеяния равен половине угла дефицита, умноженному на коэффициент сжа-
тия:

𝜒 =
2𝜋𝜃

2
× 1

1 + 𝜃
.

При 𝜃 = 0 дислокация отсутствует и угол рассеяния, как и следовало ожидать, равен
нулю.

При положительных углах дефицита угол рассеяния положителен, что соответ-
ствует отталкиванию фононов от клиновой дислокации. Соответствующие экстре-
мали показаны на рис. 3.18a, и они имеют асимптоты при 𝑟 → ∞. Отметим, что

Рис. 3.18: (a) Экстремали для клиновой дислокации с положительным (𝜃 > 0) углом
дефицита. Показаны две экстремали и их отражение относительно оси 𝑥 для одного
значения 𝜃 > 0, но разных 𝑟𝑚. (b) Экстремали для клиновой дислокации с и отрица-
тельным −1/2 ≤ 𝜃 < 0 углом дефицита. Показаны две экстремали для одинаковых
значений 𝑟𝑚, но разных углах дефицита 𝜃 < 0.

при положительных углах дефицита не каждые две точки плоскости 𝑟, 𝜙 можно со-
единить экстремалью, т.е. справа от клиновой дислокации имеется зона, в которую
фононы, падающие слева не попадают вовсе (она показана темным).

Все экстремали на рисунках в данном разделе построены численно. Значения
угла дефицита 𝜃, угла рассеяния 𝜒 и минимального расстояния до оси дислокации
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𝑟𝑚 указаны на рисунках. Для определенности мы выбрали 𝜙0 = 𝜋, что соответствует
падению фононов слева.

При отрицательных углах дефицита угол рассеяния отрицателен и определяется
той же формулой (3.160). Это соответствует притяжению фононов к оси дислока-
ции. На рис. 3.18b показаны две экстремали с одинаковым параметром 𝑟𝑚, но для
двух дислокаций с разными углами дефицита. При −1/2 < 𝜃 < 0 угол рассеяния
меняется в пределах от 0 до −𝜋 (см. рис. 3.18b). При 𝜃 = −1/2 угол рассеяния равен
−𝜋, т.е. фонон возвращается, сделав один облет оси дислокации. Отметим, что при
отрицательных углах дефицита фононы не имеют асимптот при 𝑟 → ∞, т.е. при
𝜃 = −1/2 фононы падают из бесконечности 𝑥 → −∞, 𝑦 → +∞ и возвращаются в
бесконечность 𝑥→ −∞, 𝑦 → −∞.

Если угол дефицита достаточно мал (−1 < 𝜃 < −1/2) то фонон делает один или
несколько оборотов вокруг дислокации, а затем уходит в бесконечность. Примеры
таких траекторий показаны на рисунках 3.19–3.21.

Рис. 3.19: При 𝜃 = −2/3 экстремаль делает один оборот вокруг дислокации, а затем
идет вперед в первоначальном направлении. Справа показана увеличенная часть
траектории из квадрата вблизи оси дислокации.

Рис. 3.20: При 𝜃 = −3/4 экстремаль делает полтора оборота вокруг дислокации, а
затем возвращается назад. Справа показана увеличенная часть траектории из квад-
рата вблизи оси дислокации.
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Рис. 3.21: При 𝜃 = −4/5 экстремаль делает два оборота вокруг дислокации, а за-
тем идет вперед в первоначальном направлении. Справа показана последовательно
увеличенная часть траектории из двух квадратов вблизи оси дислокации.

Рассмотрим асимптотику нерадиальных экстремалей при 𝑟 → ∞. В соответствии
с уравнением (3.154) вдали от ядра дислокации

𝑟̇ ≈ ±
√︀
𝐶0𝑟

−𝛾+1 ⇒ 𝑟 ∼ 𝑡1/𝛾.

Отсюда следует, что зависимость радиуса от времени такая же, как и для радиаль-
ных экстремалей (3.158). Поскольку 𝛾 > 0, то бесконечное значение 𝑟 соответствует
бесконечному значению времени 𝑡. Это значит что плоскость 𝑟, 𝜙 с заданной метрикой
(3.148) полна при 𝑟 → ∞. Начало координат (ось дислокации) является сингулярной
точкой (коническая особенность). В нее попадают только радиальные экстремали
при конечном значении времени.

Интегралы движения (3.152), (3.153) имеют простой физический смысл. Уравне-
ния для экстремалей (3.144) следуют из вариационного принципа для лагранжиана
(3.145), описывающего движение свободной безмассовой точечной частицы по рима-
нову многообразию в нетривиальной метрикой 𝑔𝜇𝜈(𝑥). При этом метрика рассматри-
вается как заданное внешнее поле, по которому варьирование не проводится.

Энергия, соответствующая лагранжиану (3.145), равна

𝐸 =
1

2
𝑔𝜇𝜈 𝑥̇

𝜇𝑥̇𝜈 =
1

2

(︁𝑟
𝑎

)︁2𝛾−2

𝑟̇2 +
1

2

𝛼2

𝛾2

(︁𝑟
𝑎

)︁2𝛾−2

𝑟2𝜙̇2 +
1

2
𝑧̇2.

Если метрика, как в нашем случае, не зависит от времени явно, то энергия сохраня-
ется (𝐸 = const) и для движения в плоскости 𝑟, 𝜙 ее численное значение пропорцио-
нально интегралу движения 𝐶0.

Для клиновой дислокации метрика не зависит от полярного угла 𝜙, и лагранжиан
инвариантен относительно вращений: 𝜙 ↦→ 𝜙+ const. Согласно первой теореме Нетер
(см. раздел ??) этой инвариантности соответствует сохранение углового момента

𝐽 = −𝛼
2

𝛾2

(︁𝑟
𝑎

)︁2𝛾−2

𝑟2𝜙̇ = const.

Отсюда следует, что постоянная интегрирования 𝐶1 пропорциональна угловому мо-
менту.

Отметим, что поведение экстремалей качественно отличается от траекторий то-
чечных частиц, двигающихся в плоском пространстве с евклидовой метрикой 𝛿𝜇𝜈 во
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внешнем потенциальном поле 𝑈(𝑥). Нетрудно доказать, что траектории точечных
частиц, описываемых лагранжианом

𝐿 =
1

2
𝛿𝜇𝜈 𝑥̇

𝜇𝑥̇𝜈 − 𝑈

не могут совпадать с экстремалями (3.144) ни для какой функции 𝑈(𝑥).

3.9.2 Космические струны и множественные образы

Метрика для клиновой дислокации с отрицательным углом дефицита, 𝜃 < 0, сов-
падает с пространственной частью метрики космической струны [?]. Интересно от-
метить, что метрика космической струны была найдена совершенно другим путем,
как решение четырехмерных уравнений Эйнштейна в линейном приближении. Тем
не менее метрика, по существу, одна и та же, и, следовательно, экстремали, най-
денные в предыдущем разделе, описывают также распространение световых лучей
в пространстве-времени при наличии космической струны. Хорошо известным след-
ствием наличия космической струны является возникновение двойного изображе-
ния звезды, находящейся за космической струной, см. рис. 3.22 слева. В настоящем

Рис. 3.22: Двойной образ звезды, находящейся за космической струной с небольшим,
по модулю, углом дефицита (слева). Если угол дефицита близок к −2𝜋, тогда звезда
может иметь произвольное четное число образов. Справа показана ситуация, когда
звезда имеет четыре образа, два из которых созданы лучами света, делающими один
полный оборот вокруг космической струны.

разделе получена общая формула для углового разделения образов. Первоначально
угловое разделение образов было получено для малых углов в системе координат,
где экстремали являются прямыми линиями (т.е. до того, как создана дислокация).
Мы получим общую формулу справедливую для всех значений углов и в системе
координат, связанной с дислокацией.

Предположим, что звезда, струна и наблюдатель находятся на одной прямой (оси
абсцисс 𝑥). Пусть струна находится в начале координат, а звезда и наблюдатель на-
ходятся на расстояниях 𝑙 и 𝑑 от струны соответственно, как показано на рис. 3.22.
Обозначим полярные координаты на плоскости 𝑥, 𝑦 через 𝑟, 𝜙. Угол 𝜓 между каса-
тельным вектором к лучу света и радиальным направлением определяется следую-
щим равенством

tg𝜓 = 𝑟
𝑑𝜙

𝑑𝑟
, (3.161)
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что ясно из рисунка. Правую часть равенства можно вычислить, использую уравне-
ние (3.157) для формы экстремали, которое перепишем в виде

Φ :=

(︂
𝑟

𝑟𝑚

)︂2𝛾

sin 2
[︀
𝛼(𝜙+ 𝜙0)

]︀
− 1 = 0. (3.162)

Используя правило дифференцирования сложной функции, получим выражение для
производной

𝑑𝑟

𝑑𝜙
= −𝜕Φ/𝜕𝜙

𝜕Φ/𝜕𝑟
= −𝛼

𝛾
𝑟
cos

[︀
𝛼(𝜙+ 𝜙0)

]︀
sin

[︀
𝛼(𝜙+ 𝜙0)

]︀
Теперь равенство (3.161) примет вид

tg𝜓 = −𝛾
𝛼
tg

[︀
𝛼(𝜙+ 𝜙0)

]︀
. (3.163)

В дальнейшем полученное соотношение будет использовано для определения угло-
вого разделения образов звезды для наблюдателя.

Уравнение экстремали (3.162) зависит от двух параметров: 𝑟𝑚 и 𝜙0. Эти пара-
метры можно выразить через расстояния 𝑙 от звезды до космической струны и 𝑑 от
космической струны до наблюдателя. Для заданной экстремали положения звезды
и наблюдателя определяются следующими уравнениями:(︂

𝑙

𝑟𝑚

)︂2𝛾

sin 2𝜑1 = 1,(︂
𝑑

𝑟𝑚

)︂2𝛾

sin 2𝜑2 = 1,

(3.164)

где введены обозначения

𝜑1 := 𝛼(𝜋 + 2𝜋𝑚+ 𝜑0), 𝜑2 := 𝛼𝜑0. (3.165)

Выше целое число 𝑚 = 0, 1, 2, . . . обозначает число оборотов, которое совершает луч
света вокруг космической струны по пути от звезды до наблюдателя. Разность углов
𝜑1 и 𝜑2 должна быть меньше 𝜋, т.к. в противном случае звезда и наблюдатель пере-
секались бы разными ветвями экстремали. Это следует из формулы (3.159). Поэтому
неравенство

𝛼𝜋(1 + 2𝑚) < 𝜋 (3.166)

ограничивает максимальное число обходов луча света вокруг космической струны.
Формулы (3.164) неявно выражают постоянные 𝑟𝑚 и 𝜙0 через 𝑙 и 𝑑.

Угловое разделение образов равно △ := 2(𝜋 − 𝜓2), что ясно из рис. 3.22 слева.
Поэтому из формулы (3.163) вытекает равенство

tg

(︂
𝜋 − △

2

)︂
= −𝛾

𝛼
tg 𝜑2 ⇔ tg 𝜑2 =

𝛼

𝛾
tg

△
2
. (3.167)

Из равенств (3.164) следует уравнение

𝑑𝛾 | sin𝜑2| = 𝑙𝛾
⃒⃒
sin

[︀
𝜑2 + 𝛼𝜋(1 + 2𝑚)

]︀⃒⃒
, (3.168)

где угол 𝜑2 связан с угловым разделением образов △ равенством (3.167). Таким обра-
зом, мы получили общую неявную формулу, которая позволяет определить угловое
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разделение образов звезды по параметрам космической струны 𝛾 и 𝛼, а также рас-
стояниям 𝑙 и 𝑑.

Для малых отрицательных углов дефицита, −𝜃 ≪ 1, справедливы равенства:

𝛼 := 1 + 𝜃, 𝛾 ≈ 1 + 𝜃
1 − 2𝜎

2(1 − 𝜎)
,

где мы воспользовались формулой (3.101). Из неравенства (3.166) следует 𝑚 = 0,
т.е. наблюдатель видит только два образа звезды: один сверху, а другой снизу кос-
мической струны. В дальнейшем мы увидим, что при этом угловое разделение мало
и имеет порядок △ ∼ 𝜃. Поэтому из равенства (3.167) следует, что угол 𝜑2 ∼ 𝜃, а
для постоянных 𝛼 и 𝛾 можно использовать нулевой приближение 𝛼 ≈ 𝛾 ≈ 1. Таким
образом, для малых углов дефицита уравнение (3.168) принимает вид

𝑑 sin
△
2

= −𝑙 sin
(︂
△
2

+ 𝜋𝜃

)︂
.

Поскольку △ и 𝜃 имеют один порядок малости, то отсюда вытекает выражение для
углового разделения образов звезды при малых углах дефицита космической струны

△ =
𝑙

𝑑+ 𝑙
2𝜋|𝜃|. (3.169)

Это – хорошо известная формула [?]. Совпадение ответов является нетривиальным
результатом, т.к. угловые разделения получены в разных системах координат. В раз-
деле 3.8.3 было показано, что эти системы координат связаны конформным преоб-
разованием, которое сохраняет углы.

Отметим, что в линейном приближении угловое разделение образов (3.169) не
зависит от упругих свойств пространства.

В общем случае, если угол дефицита достаточно мал, то наблюдатель видит толь-
ко два образа звезды. Допустим, что угол дефицита близок к −2𝜋. Тогда неравенство
(3.166) будет выполнено для всех 𝑚 = 0, 1, . . . ,𝑀 , где 𝑀 – некоторое максимальное
значение. Поэтому наблюдатель будет видеть 2(1 + 𝑀) образов звезды: два образа,
созданные лучами света, которые не делают ни одного оборота, два образа для лучей
света, делающими один оборот и т.д. На рис. 3.22 справа показана звезда с четырьмя
образами для 𝜃 = −3/4. Для такого угла дефицита каждая экстремаль делает один
полный оборот вокруг космической струны перед тем, как уйти в бесконечность.
Однако две экстремали достигают наблюдателя до того, как сделают оборот. Они
характеризуются бо́льшим значением параметра 𝑟𝑚.

3.9.3 Общий подход к анализу параллельных клиновых дис-
локаций

Прямое интегрирование уравнений для экстремалей для метрики (3.102) представля-
ет значительные трудности, потому что в плоскости 𝑥, 𝑦 нет вектора Киллинга. Тем
не менее описать рассеяние фононов можно для асимптотических форм метрики.

В общем случае интеграл (3.104) задает решение уравнения Гамильтона–Якоби
для экстремалей (3.146)

𝜕𝑆

𝜕𝑡
+

1

2
𝑔𝜇𝜈

𝜕𝑆

𝜕𝑥𝜇
𝜕𝑆

𝜕𝑥𝜈
= 0, (3.170)

где
𝑆 :=

√
2𝐸

√︀
(𝑤 − 𝑐)(𝑤̄ − 𝑐) − 𝐸𝑡, 𝑐 := 𝑎+ 𝑖𝑏 = const,
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и 𝐸 – энергия частицы (фонона). Для евклидовой метрики (3.103) экстремалями
являются прямые линии,

(𝑢− 𝑎) sin 𝛾 = (𝑣 − 𝑏) cos 𝛾, (3.171)

или
(𝑤 − 𝑐) e−𝑖𝛾 = (𝑤̄ − 𝑐) e𝑖𝛾, (3.172)

проходящие через точку (𝑎, 𝑏) под углом 𝛾. Для того, чтобы найти траекторию фо-
нона в исходной декартовой системе координат, уравнение (3.171) надо просто пе-
реписать в системе координат 𝑥, 𝑦. В общем случае это сделать нельзя, т.к. инте-
грал (3.104) не берется. Однако можно проанализировать асимптотику траекторий
на больших расстояниях (задача рассеяния) |𝑧| ≫ |𝑧i|. Ниже мы проанализируем
рассеяние фононов для дипольного и квадрупольного приближения.

Дипольное приближение

Рассмотрим произвольное распределение клиновых дислокаций. Если полный угол
дефицита равен нулю, Θ = 0, а полный вектор Бюргерса отличен от нуля, 𝐵 ̸= 0,
тогда поведение экстремалей на больших расстояниях определяется дипольным сла-
гаемым в разложении (3.109). Двумерный интервал в плоскости 𝑧, соответствующий
конформному отображению (3.119), в полярных координатах 𝑟, 𝜙 имеет вид

𝑑𝑙2 =

(︂
1 −𝐵

2 cos𝜙

𝑟

)︂
(𝑑𝑟2 + 𝑟2𝑑𝜙2) (3.173)

и является асимптотически плоским. Экстремали (3.171) определяются равенством

𝑟 sin (𝜙− 𝛾) +𝐵( ln𝑟 sin 𝛾 + 𝜙 cos 𝛾) − 𝑎 sin 𝛾 + 𝑏 cos 𝛾 = 0, (3.174)

где координаты 𝑤 = (𝑢, 𝑣) выражены через 𝑧 = (𝑟, 𝜙) с помощью равенства (3.119).
В дипольном приближении рассеяние определяется вектором Бюргерса, и, следова-
тельно, траектории фононов зависят от угла, под которым они уходят в бесконеч-
ность. Мы рассмотрим два случая. При 𝛾 = 0 траектории на больших расстояниях
перпендикулярны вектору Бюргерса. В этом случае уравнение (3.174) сводится к
равенству

𝑦

𝑥
= − tg

𝑦 + 𝑏

𝐵
,

и экстремали параметризуются одной постоянной 𝑏. На рис. 3.23 экстремали пока-
заны для 𝑏 = 0 и 𝑏 > 0. Экстремали для отрицательных 𝑏 < 0 получаются их тех,
что изображены на рисунке справа, отражением 𝑦 ↦→ −𝑦. Экстремали имеют гори-
зонтальные асимптоты на бесконечности, которые сдвинуты на вектор Бюргерса 𝜋𝐵,
𝐵 > 0. Таким образом, рассеяние сводится к сдвигу траекторий фононов на вектор
Бюргерса и задержки по времени. Отметим наличие возвращающихся траекторий
для фононов, падающих справа. Если фононы падают слева, то рассеяние назад от-
сутствует. Это значит, что дислокация невидима для фононов, падающих слева и
перпендикулярно вектору Бюргерса.

Экстремали, параллельные вектору Бюргерса в бесконечности, имеют другое по-
ведение и показаны на рис. 3.24. Они соответствуют значению 𝛾 = 𝜋/2 и определены
уравнением

𝑥2 + 𝑦2 = exp

(︂
2
𝑥+ 𝑎

𝐵

)︂
. (3.175)
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Рис. 3.23: Экстремали для краевой дислокации с 𝑏 = 0 и 𝑏 = 1/2, которые перпен-
дикулярны вектору Бюргерса на бесконечности. Для всех 𝑏 ̸= 0 возвращающиеся
экстремали проходят через линию дислокации.

В этом случае экстремали параметризуются одной произвольной постоянной 𝑎. На
бесконечности экстремали не имеют асимптот, и поэтому удаленный наблюдатель
может почувствовать наличие дислокации, т.к. экстремали не являются прямыми
линиями. Рассеяние фононов также сопровождается задержкой по времени. Для 𝑎 =
𝑎0, где

𝑎0 := 𝐵 ln𝐵,

экстремаль имеет точку самопересечения, расположенную в точке (𝐵, 0) комплекс-
ной плоскости 𝑧. Если 𝑎 > 𝑎0, то экстремали имеют по одной ветви. При 𝑎 < 𝑎0
решение уравнения (3.175) содержат две ветви. Одна ветвь начинается и заканчива-
ется в бесконечности, а другая является замкнутой и окружает линию дислокации.
На самом деле эта ветвь может не быть замкнутой, если скорость фонона вдоль оси
𝑥3 отлична от нуля. В таком случае она будет представлять собой спираль.

Рис. 3.24: Экстремали для краевой дислокации, которые параллельны вектору Бюр-
герса на бесконечности. Справа показана увеличенная центральная часть. Для 𝑎 < 𝑎0
экстремали имеют по две ветви.

Напомним, что экстремали построены для дипольного приближения, и поэтому
можно ожидать качественного согласия только вдали от ядра дислокации.
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Квадрупольное приближение

В квадрупольном приближении Θ = 0, 𝐵 = 0, 𝑀 ̸= 0, и конформное отображение
(3.109) на больших расстояниях принимает вид

𝑤 = 𝑧 − 𝑀

𝑧
. (3.176)

Без потери общности положим im𝑀 = 0 и предположим, что 𝑀 > 0. Для отрица-
тельных значений 𝑀 всю картину рассеяния нужно повернуть на угол 𝜋. Двумерная
часть метрики для конформного отображения (3.176) в полярных координатах 𝑟, 𝜙
равна

𝑑𝑙2 =

(︂
1 + 2𝑀

cos (2𝜙)

𝑟2

)︂
(𝑑𝑟2 + 𝑟2𝑑𝜙2). (3.177)

Она стремится к евклидовой метрике на бесконечности 𝑟 → ∞ быстрее, чем в ди-
польном приближении. В квадрупольном приближении уравнение для экстремалей
(3.171) сводится к равенству

𝑟 sin (𝜙− 𝛾) +
𝑀

𝑟
sin (𝜙+ 𝛾) − 𝑎 sin 𝛾 + 𝑏 cos 𝛾 = 0. (3.178)

В бесконечности это уравнение определяет прямые линии, и поэтому все экстремали
имеют асимптоты.

Рассмотрим два случая. Экстремали, параллельные оси 𝑥 на бесконечности, со-
ответствуют значению 𝛾 = 0 и определяются уравнением

𝑥2 + 𝑦2 = − 𝑀𝑦

𝑦 + 𝑏
, (3.179)

где 𝑏 ̸= 0 – произвольный параметр. Для отрицательных значений 𝑏 < 0 все экстрема-
ли расположены в верхней полуплоскости и показаны на рис. 3.25 слева. Экстремали
для положительных 𝑏 > 0 получаются из экстремалей для 𝑏 < 0 путем отражения
𝑦 ↦→ −𝑦. Для −2

√
𝑀 < 𝑏 < 0 экстремаль имеет только одну ветвь, идущую от

𝑥 = −∞ до 𝑥 = +∞ и касающуюся оси 𝑥 в начале координат. Если 𝑏 = −2
√
𝑀 , то

экстремаль имеет точку самопересечения, расположенную в точке 𝑥 = 0, 𝑦 =
√
𝑀 .

При 𝑏 < −2
√
𝑀 экстремаль имеет две ветви. Одна бесконечная ветвь идет от 𝑥 = −∞

до 𝑥 = +∞ и не касается оси абсцисс. Вторая ветвь является замкнутой и проходит
через начало координат. Все бесконечные экстремали имеют одинаковые асимптоты
𝑦 = −𝑏 слева и справа при 𝑥→ ±∞, и все рассеяние сводится только к задержке во
времени.

Экстремали, параллельные оси ординат 𝑦 в бесконечности, соответствуют значе-
нию 𝛾 = 𝜋/2 и определяются уравнением.

𝑥2 + 𝑦2 =
𝑀𝑥

𝑥− 𝑎
.

Оно отличается от уравнения (3.179) знаком правой части и заменой 𝑥 ↔ 𝑦. Здесь
постоянная 𝑀 также предполагается положительной. Для 𝑎 = 0 экстремаль пред-
ставляет собой окружность радиуса

√
𝑀 . Для положительных значений 𝑎 > 0 экс-

тремали показаны на рис. 3.25 справа. Экстремали для отрицательных 𝑎 < 0 по-
лучаются отражением 𝑥 ↦→ −𝑥. Каждая экстремаль имеет две ветви. Одна ветвь
является бесконечной и идет от 𝑦 = −∞ до 𝑦 = +∞ с одинаковой асимптотикой
𝑥 = 𝑎. Вторая ветвь замкнута, лежит внутри окружности на другой полуплоскости
и проходит через начало координат. В этом случае рассеяние также сводится только
к задержке во времени.
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Рис. 3.25: Экстремали для квадрупольного приближения. Слева показаны экстрема-
ли, параллельные оси абсцисс 𝑥, а справа – параллельные оси ординат 𝑦 в бесконеч-
ности. Каждая экстремаль при 𝑏 < −2

√
𝑀 имеет две ветви.

3.10 Цилиндрическая дислокация

В настоящем разделе мы рассмотрим новый тип дислокаций – цилиндрические, у
которых 𝛿-образная особенность сосредоточена на поверхности цилиндра. Этот вид
дислокаций интересен тем, что индуцированная метрика, полученная в рамках тео-
рии упругости, в точности совпадает с метрикой в геометрической теории дефектов,
где она является точным решением уравнений Эйнштейна. Кроме того, будет по-
казано, что цилиндрическая дислокация может иметь физические приложения, т.к.
представляет собой континуальную модель двустенных нанотрубок.

3.10.1 Цилиндрическая дислокация в теории упругости

Рассмотрим трехмерное евклидово пространство R3 (бесконечную однородную и изо-
тропную упругую среду или эфир в общей теории относительности) с декартовой си-
стемой координат 𝑥𝑖, 𝑦𝑖, 𝑖 = 1, 2, 3. Евклидова метрика, как всегда, обозначена через
𝛿𝑖𝑗 := diag (+++). Основной переменной в теории упругости является векторное поле
смещений 𝑢𝑖(𝑥), 𝑥 ∈ R3, которое характеризует смещение точек среды (3.1). В отсут-
ствии внешних сил законы Ньютона (3.2) и Гука (3.3) сводятся к системе уравнений
второго порядка (3.5) с некоторыми граничными условиями, которые определяются
рассматриваемой задачей.

Поставим задачу для цилиндрической дислокации, показанной на рис. 3.26a. Эта
дислокация возникает в результате следующей процедуры. Мы вырезаем толстую
трубку вещества между двумя параллельными цилиндрами радиусов 𝑟1 и 𝑟2 (𝑟1 <
𝑟2), осью которых является ось 𝑧 := 𝑥3, сдвигаем цилиндры симметрично друг к
другу и затем склеиваем их. После установления равновесия поверхность склейки
также представляет собой цилиндр радиуса 𝑟*, который необходимо найти, благодаря
вращательной и трансляционной симметрии.

По нашему соглашению рис. 3.26a изображает отрицательную цилиндрическую
дислокацию, т.к. часть вещества удалена, 𝑟1 < 𝑟2. Эту процедуру можно инвертиро-
вать, добавив часть вещества к R3 как показано на рис. 3.26b. В этом случае цилин-
дрическая дислокация будет положительной, 𝑟1 > 𝑟2.

Описание цилиндрической дислокации в рамках теории упругости естественно
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Рис. 3.26: Отрицательная (a) и положительная (b) цилиндрические дислокации.

провести в цилиндрической системе координат 𝑟, 𝜙, 𝑧. Обозначим компоненты поля
смещений относительно ортонормального базиса через 𝑢𝑟, 𝑢𝜙 и 𝑢𝑧. В рассматрива-
емом случае две компоненты равны нулю, 𝑢𝜙 = 0, 𝑢𝑧 = 0, благодаря симметрии
задачи, а радиальная компонента зависит только от радиуса 𝑢𝑟(𝑟). Для простоты
индекс этой компоненты писать не будем, 𝑢𝑟(𝑟) = 𝑢(𝑟).

Граничные условия для цилиндрической дислокации имеют вид

𝑢|𝑟=0 = 0, 𝑢|𝑟=∞ = 0,
𝑑𝑢in

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟*

=
𝑑𝑢ex

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟*

. (3.180)

Первые два условия являются геометрическими, а третье означает равенство упругих
сил на поверхности склейки. Буквы “in” и “ex” обозначают векторное поле смещений
соответственно на внутренней (internal) и внешней (external) частях среды.

Кроме этого граничные условия необходимо дополнить условием сплошности сре-
ды

𝑟1 + 𝑢in(𝑟*) = 𝑟2 + 𝑢ex(𝑟*) ⇔ 𝑙 := 𝑟2 − 𝑟1 = 𝑢in(𝑟*) − 𝑢ex(𝑟*), (3.181)

где 𝑙 – расстояние между исходными цилиндрами (толщина удаленного вещества).
В рассматриваемом случае уравнения теории упругости (3.5) легко решаются.

Лапласиан от радиальной компоненты (только он отличен от нуля) и дивергенция в
цилиндрических координатах имеют вид

△𝑢𝑟 =
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝑢𝑟) +

1

𝑟2
𝜕2𝜙𝑢𝑟 + 𝜕2𝑧𝑢𝑟 −

1

𝑟2
𝑢𝑟 −

2

𝑟2
𝜕𝜙𝑢𝜙,

𝜕𝑖𝑢
𝑖 =

1

𝑟
𝜕𝑟(𝑟𝑢

𝑟) +
1

𝑟
𝜕𝜙𝑢

𝜙 + 𝜕𝑧𝑢
𝑧,

где индексы опущены с помощью евклидовой метрики: 𝑢𝑟 = 𝑢𝑟, 𝑢𝜙 = 𝑢𝜙 и 𝑢𝑧 =
𝑢𝑧. Угловая 𝜙 и 𝑧 компоненты уравнений (3.5) тождественно удовлетворяются, а
радиальная компонента сводится к уравнению

𝜕𝑟

[︂
1

𝑟
𝜕𝑟(𝑟𝑢)

]︂
= 0, (3.182)

которое имеет общее решение

𝑢 = 𝑎𝑟 − 𝑏

𝑟
, 𝑎, 𝑏 = const,
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зависящее от двух постоянных интегрирования 𝑎 и 𝑏. Из первых двух граничных
условий (3.180) вытекает, что решения внутри и снаружи поверхности склейки равны

𝑢in = 𝑎𝑟, 𝑎 > 0,

𝑢ex = − 𝑏
𝑟
, 𝑏 > 0.

(3.183)

Знаки постоянных интегрирования соответствуют отрицательной цилиндрической
дислокации, изображенной на рис. 3.26a. Для положительной цилиндрической дис-
локации, рис. 3.26b, постоянные имеют противоположные знаки: 𝑎 < 0 и 𝑏 < 0. Тре-
тье граничное условие (3.180) определяет радиус цилиндра, вдоль которого проходит
склейка,

𝑟2* =
𝑏

𝑎
. (3.184)

После простых алгебраических вычислений с учетом условия сплошности (3.181)
постоянные интегрирования можно выразить через радиусы:

𝑎 =
𝑟2 − 𝑟1
𝑟2 + 𝑟1

=
𝑙

2𝑟*
, 𝑏 =

𝑟22 − 𝑟21
4

=
𝑙𝑟*
2
, (3.185)

где
𝑙 = 𝑟2 − 𝑟1, 𝑟* =

𝑟2 + 𝑟1
2

– толщина удаленной трубы вещества и радиус поверхности склеивания. Первое вы-
ражение (3.185) накладывает ограничение на область значений постоянной интегри-
рования 0 < |𝑎| < 1, т.к. 𝑟1 > 0 и 𝑟2 > 0. Для отрицательной и положительной ци-
линдрической дислокации соответственно 𝑙 > 0 и 𝑙 < 0. Мы видим, что поверхность
склейки находится в точности посередине радиусов 𝑟1 и 𝑟2. Итак, уравнение (3.183) с
постоянными интегрирования (3.185) дает полное решение для цилиндрической дис-
локации в рамках линейной теории упругости. Мы ожидаем, что оно справедливо
при малых относительных деформациях: 𝑙/𝑟1 ≪ 1, 𝑙/𝑟2 ≪ 1.

Отметим, что результат, полученный в рамках теории упругости, не зависит от
коэффициента Пуассона. В этом смысле цилиндрическая дислокация является чисто
геометрическим дефектом, который не зависит от упругих свойств среды.

Теперь вычислим геометрические характеристики риманова многообразия, соот-
ветствующего цилиндрическому дефекту. С геометрической точки зрения упругие
деформации (3.1) представляют собой диффеоморфизм областей евклидова про-
странства. Исходная среда описывается декартовыми координатами 𝑦𝑖 и евклидо-
вой метрикой 𝛿𝑖𝑗. Возврат отображения 𝑥 ↦→ 𝑦 индуцирует нетривиальную метрику
на евклидовом пространстве R3, соответствующем цилиндрической дислокации. В
декартовых координатах она имеет вид

𝑔𝑖𝑗(𝑥) =
𝜕𝑦𝑘

𝜕𝑥𝑖
𝜕𝑦𝑙

𝜕𝑥𝑗
𝛿𝑘𝑙.

Мы используем криволинейные цилиндрические координаты и поэтому изменим обо-
значения. Обозначим индексы относительно криволинейной системы координат гре-
ческими буквами 𝑥𝜇, 𝜇 = 1, 2, 3. Тогда индуцированная метрика для цилиндрической
дислокации равна

𝑔𝜇𝜈(𝑥) =
𝜕𝑦𝜌

𝜕𝑥𝜇
𝜕𝑦𝜎

𝜕𝑥𝜈
∘
𝑔𝜌𝜎 (3.186)
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где ∘
𝑔𝜌𝜎 – евклидова метрика, записанная в цилиндрических координатах. Обозначим

цилиндрические координаты точки среды до того как была создана дислокация через
{𝑦, 𝜙, 𝑧}, где буква 𝑦 без индекса обозначает радиальную координату. Поскольку при
создании дислокации координаты 𝜙 и 𝑧 фиксированной точки среды не меняются,
то диффеоморфизм описывается одной функцией от радиуса: 𝑦 = 𝑟 − 𝑢(𝑟), где

𝑢(𝑟) :=

⎧⎨⎩𝑎𝑟, 𝑟 < 𝑟*,

− 𝑏
𝑟
, 𝑟 > 𝑟*.

(3.187)

Эта функция имеет скачок 𝑎𝑟* + 𝑏/𝑟* = 𝑙 при переходе через разрез и поэтому не
является непрерывной. В связи с этим при вычислении геометрических объектов
необходимо проявлять осторожность. С этой целью введем функцию

𝑣(𝑟) :=

⎧⎨⎩𝑎, 𝑟 ≤ 𝑟*,
𝑏

𝑟2
, 𝑟 ≥ 𝑟*,

(3.188)

которая непрерывна на поверхности склейки. Графики функций 𝑢 и 𝑣 приведены на
рис. 3.27

Рис. 3.27: Графики функций 𝑢 и 𝑣. Функция 𝑢 имеет скачок 𝑙 на поверхности склейки
при 𝑟*, а функция 𝑣 непрерывна, но имеет скачок производной.

Функция 𝑣 отличается от производной по радиусу 𝑟 от векторного поля смещений
𝑢(𝑟), определенного равенством (3.187), на 𝛿-функцию:

𝑢′ = 𝑣 − 𝑙𝛿(𝑟 − 𝑟*). (3.189)

Индуцированная метрика вне поверхности склейки задана выражением (3.186) и
неопределена на поверхности склейки. Поэтому мы определяем метрику цилиндри-
ческой дислокации следующим образом

𝑑𝑠2 := (1 − 𝑣)2𝑑𝑟2 + (𝑟 − 𝑢)2𝑑𝜙2 + 𝑑𝑧2. (3.190)

Ей соответствует элемент объема
√
𝑔 = (1 − 𝑣)(𝑟 − 𝑢), где 𝑔 := det 𝑔𝜇𝜈 .

Метрика (3.190) отличается от формальной подстановки 𝑦 = 𝑟 − 𝑢(𝑟) в евкли-
дову метрику 𝑑𝑠2 = 𝑑𝑦2 + 𝑦2𝑑𝜙2 + 𝑑𝑧2 на квадрат 𝛿-функции в 𝑔𝑟𝑟 компоненте. Эта
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процедура необходима в геометрической теории дефектов, т.к. в противном случае
вектор Бюргерса нельзя выразить через поверхностный интеграл (см. раздел 3.2).
Таким образом, радиальная компонента метрики 𝑔𝑟𝑟(𝑟) = (1 − 𝑣)2 цилиндрической
дислокации является непрерывной функцией, а угловая компонента 𝑔𝜙𝜙 = (𝑟 − 𝑢)2

имеет скачок на поверхности склейки.
Итак, мы решили уравнения линейной теории упругости (3.5) с граничными усло-

виями (3.180), (3.181), которые описывают цилиндрическую дислокацию. Вектор
смещения (3.187) и, следовательно, индуцированная метрика (3.190) не зависят от
упругих свойств среды (коэффициента Пуассона). Это демонстрирует универсаль-
ных характер цилиндрических дислокаций.

Теперь вычислим геометрические характеристики цилиндрической дислокации.
Компоненты метрики являются недифференцируемыми функциями, и, следователь-
но, вычисления, включающие дифференцирование и умножение в общем случае не
определены. Поэтому мы проведем вычисления таким образом как будто все компо-
ненты метрики являются достаточно гладкими функциями, а затем убедимся, что
все неопределенные слагаемые в конечном ответе благополучно сокращаются. Это
означает, что какую бы регуляризацию мы не выбрали, конечный ответ от нее не
зависит.

Сначала вычислим символы Кристоффеля. Только четыре их компоненты отлич-
ны от нуля:

̃︀Γ𝑟𝑟𝑟 = −𝑣′(1 − 𝑣),̃︀Γ𝑟𝜙𝜙 = ̃︀Γ𝜙𝑟𝜙 = [1 − 𝑣 + 𝑙𝛿(𝑟 − 𝑟*)](𝑟 − 𝑢),̃︀Γ𝜙𝜙𝑟 = −[1 − 𝑣 + 𝑙𝛿(𝑟 − 𝑟*)](𝑟 − 𝑢),

где использовано соотношение (3.189). Отличные от нуля компоненты символов Кри-
стоффеля с одним верхним индексом имеют вид

̃︀Γ𝑟𝑟
𝑟 = − 𝑣′

1 − 𝑣
,

̃︀Γ𝑟𝜙
𝜙 = ̃︀Γ𝜙𝑟

𝜙 =
1 − 𝑣 + 𝑙𝛿(𝑟 − 𝑟*)

𝑟 − 𝑢
,

̃︀Γ𝜙𝜙
𝑟 = − [1 − 𝑣 + 𝑙𝛿(𝑟 − 𝑟*)](𝑟 − 𝑢)

(1 − 𝑣)2
.

Заметим, что если бы мы не отбросили 𝛿-функцию в 𝑔𝑟𝑟 компоненте метрики (3.190),
то на нее пришлось бы делить, что является неопределенной операцией.

Из компонент тензора кривизны только одна отлична от нуля

̃︀𝑅𝑟𝜙𝑟𝜙 = 𝜕𝑟̃︀Γ𝜙𝑟𝜙 + ̃︀Γ𝑟𝑟
𝑟̃︀Γ𝜙𝜙𝑟 − ̃︀Γ𝜙𝑟

𝜙̃︀Γ𝑟𝜙𝜙 =

= 𝑙(𝑟 − 𝑢)

[︂
𝛿′(𝑟 − 𝑟*) +

𝑣′

1 − 𝑣
𝛿(𝑟 − 𝑟*)

]︂
,

(3.191)

где
𝛿′(𝑟 − 𝑟*) := 𝜕𝑟𝛿(𝑟 − 𝑟*)

– производная 𝛿-функции. Неопределенные слагаемые с квадратами 𝛿2(𝑟− 𝑟*) в тен-
зоре кривизны благополучно сократились. Нетривиальная компонента тензора кри-
визны (3.191) все еще остается неопределенной, потому что коэффициент при 𝛿′ и
𝛿-функции имеет разрыв. Мы видим, что тензор кривизны (3.191) равен нулю всюду
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за исключением поверхности склейки, как и должно быть и с математической, и с
физической точек зрения (3.191).

Еще раз отметим важное обстоятельство. Предписание отбросить 𝛿-функцию из
𝑔𝑟𝑟 компоненты метрики для цилиндрической дислокации (3.190), которое было про-
диктовано физическими соображениями (равенство сил на обоих берегах разреза),
определяет правильный путь проведения математических вычислений.

У тензора Риччи две нетривиальных компоненты:

̃︀𝑅𝑟𝑟 =
𝑙

𝑟 − 𝑢

[︂
𝛿′(𝑟 − 𝑟*) +

𝑣′

1 − 𝑣
𝛿(𝑟 − 𝑟*)

]︂
,

̃︀𝑅𝜙𝜙 =
𝑙(𝑟 − 𝑢)

(1 − 𝑣)2

[︂
𝛿′(𝑟 − 𝑟*) +

𝑣′

1 − 𝑣
𝛿(𝑟 − 𝑟*)

]︂
.

Скалярная кривизна равна

̃︀𝑅 =
2𝑙

(𝑟 − 𝑢)(1 − 𝑣)2

[︂
𝛿′(𝑟 − 𝑟*) +

𝑣′

1 − 𝑣
𝛿(𝑟 − 𝑟*)

]︂
.

Уравнения Эйнштейна,

√
𝑔

(︂̃︀𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈 ̃︀𝑅)︂ = −1

2
𝑇𝜇𝜈 , (3.192)

тождественно удовлетворяются за исключением 𝑧𝑧 компоненты,

2𝑙

(︂
1

1 − 𝑣
𝛿′(𝑟 − 𝑟*) +

𝑣′

(1 − 𝑣)2
𝛿(𝑟 − 𝑟*)

)︂
= 𝑇𝑧𝑧, (3.193)

где 𝑇𝑧𝑧 – источник цилиндрической дислокации (аналог тензора энергии-импульса
полей материи в общей теории относительности). Используя тождество

𝑓(𝑟)𝛿′(𝑟 − 𝑟*) = 𝑓(𝑟*)𝛿
′(𝑟 − 𝑟*) − 𝜕𝑟𝑓𝛿(𝑟 − 𝑟*),

справедливое для произвольной дифференцируемой функции 𝑓 ∈ 𝒞1(R+) на веще-
ственной положительной полупрямой, сингулярную часть можно переписать в виде

𝑇𝑧𝑧 =
2𝑙

1 − 𝑣(𝑟*)
𝛿′(𝑟 − 𝑟*) =

4𝑙𝑟*
2𝑟* − 𝑙

𝛿′(𝑟 − 𝑟*). (3.194)

Мы видим, что все неопределенные слагаемые в уравнениях Эйнштейна сократи-
лись. В общем случае, если компоненты метрики не являются непрерывными функ-
циями, компоненты тензора кривизны содержат квадраты 𝛿-функций и произведе-
ния 𝛿-функций на скачки и, следовательно, математически не определены. Поэтому
сокращение всех неопределенных слагаемых в уравнениях Эйнштейна является ис-
ключительным случаем. Не смотря на то, что символы Кристоффеля и компоненты
тензора кривизны являются неопределенными, тензор энергии-импульса корректно
определен. Такая же ситуация имеет место для распределения клиновых дислокаций
с множителем √

𝑔 для определения тензора энергии-импульса (3.192). Множитель √
𝑔

возникает из-за того, что 𝛿-функция является не функцией, а скалярной плотностью.
В уравнениях Эйнштейна (3.192) мы переопределили тензор энергии-импульса

(источник) по сравнению с тем, как он был определен в общей теории относительно-
сти (??). В настоящем разделе это не тензор, а тензорная плотность. Это существенно
при работе с обобщенными функциями.
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3.10.2 Цилиндрическая дислокация в геометрической теории
дефектов

В предыдущем разделе мы описали цилиндрическую дислокацию и доказали, что
индуцированная метрика является точным решением уравнений Эйнштейна. Одна-
ко остался открытым вопрос о том, что уравнения геометрической теории дефектов
имеют еще какие либо решения для цилиндрической дислокации при том же ис-
точнике. Поэтому в настоящем разделе мы опишем цилиндрическую дислокацию
без привлечения теории упругости. С этой целью мы решим уравнения равновесия,
следующие из вариационного принципа для действия (3.36) в системе координат,
определенной упругой (3.43) и лоренцевой (3.44) калибровочными условиями.

Пусть цилиндрическая дислокация описывается источником 𝑇𝜇𝜈 , явный вид ко-
торого будет определен позже.

Цилиндрическая дислокация соответствует упругой среде без спиновой структу-
ры и поэтому без дисклинаций. В этом случае тензор кривизны равен нулю 𝑅𝜇𝜈

𝑖𝑗 = 0

(но не тензор ̃︀𝑅𝜇𝜈
𝑖𝑗 !), уравнения равновесия, полученные вариацией действия (3.36)

по связности 𝜔𝜇
𝑖𝑗 выполнены, и мы можем положить 𝑅a

𝜇𝜈 = 0 в действии (3.36).
После этого действие варьируется по реперу 𝑒𝜇𝑖, и возникают уравнения Эйнштейна
(3.192).

Для цилиндрической дислокации метрика имеет два вектора Киллинга, 𝜕𝑧 и 𝜕𝜙
в цилиндрической системе координат, которые соответствуют инвариантности от-
носительно трансляций вдоль оси 𝑧 и вращениям в плоскости 𝑥, 𝑦. Для решения
уравнений Эйнштейна выберем метрику в диагональном виде

𝑔𝜇𝜈 =

⎛⎝𝐴2 0 0
0 𝐵2 0
0 0 1

⎞⎠ , (3.195)

где 𝐴(𝑟) и 𝐵(𝑟) – две неизвестные положительные функции от радиуса. Хотя это не
самый общий вид метрики, совместимой с симметрией задачи, его будет достаточно
для наших целей. Соответствующий репер также можно выбрать в диагональном
виде:

𝑒𝑟
𝑟 = 𝐴, 𝑒𝜙

𝜙 = 𝐵, 𝑒𝑧
𝑧 = 1, (3.196)

где координатные индексы обозначены {𝜇} = (𝑟, 𝜙, 𝑧), а индексы относительно орто-
нормального базиса помечены шляпкой: {𝑖} = (𝑟, 𝜙, 𝑧). Мера объема имеет вид

√
𝑔 = 𝐴𝐵.

Если бы упругая калибровка (3.43) не использовалась, то оставшуюся свободу
в выборе радиальной координаты можно было бы использовать для дальнейшего
упрощения вида метрики. Например, можно было бы положить 𝐴 = 1.

Последующие вычисления будут проведены так, как будто функции 𝐴 и 𝐵 явля-
ются достаточно гладкими, а полученные в дальнейшем разрывы будут оправданы
тем, что все неопределенные слагаемые в уравнениях для 𝐴 и 𝐵 сократятся.

Символы Кристоффеля для метрики (3.195) имеют четыре нетривиальные ком-
поненты: ̃︀Γ𝑟𝑟

𝑟 =
𝐴′

𝐴
, ̃︀Γ𝑟𝜙

𝜙 = ̃︀Γ𝜙𝑟
𝜙 =

𝐵′

𝐵
, ̃︀Γ𝜙𝜙

𝑟 = −𝐵𝐵
′

𝐴2
,

где штрих обозначает производную по радиусу. Тензор кривизны имеет только одну
отличную от нуля компоненту

̃︀𝑅𝑟𝜙𝑟𝜙 = 𝐵𝐵′′ − 𝐴′𝐵𝐵′

𝐴
.
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Нетривиальные компоненты тензора Риччи и скалярная кривизна имеют вид

̃︀𝑅𝑟𝑟 =
𝐵′′

𝐵
− 𝐴′𝐵′

𝐴𝐵
,

̃︀𝑅𝜙𝜙 =
𝐵𝐵′′

𝐴2
− 𝐴′𝐵𝐵′

𝐴3
,

̃︀𝑅 =
2

𝐴𝐵

(︂
𝐵′′

𝐴
− 𝐴′𝐵′

𝐴2

)︂
.

Мы полагаем, что источник имеет только одну отличную от нуля компоненту

𝑇𝑧𝑧 := 𝐿𝛿′(𝑟 − 𝑟*), (3.197)

где 𝐿 и 𝑟* – две постоянных, которые характеризуют силу и положение цилиндри-
ческой дислокации. Этот вид источника продиктован результатами, полученными в
рамках теории упругости (3.194). В общем случае вид источника может быть произ-
волен, и ему соответствует свои репер и метрика. Это будет решением другой задачи,
возможно, с непрерывным распределением параллельных дислокаций с вращатель-
ной симметрией.

Нетрудно проверить, что 𝑟𝑟, 𝜙𝜙, а также недиагональные компоненты уравнений
Эйнштейна (3.192) для метрики (3.195) тождественно удовлетворяются. Компонента
𝑧𝑧 сводится к обыкновенному дифференциальному уравнению(︂

𝐵′

𝐴

)︂′

=
1

2
𝐿𝛿′(𝑟 − 𝑟*). (3.198)

Это – линейное неоднородное дифференциальное уравнение по отношению к ком-
бинации компонент метрики 𝐵′/𝐴. Поэтому рассмотрение сингулярного источника
(3.197) оправдано. Данное уравнение определено для положительных непрерывных
𝐴(𝑟) и имеет общее решение

𝐵′ =
1

2
𝐴(𝑟*)𝐿𝛿(𝑟 − 𝑟*) + 𝑐1𝐴, 𝑐1 = const, (3.199)

где 𝑐1 – постоянная интегрирования. Полученное решение можно еще раз проинте-
грировать

𝐵 =
1

2
𝐴(𝑟*)𝐿𝜃(𝑟 − 𝑟*) + 𝑐1

∫︁ 𝑟

0

𝑑𝑠𝐴(𝑠) + 𝑐2, 𝑐2 = const, (3.200)

где 𝜃 – функция ступеньки:

𝜃(𝑟 − 𝑟*) :=

{︃
0, 𝑟 ≤ 𝑟*,

1, 𝑟 > 𝑟*.
(3.201)

Таким образом, мы нашли решение уравнений Эйнштейна для цилиндрической
дислокации. Оно зависит от одной произвольной непрерывной положительной функ-
ции 𝐴(𝑟) и двух постоянных интегрирования 𝑐1,2. Произвольная постоянная функция
𝐴 в решении отражает наличие остаточной свободы в выборе радиальной координа-
ты и определяется упругой калибровкой. По существу, уравнения Эйнштейна с ис-
точником (3.197) определяют только скачок компоненты репера 𝑒𝜙𝜙. Произвольная
функция 𝑒𝑟𝑟 = 𝐴(𝑟) описывает свободу в выборе радиальной координаты.
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Теперь мы наложим упругую калибровку (3.43). В цилиндрических координатах
плоский репер можно выбрать диагональным с компонентами

∘
𝑒𝑟

𝑟 = 1,
∘
𝑒𝜙

𝜙 = 𝑟,
∘
𝑒𝑧

𝑧 = 1.

Он определяет плоские символы Кристоффеля
∘
Γ𝜇𝜈

𝜌 и SO(3) связность ∘
𝜔𝜇𝑖

𝑗, которые
имеют следующие нетривиальные компоненты (см. раздел ??):

∘
Γ𝑟𝜙

𝜙 =
∘
Γ𝜙𝑟

𝜙 =
1

𝑟
,

∘
Γ𝜙𝜙

𝑟 = −𝑟,
∘
𝜔𝜙𝑟

𝜙 = − ∘
𝜔𝜙𝜙

𝑟 = 1.

Подстановка репера (3.196) в калибровочное условие (3.43) дает дифференциальное
уравнение Эйлера для функции 𝐴(𝑟)

𝐴′ +
𝐴

𝑟
− 𝐵

𝑟2
+

𝜎

1 − 2𝜎

(︂
𝐴′ +

𝐵′

𝑟
− 𝐵

𝑟2

)︂
= 0, (3.202)

где функция 𝐵(𝑟) задана равенством (3.200).
Мы ищем классическое решение данного уравнения внутри поверхности склей-

ки, 𝐴in, и вне ее, 𝐴ex, со следующими “асимптотически свободными” граничными
условиями:

𝐵in|𝑟=0 = 0, 0 < 𝐴in|𝑟=0 <∞, 𝐵ex|𝑟→∞ = 𝑟. (3.203)

Граничные условия в нуле 𝑟 = 0 такие же, как и для евклидовой метрики. Кроме
того, на поверхности склейки мы накладываем граничные условия:

𝐴in|𝑟=𝑟* = 𝐴ex|𝑟=𝑟* , 𝐵in|𝑟=𝑟* +
𝐿𝐴(𝑟*)

2
= 𝐵ex|𝑟=𝑟* . (3.204)

Первое условие сшивки обеспечивает равенство нормальных упругих сил. Второе
условие является следствием уравнения (3.200) и дает скачок 𝑒𝜙𝜙 компоненты репера.
Условия сшивки (3.203) и (3.204) аналогичны граничным условиям (3.180) в теории
упругости.

Подстановка выражения для 𝐵 из равенства (3.200) в первое условие сшивки
(3.203) определяет одну из постоянных интегрирования: 𝑐2 = 0.

Уравнение (3.202) проще решить относительно 𝐵 вместо 𝐴. Внутри и снаружи
поверхности склейки 𝐵′ = 𝑐1𝐴 как следствие уравнения (3.199). Тогда уравнение
(3.202) сводится к условию

𝐵′′

𝑐1
+
𝐵′

𝑐1𝑟
− 𝐵

𝑟2
+

𝜎

1 − 2𝜎

(︂
𝐵′′

𝑐1
+
𝐵′

𝑟
− 𝐵

𝑟2

)︂
= 0. (3.205)

Это уравнение Эйлера совпадает с уравнением для клиновой дислокации (3.95), где
роль угла дефицита конической особенности играет разность 𝑐1−1. Оно имеет общее
решение

𝐵 = 𝐷1𝑟
𝛾1 +𝐷2𝑟

𝛾2 , 𝐷1,2 = const, (3.206)

зависящее от двух постоянных интегрирования 𝐷1,2, и где постоянные 𝛾1,2 являются
корнями квадратного уравнения

𝛾2 +
(𝑐1 − 1)𝜎

1 − 𝜎
𝛾 − 𝑐1 = 0.
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При 𝑐1 > 0 это уравнение имеет два вещественных корня противоположных знаков:
положительный корень 𝛾1 и отрицательный 𝛾2.

В области интегрирования мы имеем равенство 𝐷2 = 0 и 𝛾1 = 1 как следствие
первых двух условий (3.203), при этом равенство 𝛾1 = 1 эквивалентно условию 𝑐1 = 1
для 𝜎 ̸= 1/2. Следовательно, решение уравнений Эйнштейна во внутренней области
имеет вид

𝐵in = 𝐷1𝑟, 𝐴in = 𝐷1. (3.207)

Оно зависит от одной произвольной постоянной 𝐷1. Итак, два первых граничных
условия (3.203) фиксируют две постоянных интегрирования уравнений Эйнштейна,
𝑐1 = 1 и 𝑐2 = 0, которые одинаковы и для внутренней, и для внешней области, и одну
постоянную интегрирования в упругой калибровке, 𝐷2 = 0.

Для того, чтобы уменьшить число индексов, обозначим постоянные интегрирова-
ния в равенстве (3.206) во внешней области новыми буквами:

𝐵ex = 𝐸1𝑟
𝛾1 + 𝐸2𝑟

𝛾2 , 𝐸1,2 = const.

Постоянная интегрирования 𝑐1 = 1 уже зафиксирована во внутренней области, и
поэтому 𝛾1 = 1 и 𝛾2 = −1. Третье асимптотическое условие (3.203) Определяет
𝐸1 = 1 и дает решение во внешней области:

𝐵ex = 𝑟 +
𝐸2

𝑟
, 𝐴ex = 1 − 𝐸2

𝑟2
, (3.208)

которое также зависит от произвольной постоянной 𝐸2.
Для того, чтобы выразить постоянные 𝐷1 и 𝐸2 через параметры задачи 𝐿 и 𝑟*,

характеризующие источник, используем условия сшивки решений. Первое условие
(3.204) связывает постоянные 𝐷1 и 𝐸2. Обозначив 𝐷1 := 1 − 𝑎 и 𝐸2 := 𝑏, получаем
уравнение (3.184). Наконец, второе условие сшивки (3.204) приводит к равенству

𝐿 = 2
𝐵ex(𝑟*) −𝐵in(𝑟*)

𝐴(𝑟*)
=

4𝑙𝑟*
2𝑟* − 𝑙

,

где 𝑙 := 2
√
𝑎𝑏, совпадающее с коэффициентом при 𝛿-функции в источнике (3.197).

Таким образом, мы решили задачу для цилиндрической дислокации в рамках гео-
метрической теории дефектов. Поле репера определено формулой (3.196), где функ-
ции 𝐴 и 𝐵 заданы равенствами (3.207) и (3.208). Метрика (3.195) в точности сов-
падает с индуцированной метрикой (3.190), полученной в рамках теории упругости.
Важно отметить, что мы получили метрику для цилиндрической дислокации, ре-
шив уравнения Эйнштейна в упругой калибровке, ничего не зная о векторном поле
смещений. Если нужно, то вектор смещения можно восстановить во внутренней и
внешней области путем решения уравнения

𝜕𝑦𝑖

𝜕𝑥𝜇
= 𝑒𝜇

𝑖

с соответствующими граничными условиями, где функции 𝑦𝑖 определены равенством
(3.1). Это уравнение имеет решение, т.к. тензор кривизны равен нулю, ̃︀𝑅𝜇𝜈𝜌𝜎 = 0.

С геометрической точки зрения, нам просто нужно найти такую систему коорди-
нат, в которой метрика становится евклидовой. Это легко сделать непосредственно.
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Существенная двумерная часть метрики во внутренней и внешней областях имеет
вид

𝑑𝑙2in = (1 − 𝑎)2𝑑𝑟2 + (1 − 𝑎)2𝑟2𝑑𝜙2,

𝑑𝑙2ex =

(︂
1 − 𝑏

𝑟

)︂2

𝑑𝑟2 +

(︂
𝑟 +

𝑏

𝑟

)︂2

𝑑𝜙2.

Вводя новые координаты 𝑦 := (1 − 𝑎)𝑟 во внутренней и 𝑦 := 𝑟 + 𝑏/𝑟 во внешней
областях, метрика приводится к евклидову виду 𝑑𝑙2 = 𝑑𝑦2 + 𝑦2𝑑𝜙2 в обеих областях.
После этого сразу находится вектор смещения (3.187), используя определение (3.1).

Таким образом, мы решили задачу для цилиндрической дислокации в рамках тео-
рии упругости и геометрической теории дефектов. Результаты совпадают, хотя это
совпадение не является автоматическим. Например, метрика для клиновой дислока-
ции, полученная в рамках геометрического подхода существенно отличается от ин-
дуцированной метрики, полученной в рамках теории упругости (см. раздел 3.8.2), и
воспроизводит последнюю только в линейном приближении. Это происходит потому
что упругая калибровка (3.43) сводится к уравнениям нелинейной теории упругости
для вектора смещений.

Возникает естественный вопрос: “Зачем использовать относительно сложный гео-
метрический подход, если теория упругости также работает ?“ Ответ прост. Теория
упругости работает для описания отдельных дефектов или их небольшого числа. Ес-
ли число дефектов велико, то граничные условия настолько усложняются, что нет
никакой надежды на решение данной задачи в рамках теории упругости. Напри-
мер, мы не знаем решение задачи для произвольного распределения параллельных
клиновых дислокаций в рамках теории упругости. В то время как эта же задача име-
ет простое решение в геометрическом подходе (3.86). Существует еще одно важное
оправдание. Допустим, что имеется непрерывное распределение дефектов. Тогда эту
задачу невозможно даже поставить в рамках теории упругости, т.к. векторного по-
ля смещений просто не существует. При этом геометрический подход дает простую
постановку: мы имеем хорошо определенные выражения для свободной энергии (??)
и калибровочных условий (3.43), (??). Единственное отличие по сравнению с от-
дельными дефектами состоит в том, что надо рассматривать непрерывный источник
дефектов 𝑇𝜇𝜈 (тензор энергии-импульса).

Поверхностная плотность вектора Бюргерса задается компонентами тензора кру-
чения (??). Простые вычисления показывают, что тензор кручения для цилиндриче-
ской дислокации имеет только одну отличную от нуля компоненту

𝑇𝑟𝜙
𝜙 = −𝑇𝜙𝑟𝜙 = 1 − 𝑣 + 𝑙𝛿(𝑟 − 𝑟*), (3.209)

которая сингулярна на поверхности склейки, и нетривиальна во внутренней и внеш-
ней областях. Проекция вектора Бюргерса на ось 𝑥 задается интегралом и равна
нулю,

𝑏𝑥 = −
∫︁
R2

𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈𝑇𝜇𝜈𝜙 sin𝜙 =

∫︁ ∞

0

𝑑𝑟 𝑟

∫︁ 2𝜋

0

𝑑𝜙𝑇𝑟𝜙
𝜙 sin𝜙 = 0.

Аналогично, его проекция на произвольную прямую, пересекающую начало коорди-
нат, также равна нулю. Следовательно, вектор Бюргерса цилиндрической дислока-
ции равен нулю.
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3.10.3 Цилиндрическая дислокация в общей теории относи-
тельности

Основным результатом раздела 3.10.1 является пространственная метрика (3.190),
описывающая цилиндрическую дислокацию. Мы доказали, что она удовлетворяет
трехмерным уравнениям Эйнштейна (3.192) с источником (3.197). Обобщение этой
метрики на четырехмерной случая проводится непосредственно.

Предположим, что цилиндрическая дислокация не двигается, т.е. метрика ста-
тична

𝑑𝑠2 = 𝑑𝑡2 − (1 − 𝑣)2𝑑𝑟2 − (𝑟 − 𝑢)2𝑑𝜙2 − 𝑑𝑧2, (3.210)

где функции 𝑣 и 𝑢 определены равенствами (3.188) и (3.187). Компонента 𝑔𝜙𝜙 являет-
ся разрывной, а 𝑔𝑟𝑟 – непрерывна, но имеет скачок производной. Нетрудно проверить,
что все компоненты символов Кристоффеля и кривизны для метрики (3.210), имею-
щие хотя бы один временной индекс тождественно равны нулю. Поэтому эта метрика
удовлетворяет уравнениям Эйнштейна√︀

|𝑔|
(︂̃︀𝑅𝛼𝛽 −

1

2
𝑔𝛼𝛽 ̃︀𝑅)︂ = −1

2
𝑇𝛼𝛽, 𝛼, 𝛽 = 0, 1, 2, 3, (3.211)

где греческие индексы из начала алфавита пробегают все значения индексов от 0 до
3. Тензор энергии-импульса материи имеет только две неисчезающие компоненты:

𝑇00 = −𝑇𝑧𝑧 = 𝐿𝛿′(𝑟 − 𝑟*). (3.212)

Замечательным обстоятельством является тот факт, что все неопределенные сла-
гаемые в левой части уравнения (3.211) для метрики (3.210) сокращаются. Итак,
метрика (3.210) удовлетворяет четырехмерным уравнениям Эйнштейна, и ее физи-
ческий смысл ясен из предыдущего рассмотрения: она описывает цилиндрическую
дислокацию.

3.10.4 Коническая цилиндрическая дислокация

В предыдущих разделах мы описали цилиндрическую дислокацию в рамках тео-
рии упругости и геометрической теории дефектов. Метрика в обоих случаях оказа-
лась идентичной. Ниже мы опишем другой тип цилиндрических дислокаций, кото-
рые названы коническими цилиндрическими дислокациями, т.к. они имеют такую
же асимптотику на бесконечности как и конические особенности. Эти дислокации
описаны в рамках геометрической теории дефектов.

В настоящем разделе постоянные интегрирования обозначены так же, как и в
разделе 3.10.2, но имеют другой смысл.

Рассмотрим трехмерные уравнения Эйнштейна с источником, который имеет толь-
ко одну отличную от нуля компоненту

𝑇𝑧𝑧 := 2Θ𝛿(𝑟 − 𝑟*), Θ = const, (3.213)

в цилиндрических координатах. В отличие от предыдущего случая мы заменили про-
изводную 𝛿-функции в формуле (3.197) на саму 𝛿-функцию. Будем искать решение,
которое обладает трансляционной и вращательной инвариантностью. В дальнейшем
мы увидим, что постоянная Θ играет роль угла дефицита конической особенности,
соответствующей асимптотике 𝑟 → ∞.
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Эта задача эквивалентна статической конической цилиндрической дислокации в
общей теории относительности с тензором энергии-импульса

𝑇00 = −𝑇𝑧𝑧 = 2Θ𝛿(𝑟 − 𝑟*). (3.214)

Физический смысл 2Θ – это поверхностная плотность энергии тонкого цилиндра
радиуса 𝑟*. Для обычной материи Θ > 0. Однако мы рассмотрим оба случая, т.к.
вычисления не сильно зависит от знака Θ.

Выберем метрику в виде (3.195). Тогда вся система уравнений Эйнштейна сведет-
ся к одному линейному обыкновенному дифференциальному уравнению

(︀
вычисления

те же, что и при получении уравнения (3.198)
)︀

(︂
𝐵′

𝐴

)︂′

= Θ𝛿(𝑟 − 𝑟*).

Оно легко интегрируется:

𝐵′ = Θ𝐴𝜃(𝑟 − 𝑟*) + 𝑐1𝐴, (3.215)

𝐵 = Θ

∫︁ 𝑟

𝑟*

𝑑𝑠𝐴(𝑠) + 𝑐1

∫︁ 𝑟

0

𝑑𝑠𝐴(𝑠) + 𝑐2, 𝑐1,2 = const, (3.216)

где 𝜃(𝑟− 𝑟*) – ступенька (3.201) и 𝑐1,2 – постоянные интегрирования. Таким образом,
уравнения Эйнштейна определяют компоненту репера 𝑒𝜙

𝜙 := 𝐵 через компоненту
𝑒𝑟

𝑟 := 𝐴, которая может быть произвольной положительной функцией. Если функ-
ция 𝐴(𝑟) непрерывна, то 𝐵(𝑟) также непрерывна благодаря уравнению (3.216), но ее
производная имеет скачок (3.215).

Для того, что зафиксировать решение, наложим упругую калибровку (3.43), ко-
торая сводится к уравнению (3.202). Мы ищем решение данного уравнения внутри,
𝐴in, и вне, 𝐴ex, поверхности склейки. В теории упругости клиновая дислокация со-
ответствует бесконечному цилиндру конечного радиуса, 0 < 𝑟 < 𝑎, т.к. напряжения
расходятся в бесконечности (см. раздел 3.7.2). Пусть 𝑎 > 𝑟*. Тогда наложим следую-
щие граничные условия:

𝐵in
⃒⃒
𝑟=0

= 0, 0 < 𝐴in
⃒⃒
𝑟=0

<∞, 𝐴ex
⃒⃒
𝑟=𝑎

= 1. (3.217)

Последнее граничное условие означает отсутствие внешних нормальных сил на гра-
нице цилиндра. Мы также накладываем условия непрерывной сшивки

𝐴in
⃒⃒
𝑟=𝑟*

= 𝐴ex
⃒⃒
𝑟=𝑟*

, 𝐵in
⃒⃒
𝑟=𝑟*

= 𝐵ex
⃒⃒
𝑟=𝑟*

. (3.218)

Во внутренней области из уравнения (3.215) вытекает равенство 𝐵′ = 𝑐1𝐴. Поэто-
му упругая калибровка сводится к уравнению (3.205) с теми же граничными услови-
ями, что и для цилиндрической дислокации, рассмотренной ранее. Поэтому 𝑐1 = 1,
𝑐2 = 0, и решение во внутренней области задается той же формулой (3.207), что и
раньше.

Во внешней области 𝐵′ = 𝛼𝐴, где 𝛼 := 1+Θ, т.к. 𝑐1 = 1. Общее решение уравнения
(3.205) имеет вид

𝐵ex = 𝐸1𝑟
𝛾1 + 𝐸2𝑟

𝛾2 ,

где 𝛾1 > 0 и 𝛾2 < 0 являются корнями квадратного уравнения

𝛾2 +
Θ𝜎

1 − 𝜎
𝛾 − 𝛼 = 0, 𝛼 := 1 + Θ. (3.219)
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Третье граничное условие (3.217),

𝐸1𝛾1
𝛼

𝑎𝛾1−1 +
𝐸2𝛾2
𝛼

𝑎𝛾2−1 = 1, (3.220)

приводит к соотношению между 𝐸1 и 𝐸2 при заданном 𝑎.
После этого постоянные 𝐷1 и 𝐸2 определяются через Θ и 𝑟* условиями сшивки

(3.218)

𝐸1𝛾1
𝛼

𝑟𝛾1−1
* +

𝐸2𝛾2
𝛼

𝑟𝛾2−1
* = 𝐷1, (3.221)

𝐸1𝑟
𝛾1
* + 𝐸2𝑟

𝛾2
* = 𝐷1𝑟*. (3.222)

На практике, мы сначала решаем уравнения (3.221) и (3.222),

𝐸1 = 𝐷1
𝛼− 𝛾2
𝛾1 − 𝛾2

𝑟−𝛾1+1
* ,

𝐸2 = −𝐷1
𝛼− 𝛾1
𝛾1 − 𝛾2

𝑟−𝛾2+1
* .

(3.223)

Затем постоянная𝐷1 находится путем подстановки этих решений в равенство (3.220),

𝐷1 =
𝛼

𝛾1
𝛼−𝛾2
𝛾1−𝛾2

(︁
𝑎
𝑟*

)︁𝛾1−1

− 𝛾2
𝛼−𝛾1
𝛾1−𝛾2

(︁
𝑎
𝑟*

)︁𝛾2−1 . (3.224)

Таким образом, решение для конической цилиндрической дислокации имеет вид

𝑑𝑠2 = 𝐴2𝑑𝑟2 +𝐵2𝑑𝜙2 + 𝑑𝑧2, (3.225)

где

𝐴 =

{︃
𝐷1, 0 ≤ 𝑟 ≤ 𝑟*,
1
𝛼

(𝐸1𝛾1𝑟
𝛾1−1 + 𝐸2𝛾2𝑟

𝛾2−1), 𝑟* ≤ 𝑟 ≤ 𝑎,
(3.226)

𝐵 =

{︃
𝐷1𝑟, 0 ≤ 𝑟 ≤ 𝑟*,

𝐸1𝑟
𝛾1 + 𝐸2𝑟

𝛾2 , 𝑟* ≤ 𝑟 ≤ 𝑎,
(3.227)

где постоянные 𝐷1, 𝐸1,2 с помощью формул (3.223), (3.224) выражаются через посто-
янные Θ, 𝑟*, и 𝑎, определяющие задачу. Все компоненты метрики являются непрерыв-
ными функциями, а первая производная функции 𝐵 имеет скачок Θ на поверхности
склейки 𝑟 = 𝑟*.

Теперь дадим физическую интерпретацию постоянной Θ. Предположим, что ра-
диус цилиндра 𝑎 является большим, 𝑎 ≫ 𝑟*. Тогда вблизи внешней поверхности
цилиндра 𝑟 ∼ 𝑎 постоянные примерно равны

𝐷1 ≈
𝛼(𝛾1 − 𝛾2)

𝛾1(𝛼− 𝛾2)

(︁𝑟*
𝑎

)︁𝛾1−1

,

𝐸1 ≈
𝛼

𝛾1𝑎𝛾1−1
,

и метрика (3.225) асимптотически принимает вид

𝑑𝑠2 =
(︁𝑟
𝑎

)︁2𝛾1−2
(︂
𝑑𝑟2 +

𝛼2

𝛾21
𝑟2𝑑𝜙2

)︂
+ 𝑑𝑧2. (3.228)
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Это в точности метрика конической дислокации (3.99) с углом дефицита Θ. Таким
образом, постоянная Θ, стоящая перед 𝛿-функцией в источнике (3.213), совпадает с
углом дефицита среды, которая удалена, −2𝜋 < Θ < 0, или добавлена, Θ > 0.

С физической точки зрения мы нашли метрику для конической цилиндрической
дислокации, которая определяет упругие напряжения вокруг дефекта. Заметим, что
это решение зависит от упругих постоянных, характеризующих среду, в отличие от
метрики (3.190), полученной ранее. Метрика является решением поставленной за-
дачи даже без нахождения векторного поля смещений. Однако нахождение вектора
смещений инструктивно и помогает представить процесс создания дислокации.

Во внутренней области двумерная часть метрики (3.225) имеет вид

𝑑𝑙2in = 𝐷2
1𝑑𝑟

2 +𝐷2
1𝑟

2𝑑𝜙2.

В терминах новой радиальной координаты 𝑦 := 𝐷1𝑟 метрика становится евклидовой,

𝑑𝑙2in = 𝑑𝑦2 + 𝑦2𝑑𝜙2, (3.229)

причем поверхность склейки 𝑟 = 𝑟* соответствует следующим значениям координат
𝑟1 = 𝑦(𝑟*) = 𝐷1𝑟*. Это означает, что цилиндр 𝑦 ≤ 𝑟1 в евклидовом пространстве
𝑦, 𝜙, 𝑧 отображается на внутреннюю область конической цилиндрической дислока-
ции. Векторное поле смещений (3.1) при этом имеет только одну отличную от нуля
компоненту 𝑢𝑟 = 𝑟 − 𝑦 = (1 −𝐷1)𝑟.

Двумерная часть метрики во внешней области имеет вид

𝑑𝑙ex =
1

𝛼2
(𝐸1𝛾1𝑟

𝛾1−1 + 𝐸2𝛾2𝑟
𝛾2−1)2𝑑𝑟2 + (𝐸1𝑟

𝛾1 + 𝐸2𝑟
𝛾2)2𝑑𝜙2.

Преобразование к новым координатам,

𝑦 :=
1

𝛼
(𝐸1𝑟

𝛾1 + 𝐸2𝑟
𝛾2), 𝜙′ := 𝛼𝜙, (3.230)

приводит метрику к евклидову виду

𝑑𝑙2ex = 𝑑𝑦2 + 𝑦2𝑑𝜙′2.

Новые координаты имеют следующую область определения

𝑟2 < 𝑦 <∞, 0 < 𝜙′ < 2𝜋𝛼,

где
𝑟2 :=

1

𝛼
(𝐸1𝑟

𝛾1
* + 𝐸2𝑟

𝛾2
* ).

Это значит, что внешность цилиндра 𝑦 > 𝑟2 евклидова пространства с вырезанным
углом 2𝜋𝛼 < 𝜙′ < 2𝜋 отображается на внешнюю часть конической цилиндрической
дислокации. В этой области векторное поле смещений имеет две нетривиальные ком-
поненты:

𝑢𝑟 = 𝑟 − 1

𝛼
(𝐸1𝑟

𝛾1 + 𝐸2𝑟
𝛾2), 𝑢𝜙 = −𝑟Θ𝜙,

что вытекает из преобразования координат (3.230). Напомним, что 𝑢𝜙 := 𝑟𝑢𝜙.
Нетрудно проверить, что длина внутренней окружности равна длине оставшейся

дуги от внешней окружности, 2𝜋𝑟1 = 2𝜋𝑟2𝛼, в соответствии с равенством (3.222). Это
обеспечивает непрерывность компоненты метрики 𝑔𝜙𝜙 на поверхности склейки.
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Процесс создания конической цилиндрической дислокации показан на рис. 3.28.
Для отрицательного угла дефицита Θ мы берем евклидово пространство R3 с ци-
линдрической системой координат 𝑦, 𝜙′, 𝑧, вырезаем из него толстостенную трубу
𝑟1 < 𝑦 < 𝑟2 и клин с углом 2𝜋𝛼 < 𝜙′ < 2𝜋 из наружной части среды. Затем скле-
иваем края разрезов так, как показано на рисунке. После этого среда приходит в
некоторое равновесное состояние в соответствии с упругой калибровкой, которое на-
зывается конической цилиндрической дислокацией.

Для положительного угла дефицита клин добавляется к внешней части среды.
Поэтому внутренний цилиндр перед склейкой необходимо сжать, т.к. в этом случае
𝑟1 > 𝑟2.

Рис. 3.28: Коническая цилиндрическая дислокация с отрицательным углом дефицита
Θ.

Вероятно, эту задачу можно решить в рамках теории упругости, хотя решение не
известно и представляется непростым из-за сложных граничных условий. В любом
случае решение в рамках линейной теории упругости будет воспроизводить только
линейное приближение, поскольку упругая калибровка (3.43) соответствует нели-
нейной теории упругости. Данный пример показывает, что некоторые задачи проще
решаются в рамках геометрического подхода.

Не просто представить себе пространство-время как топологическое произведение
вещественной прямой 𝑡 ∈ R с цилиндром конечного радиуса 𝑎, снабженного метрикой
(3.225), потому что оно геодезически неполно (геодезическая достигает края цилин-
дра за конечное собственное время). Однако выражение для метрики (3.225) имеет
смысл для всех значений радиуса 0 < 𝑟 < ∞. Поэтому решение для метрики можно
продолжить на все пространство-время

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2𝑑𝑟2 −𝐵2𝑑𝜙2 − 𝑑𝑧2,

где 𝑡, 𝑧 ∈ R, 0 < 𝑟 < ∞ и 0 < 𝜙 < 2𝜋. Это – решение четырехмерных уравнений
Эйнштейна с тензором энергии-импульса (3.214), описывающим статическую кони-
ческую цилиндрическую дислокацию. Эта метрика записана в упругой калибровке
и поэтому явно зависит от коэффициента Пуассона 𝜎 вселенной. Если этот объект
существует в природе, то, в принципе, коэффициент Пуассона вселенной можно из-
мерить. Таким образом геометрическая теория дефектов дает возможность измерить
упругие постоянные вселенной.
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3.10.5 Асимптотически плоская клиновая дислокация

Процесс создания дислокации из предыдущего раздела можно обратить. Возьмем
бесконечный стержень среды цилиндрической формы радиуса 𝑟1 и вырежем из него
клин с углом Θ как показано на рис. 3.29. После склейки получим стержень с кони-
ческой дислокацией периметр сечения которого равен 2𝜋(1 + Θ). Затем вырежем из
бесконечной среды цилиндр меньшего радиуса 𝑟2 < 𝑟1 таким образом, чтобы длина
окружности 2𝜋𝑟2 была равна периметру стержня, и вставим стержень внутрь,

2𝜋𝛼𝑟1 = 2𝜋𝑟2, 𝛼 := 1 + Θ. (3.231)

В результате получим асимптотически плоскую коническую дислокацию, причем ра-
венство (3.231) обеспечивает непрерывность 𝑔𝜙𝜙 компоненты метрики.

Рис. 3.29: Асимптотически плоская коническая особенность для отрицательного угла
дефицита Θ.

Если рассматривать этот дефект в гравитации, то у нас есть космическая струна,
окруженная цилиндрической оболочкой материи таким образом, что пространство-
время вдали от струны является асимптотически плоским.

Теперь опишем асимптотически плоскую клиновую дислокацию в рамках гео-
метрической теории дефектов. Источник для этого дефекта отличается знаком от
источника для конической цилиндрической дислокации:

𝑇𝑧𝑧 = −2Θ𝛿(𝑟 − 𝑟*). (3.232)

Кроме того, будут изменены граничные условия. В дальнейшем мы покажем, что
для противоположного знака источника уравнения Эйнштейна не имеют решений,
которые были бы плоскими вне поверхности склейки 𝑟 > 𝑟*. Поэтому решение с
отрицательным углом дефицита, Θ < 0, имеет физический смысл в общей теории
относительности.

Интегрирование уравнений Эйнштейна аналогично случаю конической цилиндри-
ческой дислокации, рассмотренной в предыдущем разделе,

𝐵 = −Θ

∫︁ 𝑟

𝑟*

𝑑𝑠𝐴(𝑠) + 𝑐1

∫︁ 𝑟

0

𝑑𝑠𝐴(𝑠) + 𝑐2.

Наложим следующие граничные условия на линии дислокации и в бесконечности:

𝐵in
⃒⃒
𝑟=0

= 0,
𝑟𝐴in

𝐵in

⃒⃒⃒⃒
𝑟=0

=
𝛾1
𝛼
, 𝐴ex

⃒⃒
𝑟=∞ = 1, (3.233)
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где 𝛾1 – положительный корень уравнения (3.219). Таким образом, правая часть вто-
рого уравнения выражена только через угол дефицита Θ и коэффициент Пуассона.
Первые два граничных условия соответствуют конической особенности на оси 𝑧, где
метрика должна иметь вид (3.228). Третье граничное условие соответствует асимп-
тотически плоской метрике.

Поставленные граничные условия (3.233) отличаются от граничных условий (3.217),
которые были поставлены для конической цилиндрической дислокации в предыду-
щем разделе.

Условие сшивки решений на цилиндре радиуса 𝑟* – это условие непрерывности
(3.218) такое же, как и для конической цилиндрической дислокации.

Во внутренней области имеют место равенства:

𝐴in =
𝐵′

in

𝑐1
,

𝐵in = 𝐷1𝑟
𝛾1 +𝐷2𝑟

𝛾2 , 𝐷1,2 = const,

и первые два граничных условия (3.233) определяют три постоянных интегрирова-
ния:

𝑐1 = 𝛼, 𝑐2 = 0, 𝐷2 = 0.

Во внешней области
𝐵′

ex = −Θ𝐴ex + 𝛼𝐴ex = 𝐴ex,

и мы видим необходимость выбора отрицательного знака в источнике (3.232) для
асимптотической плоскости. Таким образом, внешнее решение имеет вид

𝐴ex = 𝐸1 −
𝐸2

𝑟2
,

𝐵ex = 𝐸1𝑟 +
𝐸2

𝑟
, 𝐸1,2 = const.

Третье граничное условие (3.233) определяет 𝐸1 = 1.
Оставшиеся свободными постоянные 𝐷1 и 𝐸2 определяются требованием непре-

рывности решения (3.218),

𝐷1𝑟
𝛾1
* = 𝑟* +

𝐸2

𝑟*
,

𝐷1𝛾1𝑟
𝛾1−1
*

𝛼
= 1 − 𝐸2

𝑟2*
.

Эти уравнения легко решаются:

𝐷1 =
2𝛼

𝛼 + 𝛾1
𝑟−𝛾1+1
* ,

𝐸2 =
𝛼− 𝛾1
𝛼 + 𝛾1

𝑟2*.

В итоге мы получаем следующие выражения для существенной двумерной части
метрики внутри и вне поверхности склейки:

𝑑𝑙2in =
4𝛾21

(𝛼 + 𝛾1)2

(︂
𝑟

𝑟*

)︂2𝛾1−2(︂
𝑑𝑟2 +

𝛼2

𝛾21
𝑟2𝑑𝜙2

)︂
, (3.234)

𝑑𝑙2ex =

[︂
1 − 𝛼− 𝛾1

𝛼 + 𝛾1

(︁𝑟*
𝑟

)︁2
]︂2
𝑑𝑟2 +

[︂
1 +

𝛼− 𝛾1
𝛼 + 𝛾1

(︁𝑟*
𝑟

)︁2
]︂2
𝑟2𝑑𝜙2. (3.235)
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Их компоненты являются непрерывными на поверхности склейки, и внешняя часть
является асимптотически евклидовой.

Преобразование к декартовым координатам, где метрика имеет вид 𝑑𝑙2 = 𝑑𝑦2 +
𝑦2𝑑𝜙2 является различным для внутренней и внешней области. Внутри поверхности
склейки оно имеет вид

𝑦 :=
2𝑟*

𝛼 + 𝛾1

(︂
𝑟

𝑟*

)︂𝛾1

, 𝜙′ := 𝛼𝜙.

Отсюда следует, что мы имеем коническую особенность с углом дефицита Θ и

𝑟1 =
2𝑟*

𝛼 + 𝛾1
.

Вне поверхности склейки преобразование координат имеет вид

𝑦 := 𝑟 +
𝛼− 𝛾1
𝛼 + 𝛾1

𝑟2*
𝑟
, 𝜙′ := 𝜙,

и
𝑟2 =

2𝛼𝑟*
𝛼 + 𝛾1

.

Для отрицательного угла дефицита, Θ < 0, 𝛼 < 1, справедливо неравенство 𝑟2 < 𝑟1
как это следует из элементарных геометрических построений.

Таким образом, задача с 𝛿-образным источником имеет два типа решений. Один
тип является плоским внутри поверхности склейки и коническим вне. Другой тип
решений для метрики имеет коническую особенность внутри и является плоским вне
поверхности склейки. Соответствующие решения в раках теории упругости неизвест-
ны. Скорее всего их можно найти, но не стоит ожидать, что они будут иметь простой
вид из-за сложных граничных условий.

3.10.6 Непрерывное распределение цилиндрических дислока-
ций

Для непрерывного распределения цилиндрических дислокаций источник имеет вид

𝑇𝑧𝑧 = 2𝑓(𝑟), (3.236)

где 𝑓(𝑟) – произвольная достаточно гладкая скалярная плотность, зависящая только
от радиуса. Как и раньше, эта задача инвариантна относительно трансляций вдоль
оси 𝑧 и вращений в плоскости 𝑟, 𝜙. Уравнения Эйнштейна (3.192) для метрики (3.195)
сводятся к обыкновенному дифференциальному уравнению(︂

𝐵′

𝐴

)︂′

= 𝑓(𝑟),

которое легко интегрируется

𝐵 =

∫︁ 𝑟

0

𝑑𝑠𝐴(𝑠)

∫︁ 𝑠

0

𝑑𝑡𝑓(𝑡) + 𝑐1

∫︁ 𝑟

0

𝑑𝑠𝐴(𝑠) + 𝑐2, 𝑐1,2 = const. (3.237)

Одна постоянная интегрирования фиксируется требованием, чтобы длина окруж-
ности цилиндра, окружающего ось 𝑧, стремилась к нулю при 𝑟 → 0. Тогда граничное
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условие принимает вид 𝐵|𝑟=0 = 0, и, как следствие, 𝑐2 = 0. Если метрика является
конформно евклидовой на оси 𝑧, то тогда возникает второе граничное условие

𝐵′

𝐴

⃒⃒⃒⃒
𝑟=0

= 1.

Оно фиксирует 𝑐1 = 1. Это построение проясняет геометрический смысл постоянных
интегрирования. Однако можно также рассмотреть более экзотические источники
(тензоры энергии-импульса) с другими значениями постоянных 𝑐1,2.

Упругая калибровка для решения (3.237) сводится к уравнению

𝐵′′

𝐹
− 𝐵′𝑓

𝐹 2
+
𝐵′

𝐹𝑟
− 𝐵

𝑟2
+

𝜎

1 − 2𝜎

(︂
𝐵′′

𝐹
− 𝐵′𝑓

𝐹 2
+
𝐵′

𝑟
− 𝐵

𝑟2

)︂
= 0,

где

𝐹 (𝑟) :=

∫︁ 𝑟

0

𝑑𝑠𝑓(𝑠) + 𝑐1

– первообразная для источника 𝑓(𝑟). Это уравнение для заданного источника можно
решить по крайней мере численно.

Таким образом мы получили решение для произвольного распределения цилин-
дрических дислокаций. Эта задача показывает громадное преимущество геометриче-
ской теории дефектов перед теорией упругости. Действительно, если источник всю-
ду отличен от нуля, 𝑓(𝑟) ̸= 0, тогда кривизна отлична от нуля в силу уравнений
Эйнштейна, и векторное поле смещений просто не существует. В то же время в гео-
метрической теории дефектов все хорошо определено, и можно найти метрику (т.е.
упругие напряжения) как решение уравнений Эйнштейна в упругой калибровке. Век-
торное поле смещений может быть построено только в тех областях пространства,
где источники отсутствуют, 𝑓(𝑟) = 0, (напомним, что в трех измерениях полный
тензор кривизны выражается через тензор Риччи, который равен нулю в силу урав-
нений Эйнштейна). В этих областях вектор смещений автоматически удовлетворяет
уравнениям теории упругости благодаря упругой калибровке.

Таким образом, мы показали, что уравнения Эйнштейна допускают решения с 𝛿-
образным тензором энергии-импульса. В общем случае компоненты метрики для ци-
линдрической дислокации являются разрывными функциями и приводят к неопреде-
ленным компонентам тензора кривизны. Однако все неопределенные члены в уравне-
ниях Эйнштейна благополучно сокращаются. Последние сводятся к линейным неод-
нородным обыкновенным дифференциальным уравнениям для специальных комби-
наций компонент метрики.

В общей теории относительности и геометрической теории дефектов полученные
в последних разделах решения описывают тонкие массивные оболочки и цилиндри-
ческие дислокации. С математической точки зрения это одна и та же модель, т.к.
в обоих случаях метрика удовлетворяет уравнениям Эйнштейна (в отсутствие дис-
клинаций). Отличие сводится только к упругой калибровке, которая имеет физи-
ческий смысл в геометрической теории дефектов и явно зависит от коэффициента
Пуассона, характеризующего упругие свойства среды. Если мы предположим, что
пространство-время заполнено упругим эфиром, то, поскольку метрика явно зави-
сит от коэффициента Пуассона, его можно измерить для вселенной.
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3.11 Упругие колебания в среде с дислокациями

Среда с дефектами является топологически тривиальным многообразием M ≈ R3, на
котором задана геометрия Римана–Картана. Если в среде присутствуют дислокации,
то евклидова метрика меняется на нетривиальную метрику, которая находится из
уравнений Эйнштейна

𝛿𝑖𝑗 ↦→ 𝑔𝜇𝜈(𝑥) = 𝑒𝜇
𝑖𝑒𝜈

𝑗𝛿𝑖𝑗. (3.238)

На этом фоне могут распространяться упругие волны.
Упругие колебания в среде без дефектов описываются зависящим от времени век-

торным полем 𝑤𝑖(𝑡, 𝑥), которое удовлетворяет волновому уравнению (см., например,
[?])

𝜌0𝑤̈
𝑖 − 𝜇△𝑤𝑖 − (𝜆+ 𝜇)𝜕𝑖𝜕𝑗𝑤

𝑗 = 0, (3.239)

где точки обозначают дифференцирование по времени, и 𝜌0 – плотность среды, ко-
торую будем считать постоянной.

Для описания упругих волн мы ввели новую букву 𝑤, поскольку буква 𝑢 была
использована для обозначения поля смещений, описывающего дислокации. Полное
поле смещений равно сумме 𝑢+𝑤 (там, где 𝑢 существует). Однако надо помнить, что
в геометрической теории дефектов никакого разбиения поля смещений на два слага-
емых, которое не является однозначным, нет, т.к. переменная 𝑢 просто отсутствует.
Вместо этого мы решаем уравнения равновесия и находим сразу репер, который за-
дает нетривиальную метрику (3.238), описывающую распределение дефектов.

Если среда содержит дефекты, то метрика пространства становится нетривиаль-
ной (3.238). Предположим, что относительные смещения при упругих колебаниях
малы по сравнению с напряжениями, создаваемыми дефектами:

𝜕𝜇𝑤
𝑖 ≪ 𝑒𝜇

𝑖. (3.240)

Тогда в первом приближении будем считать, что упругие колебания распространяют-
ся в римановом пространстве с нетривиальной метрикой, созданной дислокациями.
При этом мы пренебрегаем изменением метрики, вызванным самими упругими ко-
лебаниями. Поэтому для упругих колебаний в среде с дефектами мы постулируем
следующее уравнение, которое является ковариантным обобщением (3.239) по про-
странственным переменным

𝜌0𝑤̈
𝑖 − 𝜇△̃𝑤𝑖 − (𝜆+ 𝜇)̃︀∇𝑖 ̃︀∇𝑗𝑤

𝑗 = 0, (3.241)

где 𝑤𝑖 – компоненты векторного поля смещений относительно ортонормального ба-
зиса касательного пространства 𝑒𝑖, △̃ = ̃︀∇𝑖 ̃︀∇𝑖 – ковариантный оператор Лапласа–
Бельтрами, построенный по реперу 𝑒𝜇

𝑖, ̃︀∇𝑖 – оператор ковариантного дифференци-
рования. Выпишем в явном виде ковариантную производную от поля смещений

̃︀∇𝑖𝑤
𝑗 := 𝑒𝜇𝑖 ̃︀∇𝜇𝑤

𝑗 = 𝑒𝜇𝑖(𝜕𝜇𝑤
𝑗 + 𝑤𝑘̃︀𝜔𝜇𝑘

𝑗),

где ̃︀𝜔𝜇𝑘
𝑗 – SO(3) связность, построенная при нулевом кручении.

Как уже говорилось в разделе 3.2, поле смещений для дислокаций можно ввести
только в тех областях среды, где дефекты отсутствуют. При этом репер определяет-
ся полем смещений для дислокации 𝑒𝜇𝑖 = 𝜕𝜇𝑢

𝑖. Заметим, что малость относительных
деформаций для упругих колебаний (3.240) имеет смысл даже в тех областях про-
странства, где смещения 𝑢𝑖 не определены.
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Разложим поле смещений 𝑤 ковариантным образом на поперечную (соленоидаль-
ную) 𝑤t𝑖 и продольную (потенциальную) части 𝑤l𝑖:

𝑤𝑖 = 𝑤t𝑖 + 𝑤l𝑖,

которые определены следующими равенствами:

̃︀∇𝑖𝑤
t𝑖 = 0, (3.242)̃︀∇𝑖𝑤

l
𝑗 − ̃︀∇𝑗𝑤

l
𝑖 = 0. (3.243)

Разложение векторного поля на продольную и поперечную части в трехмерном про-
странстве является единственным с точностью до постоянной (см. раздел ??). Напом-
ним, что опускание латинских индексов производится с помощью символов Кронеке-
ра, 𝑤𝑖 = 𝑤𝑖, и оно перестановочно с ковариантным дифференцированием. Последнее
уравнение (3.243) можно переписать в виде

̃︀∇𝑖𝑤
l
𝑗 − ̃︀∇𝑗𝑤

l
𝑖 = 𝑒𝜇𝑖𝑒

𝜈
𝑗(̃︀∇𝜇𝑤

l
𝜈 − ̃︀∇𝜈𝑤

l
𝜇) = 𝑒𝜇𝑖𝑒

𝜈
𝑗(𝜕𝜇𝑤

l
𝜈 − 𝜕𝜈𝑤

l
𝜇) = 0,

т.к. переход от латинских индексов к греческим перестановочен с ковариантным диф-
ференцированием, а символы Кристоффеля симметричны по первым двум индексам.
Последнее равенство означает, что 1-форма 𝑑𝑥𝜇𝑤l

𝜇 замкнута. Нетрудно проверить,
что уравнение (3.241) для упругих колебаний, эквивалентно двум независимым урав-
нениям для поперечных и продольных колебаний:

1

𝑐2t
𝑤̈t𝑖 − △̃𝑤t𝑖 = 0,

1

𝑐2l
𝑤̈l𝑖 − △̃𝑤l𝑖 = 0, (3.244)

где

𝑐2t :=
𝜇

𝜌0
, 𝑐2l :=

𝜆+ 2𝜇

𝜌0

– квадраты скоростей звука поперечных и продольных колебаний.
Для постановки граничных условий для уравнения (3.241) в среде с дислокациями

необходимо выражение для тензора деформаций 𝜎𝑖𝑗. При наличии дефектов тензор
деформаций является ковариантным обобщением выражения (3.4) из классической
теории упругости:

𝜖𝑖𝑗 :=
1

2
(𝑒𝜇𝑖 ̃︀∇𝜇𝑤𝑗 + 𝑒𝜇𝑗 ̃︀∇𝜇𝑤𝑖). (3.245)

3.11.1 Крутильные волны в волноводе с клиновой дислокаци-
ей

В качестве примера применения геометрической теории дефектов рассмотрим рас-
пространение крутильных волн в цилиндрическом волноводе радиуса 𝑎 с клиновой
дислокацией, изображенном на рис. 3.9. Исходя из симметрии задачи, выберем ци-
линдрическую систему координат 𝑟, 𝜙, 𝑧, где ось 𝑧 совпадает с осью волновода. Если
−1 < 𝜃 < 0, то клин вырезается из волновода. Дислокация отсутствует, если 𝜃 = 0.
Для положительных углов дефицита, 𝜃 > 0, клин среды добавляется к цилиндру.

Из-за наличия дислокации метрика внутри становится неевклидовой (3.99)

𝑑𝑠2 =
(︁𝑟
𝑎

)︁2𝛾−2
(︂
𝑑𝑟2 +

𝛼2𝑟2

𝛾2
𝑑𝜙2

)︂
+ 𝑑𝑧2, (3.246)
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где 𝛼 := 1 + 𝜃, и введена безразмерная постоянная

𝛾 := −𝜃𝑏+
√
𝜃2𝑏2 + 1 + 𝜃. (3.247)

Константа 𝑏 := 𝜎/
(︀
2(1 − 𝜎)

)︀
определяется безразмерным коэффициентом Пуассона

𝜎, который характеризует упругие свойства среды. Предел

𝜃 → 0, 𝛼 → 1, 𝛾 → 1 (3.248)

соответствует отсутствию дислокации.
Метрика клиновой дислокации определяет репер 𝑒𝜇

𝑖, который мы выберем диа-
гональным:

𝑒𝑟
𝑟 =

(︁𝑟
𝑎

)︁𝛾−1

, 𝑒𝜙
𝜙 =

(︁𝑟
𝑎

)︁𝛾−1 𝛼𝑟

𝛾
, 𝑒𝑧

𝑧 = 1, (3.249)

где 𝜇 = 𝑟, 𝜙, 𝑧 и 𝑖 = 𝑟, 𝜙, 𝑧. В отсутствие дислокации, 𝛾 = 1, 𝛼 = 1, он определя-
ет обычный ортонормальный репер в касательном пространстве в цилиндрической
системе координат. Обратный репер имеет вид

𝑒𝑟𝑟 =
(︁𝑎
𝑟

)︁𝛾−1

, 𝑒𝜙𝜙 =
(︁𝑎
𝑟

)︁𝛾−1 𝛾

𝛼𝑟
, 𝑒𝑧𝑧 = 1. (3.250)

Для того, чтобы найти явный вид волнового оператора, необходимо вычислить
символы Кристоффеля и компоненты SO(3) связности. Прямые вычисления показы-
вают, что только четыре символа Кристоффеля отличны от нуля:

̃︀Γ𝑟𝑟
𝑟 =

𝛾 − 1

𝑟
, ̃︀Γ𝑟𝜙

𝜙 = ̃︀Γ𝜙𝑟
𝜙 =

𝛾

𝑟
, ̃︀Γ𝜙𝜙

𝑟 = −𝛼
2𝑟

𝛾
. (3.251)

Репер (3.249) определяет также компоненты SO(3) связности

𝜔𝜇𝑖
𝑗 = −𝜕𝜇𝑒𝜈𝑗𝑒𝜈𝑖 + 𝑒𝜈𝑖̃︀Γ𝜇𝜈

𝜌𝑒𝜌
𝑗.

Только две компоненты отличны от нуля:

𝜔𝜙𝑟
𝜙 = −𝜔𝜙𝜙

𝑟 = 𝛼. (3.252)

Теперь можно вычислить лапласиан

△̃𝑤𝑖 = 𝑔𝜇𝜈𝜕2𝜇𝜈𝑤𝑖 − 𝑔𝜇𝜈𝜕𝜇𝜔𝜈𝑖
𝑗𝑤𝑗 − 2𝑔𝜇𝜈𝜔𝜇𝑖

𝑖𝜕𝜈𝑤𝑗−
− 𝑔𝜇𝜈̃︀Γ𝜇𝜈

𝜌(𝜕𝜌𝑤𝑖 − 𝜔𝜌𝑖
𝑗𝑤𝑗) + 𝑔𝜇𝜈𝜔𝜇𝑖

𝑘𝜔𝜈𝑘
𝑗𝑤𝑗. (3.253)

Подстановка явных выражений для символов Кристоффеля (3.251) и SO(3) связно-
сти (3.252) приводит к следующим выражениям:

△̃𝑤𝑟 =
(︁𝑎
𝑟

)︁2𝛾−2 1

𝑟
𝜕𝑟
(︀
𝑟𝜕𝑟𝑤𝑟

)︀
+
(︁𝑎
𝑟

)︁2𝛾−2 𝛾2

𝛼2𝑟2
𝜕2𝜙𝜙𝑤𝑟 + 𝜕2𝑧𝑧𝑤𝑟−

−
(︁𝑎
𝑟

)︁2𝛾−2 𝛾2

𝑟2
𝑤𝑟 − 2

(︁𝑎
𝑟

)︁2𝛾−2 𝛾2

𝛼𝑟2
𝜕𝜙𝑤𝜙,

△̃𝑤𝜙 =
(︁𝑎
𝑟

)︁2𝛾−2 1

𝑟
𝜕𝑟
(︀
𝑟𝜕𝑟𝑤𝜙

)︀
+
(︁𝑎
𝑟

)︁2𝛾−2 𝛾2

𝛼2𝑟2
𝜕2𝜙𝜙𝑤𝜙 + 𝜕2𝑧𝑧𝑤𝜙−

−
(︁𝑎
𝑟

)︁2𝛾−2 𝛾2

𝑟2
𝑤𝜙 + 2

(︁𝑎
𝑟

)︁2𝛾−2 𝛾2

𝛼𝑟2
𝜕𝜙𝑤𝑟,

△̃𝑤𝑧 =
(︁𝑎
𝑟

)︁2𝛾−2 1

𝑟
𝜕𝑟
(︀
𝑟𝜕𝑟𝑤𝑧

)︀
+
(︁𝑎
𝑟

)︁2𝛾−2 𝛾2

𝛼2𝑟2
𝜕2𝜙𝜙𝑤𝑧 + 𝜕2𝑧𝑧𝑤𝑧.

(3.254)
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Соответствующее волновое уравнение (3.241) имеет много решений. Простейшее
решение описывает распространение крутильных волн, для которых только угловая
компонента поля смещений 𝑤𝜙 отлична от нуля и не зависит от угла 𝜙:

𝑤𝑟 = 0, 𝑤𝜙 = 𝑤𝜙(𝑡, 𝑟, 𝑧), 𝑤𝑧 = 0.

Легко видеть, что крутильные колебания происходят без сжатия среды, т.к. дилата-
ция равна нулю

𝜖 := ̃︀∇𝑖𝑤
𝑖 = 0.

Для таких колебаний волновые уравнения ̃︀�𝑤𝑟 = 0 и ̃︀�𝑤𝑧 = 0 тождественно удовле-
творяются, и остается одно волновое уравнение для поперечных колебаний

1

𝑐2t
𝑤̈𝜙 −

(︁𝑎
𝑟

)︁2𝛾−2 1

𝑟
𝜕𝑟
(︀
𝑟𝜕𝑟𝑤𝜙

)︀
− 𝜕2𝑧𝑧𝑤𝜙 +

(︁𝑎
𝑟

)︁2𝛾−2 𝛾2

𝑟2
𝑤𝜙 = 0. (3.255)

Будем искать решение этого уравнения в виде плоской волны

𝑤𝜙 = re
(︀
𝑊 e𝑖(𝑘𝑧−𝜔𝑡)

)︀
,

где 𝑊 (𝑟) ∈ R – амплитуда волны, 𝑘 ∈ R – волновой вектор и 𝜔 ∈ R – частота волны.
Тогда уравнение (3.255) принимает вид

𝑟𝜕𝑟 (𝑟𝜕𝑟𝑊 ) + 𝜅2𝑎2
(︁𝑟
𝑎

)︁2𝛾

𝑊 − 𝛾2𝑊 = 0, (3.256)

где

𝜅2 :=
𝜔2

𝑐2t
− 𝑘2. (3.257)

Теперь введем новую радиальную координату

𝑟 = 𝑎𝑟′
1
𝛾 , 0 < 𝑟′ < 1.

Тогда уравнение (3.257) сведется к уравнению Бесселя

𝑟′2
𝑑2𝑊

𝑑𝑟′2
+ 𝑟′

𝑑𝑊

𝑑𝑟′
+ 𝜆2𝑟′2𝑊 −𝑊 = 0, (3.258)

где

𝜆2 :=
𝜅2𝑎2

𝛾2
.

Общее решение уравнения Бесселя содержит две постоянных интегрирования. Мы
требуем, чтобы решение было конечным в нуле 𝑟 = 0. Тогда амплитуда волны примет
вид

𝑊 = 𝐶𝐽1

(︁
𝜆
(︁𝑟
𝑎

)︁𝛾)︁
, (3.259)

where 𝐶 ∈ R – постоянная интегрирования и 𝐽1 – функция Бесселя первого рода и
первого порядка (см., например, [?]).

Если дислокация отсутствует, 𝛾 = 1, то решение принимает хорошо известный
вид (см., например, [?])

𝑊 →
𝛾→1

𝐶𝐽1(𝜅𝑟)
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Для анализа граничных условий необходимо знать тензор деформаций (3.245).
Прямые вычисления дают следующий результат

𝜖𝑟𝑟 =
(︁𝑎
𝑟

)︁𝛾−1

𝜕𝑟𝑤𝑟, 𝜖𝑟𝜙 =
1

2

(︁𝑎
𝑟

)︁𝛾−1 [︁
𝜕𝑟𝑤𝜙 +

𝛾

𝛼𝑟
𝜕𝜙𝑤𝑟 −

𝛾

𝑟
𝑤𝜙

]︁
,

𝜖𝜙𝜙 =
(︁𝑎
𝑟

)︁𝛾−1 𝛾

𝛼𝑟

(︀
𝜕𝜙𝑤𝜙 + 𝛼𝑤𝑟

)︀
, 𝜖𝑟𝑧 =

1

2

[︂(︁𝑎
𝑟

)︁𝛾−1

𝜕𝑟𝑤𝑧 + 𝜕𝑧𝑤𝑟

]︂
,

𝜖𝑧𝑧 = 𝜕𝑧𝑤𝑧, 𝜖𝜙𝑧 =
1

2

[︂(︁𝑎
𝑟

)︁𝛾−1 𝛾

𝛼𝑟
𝜕𝜙𝑤𝑧 + 𝜕𝑧𝑤𝜙

]︂
.

(3.260)
Для крутильных волн только две компоненты отличны от нуля:

𝜖𝑟𝜙 = 𝜖𝜙𝑟 =
1

2

(︁𝑎
𝑟

)︁𝛾−1 [︁
𝜕𝑟𝑤𝜙 − 𝛾

𝑟
𝑤𝜙

]︁
.

Мы требуем, чтобы поверхность волновода была свободной, т.е. упругие силы на
поверхности цилиндра должны обращаться в нуль. Это дает граничное условие[︁

𝜕𝑟𝑤𝜙 − 𝛾

𝑟
𝑤𝜙

]︁
𝑟=𝑎

. (3.261)

Для решения (3.259) это граничное условие принимает вид

𝜆𝐽 ′
1(𝜆) − 𝐽1(𝜆) = 0,

где штрих обозначает производную функции Бесселя по аргументу. Учтем равенство

𝐽 ′
1(𝜆) = 𝐽0(𝜆) − 1

𝜆
𝐽1(𝜆).

Тогда граничное условие эквивалентно равенству, определяющему дисперсионное со-
отношение

𝜅𝑎

𝛾
= 𝜉 ⇔ 𝜔 = 𝑐t

√︂
𝑘2 +

𝛾2𝜉2

𝑎2
, (3.262)

где 𝜉 – корень уравнения
𝜉𝐽0(𝜉) = 2𝐽1(𝜉). (3.263)

Функции Бесселя 𝐽𝜈 имеет следующую асимптотику при больших аргументах,
𝜉 ≫ 1, 𝜉 ≫ 𝜈,

𝐽0(𝜆) ≈
√︂

2

𝜋𝜆
cos

(︁
𝜆− 𝜋

4

)︁
,

𝐽1(𝜆) ≈
√︂

2

𝜋𝜆
sin

(︁
𝜆− 𝜋

4

)︁
.

Тогда уравнение (3.262) принимает вид

𝜉 cos
(︁
𝜉 − 𝜋

4

)︁
= 2 sin

(︁
𝜉 − 𝜋

4

)︁
.

Это уравнение имеет счетное число решений, каждое из которых определяет диспер-
сионное соотношение.

Нетрудно найти фазовую скорость крутильных колебаний 𝑣 := 𝜔/𝑘

𝑣 = 𝑐t

√︂
1 +

𝛾2𝜉2

𝑎2𝑘2
. (3.264)
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При этом групповая скорость равна

𝑣g :=
𝑑𝜔

𝑑𝑘
=
𝑐2t
𝑣
. (3.265)

Если дислокация отсутствует, то уравнение (3.262) для 𝜉 остается прежним. Со-
отношение (3.265) между фазовой и групповой скоростью также остается прежним.
Поэтому наличие клиновой дислокации меняет только дисперсионное соотношение
(3.262).

Для малых углов дефицита из уравнения (3.247) следует равенство

𝛾 ≈ 1 + 𝜃
1 − 2𝜎

2(1 − 𝜎)

и первая поправка к дисперсионному соотношению имеет вид

𝜔 ≈ 𝑐t

√︂
𝑘2 +

𝜉2

𝑎2

[︃
1 + 𝜃

1 − 2𝜎

2(1 − 𝜎)

1

1 + 𝑘2𝑎2

𝜉2

]︃
. (3.266)

Она линейна по углу дефицита.
Таким образом, наличие клиновой дислокации в волноводе приводит к измене-

нию дисперсионного соотношения для крутильных волн. Для положительных углов
дефицита 𝛾 > 1 фазовая скорость возрастает, а групповая – падает как следствие
уравнений (3.264) и (3.265). Для отрицательных углов дефицита ситуация противо-
положна.

3.11.2 Крутильные волны в двустенной трубке

Двустенная трубка

Сначала опишем двустенную трубку с цилиндрическим дефектом в рамках теории
упругости.

Пусть в евклидовом пространстве R3 задана цилиндрическая система координат
{𝑥𝜇} = {𝑟, 𝜙, 𝑧}, 𝜇 = 1, 2, 3. Рассмотрим две толстостенные трубки 𝑟0 ≤ 𝑟 ≤ 𝑟1 и
𝑟2 ≤ 𝑟 ≤ 𝑟3, сделанные из упругого материала, оси которых совпадают с осью 𝑧.
Мы предполагаем, что выполнены неравенства 𝑟0 < 𝑟1 < 𝑟2 < 𝑟3 (см. рис. 3.30a, где
показано сечение 𝑧 = const). Теперь создадим двустенную трубку с цилиндрической
дислокацией внутри следующим образом. Растянем симметрично внутреннюю труб-
ку и сожмем внешнюю. Затем склеим внешнюю поверхность внутренней трубки с
внутренней поверхностью внешней. После этого среда придет в некоторое равновес-
ное состояние. Благодаря вращательной и трансляционной симметрии, мы получим
одну двустенную трубку 𝑟in ≤ 𝑟 ≤ 𝑟ex, ось которой совпадает с осью 𝑧 (см. рис. 3.30b).
Радиусы поверхностных цилиндров отображаются следующим образом:

𝑟0 ↦→ 𝑟in, 𝑟1, 𝑟2 ↦→ 𝑟*, 𝑟3 ↦→ 𝑟ex.

Склейка проходит по цилиндру радиуса 𝑟*, где расположена цилиндрическая дисло-
кация, т.к. часть вещества между исходными трубками была удалена.

Полученная таким образом двустенная трубка обладает вращательной и транс-
ляционной инвариантностью.
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Рис. 3.30: Сечение двустенной трубки 𝑧 = const до (a) и после (b) создания цилин-
дрической дислокации.

Построенная модель трубки можно рассматривать в качестве континуальной мо-
дели двустенной нанотрубки (см. обзоры [?, ?, ?]). Действительно, рассмотрим на-
нотрубку с двумя слоями атомов. Предположим, что по окружности слоев распо-
лагается соответственно 18 и 20 атомов, которые изображены жирными точками на
рис. 3.30b. Естественной мерой длины в таком случае является межатомное рассто-
яние. Тогда длина окружности претерпевает скачок, когда мы переходим от одного
слоя к другому. В геометрической теории дефектов это означает, что 𝑔𝜙𝜙 компонен-
та метрики в цилиндрической системе координат имеет скачок. Соответствующая
модель построена ниже.

Для того, чтобы найти радиусы 𝑟in, 𝑟* и 𝑟ex необходимо решить задачу теории
упругости.

Поле смещений определено равенством (3.1). Здесь проявляется преимущество
геометрического подхода, т.к. до создания дислокации мы имели несвязное много-
образие, а после создания – связное, и поле смещений удобнее рассматривать как
функцию от точки среды после создания дефекта. В равновесном состоянии вектор-
ное поле смещений удовлетворяет уравнению равновесия

(1 − 2𝜎)△𝑢𝑖 + 𝜕𝑖𝜕𝑗𝑢
𝑗 = 0, (3.267)

где 𝜎 – коэффициент Пуассона и △ – лапласиан. Для удобства, мы рассматриваем
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компоненты поля смещений относительно ортонормального базиса

𝑢 = 𝑢𝑟𝑒𝑟 + 𝑢𝜙𝑒𝜙 + 𝑢𝑧𝑒𝑧,

где
𝑒𝑟 = 𝜕𝑟, 𝑒𝜙 =

1

𝑟
𝜕𝜙, 𝑒𝑧 = 𝜕𝑧.

Индексы компонент относительно ортонормального базиса шляпкой помечены шляп-
кой:

{𝑖} = {𝑟, 𝜙, 𝑧}, {𝜇} = {𝑟, 𝜙, 𝑧}.
Латинские индексы поднимаются и опускаются с помощью символа Кронекера: 𝑢𝑖 :=
𝑢𝑗𝛿𝑗𝑖.

Дивергенция и лапласиан имеют следующий вид в цилиндрических координатах:

∇𝑖𝑢
𝑖 =

1

𝑟
𝜕𝑟(𝑟𝑢

𝑟) +
1

𝑟
𝜕𝜙𝑢

𝜙 + 𝜕𝑧𝑢
𝑧,

△𝑢𝑟 =
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝑢𝑟) +

1

𝑟2
𝜕2𝜙𝜙𝑢𝑟 + 𝜕2𝑧𝑧𝑢𝑟 −

1

𝑟2
𝑢𝑟 −

2

𝑟2
𝜕𝜙𝑢𝜙,

△𝑢𝜙 =
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝑢𝜙) +

1

𝑟2
𝜕2𝜙𝜙𝑢𝜙 + 𝜕2𝑧𝑧𝑢𝜙 − 1

𝑟2
𝑢𝜙 +

2

𝑟2
𝜕𝜙𝑢𝑟,

△𝑢𝑧 =
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝑢𝑧) +

1

𝑟2
𝜕2𝜙𝜙𝑢𝑧 + 𝜕2𝑧𝑧𝑢𝑧.

(3.268)

Из симметрии задачи вытекает, что только радиальная компонента вектора сме-
щений отлична от нуля, и она не зависит от полярного угла 𝜙 и координаты 𝑧:

{𝑢𝑖} = {𝑢𝑟 := 𝑢(𝑟), 𝑢𝜙 = 0, 𝑢𝑧 = 0}.

Уравнение (3.267) для нулевых компонент 𝑢𝜙 и 𝑢𝑧 выполняется автоматически. Нетруд-
но проверить, что радиальная производная дивергенции,

𝜕𝑟𝜕𝑗𝑢
𝑗 = 𝜕𝑟

(︂
1

𝑟
𝜕𝑟(𝑟𝑢)

)︂
= 𝜕2𝑟𝑟𝑢+

1

𝑟
𝜕𝑟𝑢−

1

𝑟2
𝑢,

совпадает с лапласианом

△𝑢𝑟 =
1

𝑟
𝜕𝑟(𝑟𝜕𝑟𝑢) − 1

𝑟2
𝑢 = 𝜕2𝑟𝑟𝑢+

1

𝑟
𝜕𝑟𝑢−

1

𝑟2
𝑢.

Поэтому радиальная компонента уравнений (3.267) принимает вид

𝜕𝑟

(︂
1

𝑟
𝜕𝑟(𝑟𝑢)

)︂
= 0. (3.269)

Общее решение данного уравнения зависит от двух постоянных интегрирования:

𝑢 = 𝑐1𝑟 +
𝑐2
𝑟
, 𝑐1,2 = const.

Отметим, что уравнение равновесия (3.269) не зависит от коэффициента Пуассона
𝜎. Это значит, что цилиндрическая дислокация является геометрическим дефектом.

Для определения постоянных интегрирования наложим граничные условия. С
этой целью введем обозначение для внутренней и внешней трубок:

𝑢 =

{︃
𝑢in, 𝑟in ≤ 𝑟 ≤ 𝑟*,

𝑢ex, 𝑟* ≤ 𝑟 ≤ 𝑟ex.
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Теперь необходимо наложить граничные условия. Мы предполагаем, что поверхность
двустенной трубки является свободной, т.е. тензор деформаций на границе равен
нулю:

𝑑𝑢in

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟in

= 0,
𝑑𝑢ex

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟ex

= 0. (3.270)

Мы также предполагаем, что средп находится в равновесии. Это значит, что на по-
верхности склейки упругие силы равны:

𝑑𝑢in

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟*

=
𝑑𝑢ex

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟*

. (3.271)

Каждое из граничных условий (3.270) определяет одну постоянную интегрирова-
ния для внутреннего и внешнего решения:

𝑢in = 𝑎

(︂
𝑟 +

𝑟2in
𝑟

)︂
> 0, 𝑎 = const > 0,

𝑢ex = −𝑏
(︂

1

𝑟
+

𝑟

𝑟2ex

)︂
< 0, 𝑏 = const > 0.

(3.272)

Знаки постоянных интегрирования 𝑎 и 𝑏 подобраны таким образом, что поле смеще-
ний положительно и отрицательно соответственно для внутренней и внешней трубок.
Это согласуется с поставленной задачей.

Подстановка полученных решений (3.272) в условие склейки (3.271) определяет
отношение постоянных интегрирования:

𝑟2* = 𝑟2ex
𝑎𝑟2in + 𝑏

𝑎𝑟2ex + 𝑏
⇔ 𝑏 = 𝑎𝑟2ex

𝑟2* − 𝑟2in
𝑟2ex − 𝑟2*

. (3.273)

Условие сплошности среды имеет вид

𝑟* = 𝑟1 + 𝑎

(︂
𝑟* +

𝑟2in
𝑟*

)︂
,

𝑟* = 𝑟2 − 𝑏

(︂
1

𝑟*
+
𝑟*
𝑟2ex

)︂
.

(3.274)

Из этих равенств находим расстояние между начальными трубками, которое харак-
теризует величину дефекта:

𝑙 := 𝑟2 − 𝑟1 = 2𝑎𝑟*
𝑟2ex − 𝑟2in
𝑟2ex − 𝑟2*

, (3.275)

где было использовано выражение для 𝑏 (3.273). После этого определяются все по-
стоянные интегрирования:

𝑎 =
𝑙

2𝑟*

𝑟2ex − 𝑟2*
𝑟2ex − 𝑟2in

, 𝑏 =
𝑙𝑟2ex
2𝑟*

𝑟2* − 𝑟2in
𝑟2ex − 𝑟2in

. (3.276)

Таким образом, найдено векторное поле смещений для двустенной трубки

𝑢(𝑟) =

⎧⎨⎩ 𝑎
(︁
𝑟 +

𝑟2in
𝑟

)︁
> 0, 𝑟in ≤ 𝑟 < 𝑟*,

−𝑏
(︁

1
𝑟

+ 𝑟
𝑟2ex

)︁
< 0, 𝑟* < 𝑟 ≤ 𝑟ex,

(3.277)
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где постоянные 𝑎 и 𝑏 определены равенствами (3.276). Качественное поведение этого
векторного поля показано на рис. 3.31a. Дифференцирование этого векторного поля
в областях 𝑟in < 𝑟 < 𝑟*, 𝑟* < 𝑟 < 𝑟ex и его продолжение в точку 𝑟* по непрерывности
дает функцию

𝑣(𝑟) :=
𝑑𝑢

𝑑𝑟
=

⎧⎨⎩𝑎
(︁

1 − 𝑟2in
𝑟2

)︁
> 0, 𝑟in ≤ 𝑟 ≤ 𝑟*,

𝑏
(︁

1
𝑟2

− 1
𝑟2ex

)︁
> 0, 𝑟* ≤ 𝑟 ≤ 𝑟ex,

(3.278)

которая показана на рис. 3.31b.

Рис. 3.31: Качественное поведение радиальной компоненты векторного поля смеще-
ний для двустенной трубки (a). Производная поля смещений (b).

Отметим, что условие сплошности среды (3.274) приводит к скачку вектора сме-
щений в точке 𝑟*:

𝑙 := 𝑟2 − 𝑟1 = 𝑢in(𝑟*) − 𝑢ex(𝑟*).

Поскольку векторное поле 𝑢 имеет скачок в точке 𝑟*, то формальная производная 𝑢
содержит 𝛿(𝑟−𝑟*). Эта 𝛿-функция отбрасывается в геометрической теории дефектов.

Двустенная трубка параметризуется четырьмя постоянными 𝑟0, 𝑟1, 𝑟2, 𝑟3 или 𝑟in,
𝑟*, 𝑟ex, 𝑙. Формулы (3.276) определяют постоянные 𝑎, 𝑏 и, следовательно, векторное
поле смещений через второй набор параметров. Из определения (3.1) вытекает, что
между двумя наборами параметров существует взаимно однозначное соответствие.

Теперь вычислим метрику, индуцированную в двустенной трубке. По определе-
нию она имеет вид

𝑔𝜇𝜈(𝑥) =
𝜕𝑦𝜌

𝜕𝑥𝜇
𝜕𝑦𝜎

𝜕𝑥𝜈
∘
𝑔𝜌𝜎(𝑦), (3.279)

где ∘
𝑔𝜌𝜎(𝑦) – евклидова метрика в цилиндрической системе координат. Соотношение

между координатами до и после создания дислокации задано равенством (3.1). Обо-
значим цилиндрические координаты до и после создания дефекта соответсвенно че-
рез {𝑦𝜇} = {𝑟, 𝜙, 𝑧} и {𝑥𝜇} = {𝑟, 𝜙, 𝑧}. Отметим, что вектор смещения рассматри-
вается в координатах 𝑟, 𝜙, 𝑧 после создания дислокации. Тогда исходная евклидова
метрика имеет вид

𝑑𝑠2 =
∘
𝑔𝜇𝜈𝑑𝑦

𝜇𝑑𝑦𝜈 = 𝑑𝑟2 + 𝑟2𝑑𝜙2 + 𝑑𝑧2.

Подстановка сюда равенства 𝑟 = 𝑟−𝑢, где вектор смещения задан уравнением (3.277),
приводит к индуцированной метрике в двустенной трубке

𝑑𝑠2 = (1 − 𝑣)2𝑑𝑟2 + (𝑟 − 𝑢)2𝑑𝜙2 + 𝑑𝑧2. (3.280)
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Компонента 𝑔𝑟𝑟 = (1 − 𝑣)2 этой метрики является непрерывной функцией, а ее про-
изводная имеет скачок в точке 𝑟*. Компонента 𝑔𝜙𝜙 = (𝑟 − 𝑢)2 в точке 𝑟 = 𝑟* имеет
скачок.

Элемент объема для метрики (3.280) равен

√
|𝑔| = (1 − 𝑣)(𝑟 − 𝑢).

Правая часть этого равенства положительна, т.к. положителен каждый из сомно-
жителей. Второй сомножитель 𝑟 − 𝑢 = 𝑦 > 0 положителен по построению. Первый
сомножитель также положителен. Действительно, функция 𝑣 имеет максимум в точ-
ке 𝑟 = 𝑟*. При этом выполнено неравенство

𝑣(𝑟*) = 𝑎
𝑟2* − 𝑟2in
𝑟2*

=
𝑟* − 𝑟1
𝑟*

𝑟2* − 𝑟2in
𝑟2* + 𝑟2in

< 1,

где использовано выражение (3.274) для 𝑎.
Длина окружности является геометрическим инвариантом. Она равна 2𝜋

(︀
𝑟−𝑢(𝑟)

)︀
для метрики (3.279). Когда мы переходим из внутренней трубки к внешней, она
имеет скачок 2𝜋𝑙, где 𝑙 – расстояние между трубками до создания дислокации. Это
наблюдение находится в согласии с континуальной моделью двустенной трубки.

Метрика (3.280) получена полностью в рамках теории упругости. К удивлению
эта метрика удовлетворяет нелинейным уравнениям Эйнштейна с источником в виде
𝛿′-функции. Это было доказано в [?] для 𝑟0 = 0 и 𝑟3 = ∞. Нетрудно проверить,
что это верно и для конечных значений 𝑟0 и 𝑟3. Действительно, тензор Эйнштейна
равен нулю всюду (пустое пространство) за исключением поверхности склейки, а
сингулярность здесь такая же. Поэтому метрика (3.280) возникает в геометрической
теории дефектов как решение уравнений Эйнштейна. Это – исключительный случай,
поскольку, как правило, метрика, полученная в рамках теории упругости, отличается
от метрики в геометрической теории дефектов (см., например, раздел 3.8.2).

Крутильные волны в двустенной трубке

По определению векторное поле смещений 𝑤, описывающее упругие колебания, удо-
влетворяет волновому уравнению

𝜌0𝑤̈𝑖 − 𝜇△𝑤𝑖 − (𝜆+ 𝜇)∇𝑖∇𝑗𝑤
𝑗 = 0, (3.281)

где 𝜌0 – плотность среды, 𝜆, 𝜇 – коэффициенты Ламе, а ковариантная производная
∇𝑖 := 𝑒𝜇𝑗∇𝜇 и оператор Лапласа–Бельтрами △ := 𝑔𝜇𝜈∇𝜇∇𝜈 определены метрикой
(3.280) двустенной трубки. Здесь 𝑒𝜇𝑖 – обратный репер, 𝑒𝜇𝑖𝑒𝜇𝑗 = 𝛿𝑗𝑖 .

Волновое уравнение (3.281) ковариантно относительно общих преобразований ко-
ординат, и может быть решено в цилиндрической системе координат 𝑟, 𝜙, 𝑧 с метри-
кой (3.280) после создания дефекта. Однако проще поступить по другому. Мы решим
волновое уравнение в исходной цилиндрической системе координат 𝑦 := 𝑟, 𝜙, 𝑧, где
координата 𝑦 обозначает старый радиус до создания дислокации

𝑦 := 𝑟 − 𝑢,

а после этого наложим необходимые граничные условия. Это проще т.к. метрика в
исходной системе координат является евклидовой.
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Рассмотрим крутильные колебания. В этом случае отлична от нуля только угло-
вая компонента вектора смещений:

{𝑤𝑖} = {𝑤𝑟 = 0, 𝑤𝜙 = 𝑤𝜙(𝑡, 𝑟, 𝑧), 𝑤𝑧 = 0}.

Из соображений симметрии угловая компонента 𝑤𝜙 не зависит от угла 𝜙. Для такого
векторного поля 𝑟 и 𝑧 компоненты уравнения (3.281) автоматически удовлетворяют-
ся. Дилатация для крутильных волн обращается в нуль

𝜖 := 𝜕𝑖𝑤
𝑖 = 0,

т.е. крутильные колебания происходят без сжатия среды.
Ищем решение уравнения (3.281) в виде плоской волны

𝑤𝜙 = re
[︀
𝑊 (𝑦) e𝑖(𝑘𝑧−𝜔𝑡)

]︀
, (3.282)

где 𝑊 (𝑦) – амплитуда, 𝑘 ∈ R – волновой вектор и 𝜔 ∈ R – частота волны. Тогда
уравнение (3.281) в цилиндрических координатах принимает вид

𝑦2
𝑑2𝑈

𝑑𝑦2
+ 𝑦

𝑑𝑈

𝑑𝑦
+ (𝜅2𝑦2 − 1)𝑈 = 0, (3.283)

где

𝜅2 :=
𝜔2

𝑐2t
− 𝑘2, 𝑐2t :=

𝜇

𝜌0
. (3.284)

Общее решение данного уравнения содержит две постоянных интегрирования. По-
этому решение для внутренней и внешней трубок можно записать следующим обра-
зом

𝑊 =

{︃
𝑊in = 𝐶1𝐽1(𝜅𝑦) + 𝐶2𝑁1(𝜅𝑦), 𝑟0 ≤ 𝑦 ≤ 𝑟1,

𝑊ex = 𝐶3𝐽1(𝜅𝑦) + 𝐶4𝑁1(𝜅𝑦), 𝑟2 ≤ 𝑦 ≤ 𝑟3,
(3.285)

где 𝐽1 – функция Бесселя первого рода и первого порядка, 𝑁1 – функция Неймана
первого порядка (см., например, [?]) и 𝐶1,2,3,4 – постоянные интегрирования.

Для того, чтобы найти постоянные интегрирования, наложим граничные условия.
Предположим, что внутренняя и внешняя поверхности двустенной трубки являются
свободными, т.е. тензор деформаций равен нулю:

𝑑𝑊in

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟in

= 0,
𝑑𝑊ex

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟ex

= 0.

Поскольку
𝑑𝑊

𝑑𝑟
=
𝑑𝑦

𝑑𝑟

𝑑𝑊

𝑑𝑦
= (1 − 𝑣)

𝑑𝑊

𝑑𝑦
,

где 𝑣(𝑟in) = 𝑣(𝑟ex) = 0, эти уравнения в исходной системе кординат принимают вид

𝐶1𝐽
′
1(𝑧0) + 𝐶2𝑁

′
1(𝑧0) = 0

𝐶3𝐽
′
1(𝑧3) + 𝐶4𝑁

′
1(𝑧3) = 0,

где
𝑧 := 𝜅𝑦,
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и штрих обозначает дифференцирование по аргументу 𝑧. Полученные условия опре-
деляют две постоянные интегрирования:

𝐶2 = −𝑘0𝐶1, 𝑘0 :=
𝐽 ′
1(𝑧0)

𝑁 ′
1(𝑧0)

,

𝐶4 = −𝑘3𝐶1, 𝑘3 :=
𝐽 ′
1(𝑧3)

𝑁 ′
1(𝑧3)

.

(3.286)

На поверхности склейки наложим два граничных условия: сплошность среды и
равенство упругих напряжений,

𝑊in(𝑟*) = 𝑊ex(𝑟*),
𝑑𝑊in

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟*

𝑑𝑊ex

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟*

. (3.287)

В результате возникают два уравнения

𝐶1

[︀
𝐽1(𝑧1) − 𝑘0𝑁1(𝑧1)

]︀
− 𝐶3

[︀
𝐽1(𝑧2) − 𝑘3𝑁1(𝑧2)

]︀
= 0,

𝐶1

[︀
𝐽 ′
1(𝑧1) − 𝑘0𝑁

′
1(𝑧1)

]︀
− 𝐶3

[︀
𝐽 ′
1(𝑧2) − 𝑘3𝑁

′
1(𝑧2)

]︀
= 0.

(3.288)

Необходимым и достаточным условием разрешимости этой системы уравнений яв-
ляется равенство нулю определителя:[︀
𝐽1(𝑧1) − 𝑘0𝑁1(𝑧1)

]︀[︀
𝐽 ′
1(𝑧2) − 𝑘3𝑁

′
1(𝑧2)

]︀
−

−
[︀
𝐽1(𝑧2) − 𝑘3𝑁1(𝑧2)

]︀[︀
𝐽 ′
1(𝑧1) − 𝑘0𝑁

′
1(𝑧1)

]︀
= 0. (3.289)

Для заданных параметров двустенной трубки 𝑟0, 𝑟1, 𝑟2 и 𝑟3, это равенство представ-
ляет собой уравнение на постоянную 𝜅. Пусть 𝜅 является корнем уравнения (3.289),
тогда равенство

𝜔 = 𝑐t
√
𝑘2 + 𝜅2. (3.290)

задает уравнение дисперсии для крутильных волн.
Фазовая скорость крутильных волн 𝑣 := 𝜔/𝑘 легко находится из дисперсионного

соотношения (3.290):

𝑣 = 𝑐t

√︂
1 +

𝜅2

𝑘2
. (3.291)

Легко также вычисляется групповая скорость

𝑣g :=
𝑑𝜔

𝑑𝑘
=
𝑐2t
𝑣
. (3.292)

Мы видим, что фазовая скорость всегда больше поперечной скорости, а групповая
– меньше. Дисперсионное соотношение (3.290) зависит от параметров двустенной
трубки через соотношение (3.289).

Помимо чисто академического интереса, двустенная трубка может являться кон-
тинуальной моделью двухслойной нанотрубки.

3.12 Примесь в поле клиновой дислокации
Рассмотрим упругую среду с клиновой дислокацией, которая содержит один атом
примеси или вакансию. Если считать влияние примеси на распределение упругих
напряжений малым по сравнению с упругими напряжениями, вызванными самой
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дислокацией, то можно полагать, что движение примеси происходит в трехмерном
пространстве с нетривиальной метрикой (3.99). В геометрическом подходе мы счита-
ем, что потенциальная энергия взаимодействия примеси с дислокацией равна нулю, и
все взаимодействие происходит за счет изменения кинетической энергии, куда явным
образом входит нетривиальная метрика.

Решим соответствующую квантово-механическую задачу. Рассмотрим связанные
состояния примеси при наличии клиновой дислокации, двигающейся в цилиндре ра-
диуса 𝑅. При этом мы предполагаем, что ось цилиндра совпадает с ядром дислока-
ции. Стационарное уравнение Шредингера имеет вид

− ~2

2𝑀
△̃Ψ = 𝐸Ψ, (3.293)

где ~ – постоянная Планка, 𝑀 , Ψ и 𝐸 – масса, волновая функция и энергия примеси.
Нетривиальность взаимодействия примеси с дислокацией сводится к нетривиальному
оператору Лапласа–Бельтрами

△̃Ψ =
1
√
𝑔
𝜕𝜇(

√
𝑔𝑔𝜇𝜈𝜕𝜈Ψ),

где метрика была ранее найдена (см. (3.99)) и 𝑔 := det 𝑔𝜇𝜈 .
Исходя из симметрии задачи, будем решать уравнение Шредингера (3.293) в ци-

линдрических координатах методом разделения переменных. Пусть

Ψ(𝑟, 𝜙, 𝑧) = 𝑍(𝑧)
∞∑︁

𝑚=−∞

𝜓𝑚(𝑟) e𝑖𝑚𝜙,

где для нормированной функции 𝑍(𝑧) имеются две следующие возможности. Если
вдоль оси 𝑧 примесь движется свободно с импульсом ~𝑘, то

𝑍(𝑧) =
1√
2𝜋

e𝑖𝑘𝑧.

Если же ее движение ограничено плоскостями 𝑧 = 0 и 𝑧 = 𝑧0, то

𝑍(𝑧) =

√︂
2

𝑧0
sin (𝑘𝑙𝑧), 𝑘𝑙 =

𝜋𝑙

𝑧0
.

В дальнейшем целочисленный индекс 𝑙, возникающий при ограниченном движении,
мы для краткости опустим, имея в виду обе возможности.

Условие целочисленности постоянной 𝑚 (собственного значения проекции момен-
та импульса на ось 𝑧) возникает из условия периодичности

Ψ(𝑟, 𝜙, 𝑧) = Ψ(𝑟, 𝜙+ 2𝜋, 𝑧).

Тогда для радиальной волновой функции 𝜓𝑚(𝑟) получаем уравнение

𝑅2𝛾−2

𝑟2𝛾−1
𝜕𝑟(𝑟𝜕𝑟𝜓𝑚) +

(︂
2𝑀𝐸

~2
− 𝛾2

𝛼2

𝑅2𝛾−2

𝑟2𝛾
𝑚2 − 𝑘2

)︂
𝜓𝑚 = 0. (3.294)

Введем новую радиальную координату

𝜌 :=
𝑟𝛾

𝛾𝑅𝛾−1
.
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С точностью до постоянной, это – преобразование (3.96), (3.98). Тогда радиальное
уравнение примет вид

1

𝜌
𝜕𝜌(𝜌𝜕𝜌𝜓𝑚) +

(︂
𝛽2 − 𝜈2

𝜌2

)︂
𝜓𝑚 = 0, (3.295)

где

𝛽2 :=
2𝑀𝐸

~2
− 𝑘2, 𝜈 :=

|𝑚|
𝛼

> 0.

Это есть уравнение Бесселя. Будем решать его при граничном условии

𝜓𝑚|𝜌=𝑅/𝛾 = 0, (3.296)

что соответствует движению примеси внутри цилиндра с непроницаемой границей.
Общее решение уравнения Бесселя (3.295) содержит две постоянные интегрирования

𝜓𝑚 = 𝑐𝑚𝐽𝜈(𝛽𝜌) + 𝑑𝑚𝑁𝜈(𝛽𝜌), 𝑐𝑚, 𝑑𝑚 = const,

где 𝐽𝜈 и 𝑁𝜈 – функции Бесселя и Неймана порядка 𝜈 [?]. Из условия ограниченности
волновой функции на оси цилиндра следует, что 𝑑𝑚 = 0. Постоянные интегрирования
𝑐𝑚 находятся из условия нормировки∫︁ 𝑅

0

𝑑𝑟 𝑟|𝜓𝑚|2 = 1.

Из граничного условия (3.296) следует уравнение на 𝛽

𝐽𝜈(𝛽𝑅/𝛾) = 0, (3.297)

которое определяет уровни энергии связанных состояний. Хорошо известно, что при
вещественных 𝜈 > −1 и 𝑅/𝛾, это уравнение имеет только вещественные нули. По-
ложительные нули образуют бесконечное счетное множество, и все они простые [?].
Отсюда следует неравенство

𝛽2 =
2𝑀𝐸

~2
− 𝑘2 ≥ 0.

Пронумеруем положительные нули уравнения (3.297) индексом 𝑛 = 1, 2, . . . (главное
квантовое число): 𝛽 → 𝛽𝑛(𝑚,𝛼, 𝛾,𝑅). Тогда спектр собственных состояний имеет вид

𝐸𝑛 =
~2

2𝑀
(𝑘2 + 𝛽2

𝑛). (3.298)

При больших радиусах (𝛽𝜌≫ 1 и 𝛽𝜌≫ 𝜈) справедлива асимптотика

𝐽𝜈(𝛽𝜌) ≈
√︂

2

𝜋𝛽𝜌
cos

(︁
𝛽𝜌− 𝜈𝜋

2
− 𝜋

4

)︁
.

Отсюда следует явное выражение для спектра

𝛽𝑛 =
𝛾𝜋

𝑅

(︂
𝑛+

|𝑚|
2𝛼

− 1

4

)︂
. (3.299)

В отсутствие дефекта 𝛼 = 1, 𝛾 = 1, 𝜌 = 𝑟, и радиальные функции 𝜓𝑚 выражаются
через функции Бесселя целого порядка 𝜈 = |𝑚|. В этом случае спектр энергии соб-
ственных состояний зависит только от размеров цилиндра. При наличии клиновой
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дислокации функции Бесселя в общем случае будут иметь нецелый порядок. При
этом спектр уровней энергии собственных состояний приобретает зависимость от уг-
ла дефицита клиновой дислокации 𝜃 и коэффициента Пуассона 𝜎, характеризующего
упругие свойства среды.

Если масса примеси и вакансии определена интегралом (3.16), то для примеси
𝑀 > 0 и собственные значения энергии положительны. Для вакансии 𝑀 < 0 и
собственные значения энергии отрицательны. В этом случае спектр энергии не огра-
ничен снизу, что вызывает серьезные проблемы для физической интерпретации.

Рассмотренный пример показывает, как в первом приближении учитывается вли-
яние дефектов в геометрической подходе. Если расчеты в некоторой задаче проведе-
ны в упругой среде без дефектов, то для учета влияния дефектов необходимо заме-
нить плоскую евклидову метрику на нетривиальную метрику, описывающую данное
распределение дефектов. Математически эта задача может оказаться сложной, т.к.
для определения метрики необходимо решить трехмерные уравнения Эйнштейна.
Однако принципиальных трудностей здесь нет: влияние дислокаций сводится к из-
менению метрики.

Проведенное геометрическое построение в теории дефектов можно обратить, и
рассматривать гравитационное взаимодействие масс во Вселенной, как взаимодей-
ствие дефектов упругого эфира. При этом точечные массы будут соответствовать
точечным дефектам (вакансиям и примесям), а космические струны [?, ?] – клино-
вым дислокациям. При таком взгляде на гравитацию возникает вопрос об упругой
калибровке, которой в геометрической теории дефектов придается прямой физиче-
ский смысл. Если принять точку зрения из теории дефектов, то упругие свойства
эфира соответствуют некоторому значению коэффициента Пуассона, который можно
измерить экспериментально.

Представляется интересным и важным для приложений включить в рассматри-
ваемый статический подход время для описания движения дефектов в среде. Такая
модель в настоящее время отсутствует. С геометрической точки зрения обобщение
провести несложно, по крайней мере, в принципе. Достаточно заменить евклидово
пространство R3 на пространство Минковского R1,3 и написать подходящий лагран-
жиан, квадратичный по тензору кривизны и кручения, что соответствует настоящей
модели гравитации с кручением. Одна из возникающих трудностей заключается в
физической интерпретации дополнительных компонент репера и лоренцевой связно-
сти, которые содержат временно́й индекс. Физический смысл временно́й компонен-
ты репера 𝑒0𝑖 → 𝜕0𝑢

𝑖 = 𝑣𝑖 прост – это скорость точки среды. Такая интерпретация
естественна с физической точки зрения, поскольку движение непрерывно распреде-
ленных дислокаций означает течение среды. Действительно, жидкость можно пред-
ставить, как упругую среду с непрерывным распределением подвижных дислокаций.
Это значит, что динамическая теория дефектов, основанная на геометрии Римана–
Картана, должна включать в себя гидродинамику. В настоящее время неясно, как это
происходит. Остается также неясной физическая интерпретация других компонент
репера и лоренцевой связности с временны́м индексом.
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