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Основные обозначения и соглашения

Дифференцирование выполняется раньше алгебраических операций.

Z := {. . .− 1, 0, 1, . . . } – группа целых чисел по сложению,
Q, R, C – поле рациональных, вещественных, комплексных чисел,
R+ – множество положительных вещественных чисел,
R× := R ∖ {0} – группа вещественных чисел по умножению,
† – комплексное или эрмитово сопряжение,
:= – равно по определению,
≡ – тождественно равно,
⇔ – эквивалентно,
𝑥 и (𝑥1, . . . , 𝑥n) – точка многообразия и ее координаты,
(𝑥α) = (𝑥0, 𝑥µ) = (𝑥0,𝑥) – декартовы координаты в пространстве Минковского,

или координаты на псевдоримановом многообразии,
𝜕α := ∂

∂xα
– частная производная,

𝜕2
αβ := ∂2

∂xα∂xβ
– частная производная второго порядка,

∇α – ковариантная производная,
△ – оператор Лапласа или Лапласа–Бельтрами,
� – оператор Даламбера, конец доказательства, примера

или определения,
(𝜕𝑓)2 := 𝑔αβ𝜕α𝑓𝜕β𝑓 – квадрат градиента функции 𝑓 ,

𝑔αβ – компоненты метрики,
𝑔 := det (𝑔αβ) – определитель метрики,
𝑒α

a – компоненты репера,√
|𝑔| = det (𝑒α

a) – элемент объема (определитель репера),
𝜐 := 𝑑𝑥1 ∧ . . . ∧ 𝑑𝑥n

√
|𝑔| – форма объема на (псевдо)римановом многообразии M,

𝑒 – единица группы,
e – основание натурального логарифма,
Γαβ

γ – компоненты аффинной связности,
𝜔αa

b – компоненты линейной или лоренцевой связности,
sgn𝜎(𝛼1, . . . , 𝛼n) – знак перестановки 𝜎 индексов 𝛼1, . . . , 𝛼n.

Некоторые многообразия и классы объектов имеют специальные обозначения:

Rn – 𝑛-мерное евклидово пространство,
Rn

+ – подпространство в Rn, определяемое условием 𝑥n > 0,
R1,n−1 – 𝑛-мерное пространство Минковского,
Snr – 𝑛-мерная сфера радиуса 𝑟,
Bnr – 𝑛-мерный шар радиуса 𝑟,
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𝒞k(M) – класс функций на многообразии M, непрерывных вместе с
производными вплоть до 𝑘-го порядка,

𝒳 (M) – множество гладких векторных полей на многообразии M,
𝒯 (M) – множество гладких тензорных полей на многообразии M,
M ≈ N – многообразие M диффеоморфно (гомеоморфно)

многообразию N,
𝑎 ≈ 𝑏 – 𝑎 примерно равно 𝑏,
𝑎⇒ 𝑏 – 𝑏 следует из 𝑎,
G ≃ H – группа (алгебра, векторное пространство, . . . ) G изоморфна

группе (алгебре, векторному пространству, . . . ) H,
M → N – отображение множеств,
M ∋ 𝑎 ↦→ 𝑏 ∈ N – отображение элементов множеств,

Антисимметризация по индексам обозначается квадратными скобками:

𝐴[ab] :=
1

2
(𝐴ab − 𝐴ba),

𝐴[abc] :=
1

6
(𝐴abc + 𝐴bca + 𝐴cab − 𝐴bac − 𝐴acb − 𝐴cba).

В общем случае, когда имеется 𝑛 индексов, сумма берется по всем 𝑛! перестановкам
и делится на 𝑛!. При этом четные перестановки индексов входят со знаком плюс, а
нечетные – со знаком минус.

Симметризация индексов обозначается круглыми скобками:

𝐴(ab) :=
1

2
(𝐴ab + 𝐴ba),

𝐴(abc) :=
1

6
(𝐴abc + 𝐴bca + 𝐴cab + 𝐴bac + 𝐴acb + 𝐴cba).

Символ Кронекера 𝛿ba является тождественным оператором, действующим в век-
торном пространстве, и равен единичной матрице. Для краткости, произведение сим-
волов Кронекера обозначается одним символом

𝛿ab...def...h := 𝛿ae𝛿
b
f . . . 𝛿

d
h. (1)

Евклидова метрика 𝛿ab имеет два нижних индекса и равна единичной матрице.
Например, в четырехмерном евклидовом пространстве R4

𝛿ab := diag (+ + ++) :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2)

Метрика Минковского в четырехмерном пространстве-времени R1,3 имеет вид

𝜂ab := diag (+−−−) :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3)



Глава 1

Предисловие

Вашему вниманию предлагается часть лекций “Геометрические методы в ма-
тематической физике”, которые автор читал в течении 2008-2018 годов в научно-
образовательном центре при МИАН им. В.А. Стеклова. Эти лекции посвящены ма-
тематическим основам общей теории относительности, которая является ярким при-
мером применения геометрических методов построения моделей математической фи-
зики.

Первые несколько глав посвящены некоторым аспектам дифференциальной гео-
метрии и механики, которые имеют прямое отношение к рассматриваемым вопросам.
Затем излагаются основы общей теории относительности. Из приложений рассмот-
рены только решение Шварцшильда и вселенная Фридмана. Это сделано потому что
автор поставил целью дать краткое упрощеннное введение в предмет исследования,
а не исчерпывающее изложение.

От читателя требуется достаточная математическая подготовка. Предполагает-
ся, что он знаком с основами дифференциальной геометрии и некоторых других
разделов математики (см., например, [1–5]). При подготовке монографии часто ис-
пользовались книги [6–20].

Курс, который автор читал в НОЦ, был бы невозможен без поддержки и критиче-
ских замечаний сотрудников Отдела математической физики МИАН им. В. А. Стек-
лова. Автор выражает искреннюю благодарность В. С. Владимирову , И. В. Во-
ловичу, А. К. Гущину, Ю. Н. Дрожжинову, В. В. Жаринову, Б. И. Завьялову ,
В. П. Михайлову и А. Г. Сергееву за многочисленные обсуждения вопросов диф-
ференциальной геометрии и математической физики.
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Глава 2

Многообразия и тензорные поля

Начнем с определения евклидова пространства.

Определение. Евклидовым пространством Rn называется прямое произведение 𝑛
вещественных прямых:

Rn := R× R× · · · × R︸ ︷︷ ︸
n

, (2.1)

где 𝑛 ∈ N – произвольное натуральное число, которое называется размерностью
пространства Rn. Точкой 𝑥 ∈ Rn является упорядоченный набор 𝑛 вещественных
чисел 𝑥α ∈ R, 𝛼 = 1, . . . , 𝑛, которые называются декартовыми координатами данной
точки. Мы записываем координаты точки в виде строки,

𝑥 = (𝑥α) = (𝑥1, . . . , 𝑥n) ∈ Rn.

Каждый из сомножителей, входящих в определение пространства Rn (2.1), назы-
вается координатной прямой, а точка с нулевыми координатами (0, . . . , 0) ∈ Rn –
началом координат.

Под 0-мерным пространством R0 понимают одну точку – число нуль. Одномерное
евклидово пространство представляет собой вещественную прямую: R1 = R. Двумер-
ное пространство R2 называется плоскостью.

Замечание. Номер координаты обозначается с помощью верхнего индекса так же,
как и показатель степени. Как правило, различие в значении индексов ясно из кон-
текста.

В определении пространства Rn точку и ее координаты можно отождествить.
Однако, определив таким образом Rn, мы можем затем перейти в другую систему
координат. Тогда той же точке пространства Rn будет соответствовать другой на-
бор вещественных чисел. Поэтому следует различать точку пространства Rn и ее
координаты, которые зависят от выбора системы координат.

Расстояние 𝑙, т.е. отображение 𝑙 : Rn × Rn → R, между двумя произвольными
точками 𝑝, 𝑞 ∈ Rn с декартовыми координатами 𝑝α и 𝑞α определяется следующей
формулой

𝑙(𝑝, 𝑞) := |𝑞 − 𝑝| :=
√

(𝑞1 − 𝑝1)2 + . . .+ (𝑞n − 𝑝n)2. (2.2)

Между двумя бесконечно близкими точками 𝑥α и 𝑥α + 𝑑𝑥α расстояние задается ин-
тервалом, который представляет симметричная квадратичная форма,

𝑑𝑠2 := 𝑙2(𝑥, 𝑥+ 𝑑𝑥) = 𝑑𝑥α𝑑𝑥β𝑔αβ, (2.3)
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где компоненты метрики 𝑔αβ в декартовой системе координат не зависят от точки
пространства Rn и представляют собой единичную матрицу, которую будем обозна-
чать следующим образом

𝑔αβ := 𝛿αβ = diag (1, . . . , 1︸ ︷︷ ︸
𝑛

) =: diag (+, . . . ,+︸ ︷︷ ︸
𝑛

). (2.4)

В формуле (2.3) и в дальнейшем по повторяющимся индексам, один из которых
пишется сверху, а другой – снизу, производится суммирование, если не оговорено
противное. Это правило называется правилом суммирования Эйнштейна. Матрица
(2.4) называется евклидовой метрикой и имеет специальное обозначение 𝛿αβ.

После того, как пространство Rn определено, в нем можно строить произвольные
криволинейные, например, сферические или цилиндрические системы координат в
зависимости от специфики той или иной задачи. В таких системах координат метрика
𝑔αβ(𝑥) в (2.3) будет зависеть от точки пространства Rn.

В дифференциальной геометрии роль индексов чрезвычайно важна. Поэтому от-
метим ряд общих правил, которые всюду используются в дальнейшем. Эти правила
связаны с группами преобразований, которые действуют на геометрические объекты.

1) Каждое слагаемое может содержать некоторый индекс один или два раза. В
первом случае он называется свободным, а во втором случае – немым.

2) Если некоторое выражение состоит из суммы нескольких слагаемых, то каж-
дое слагаемое должно содержать один и тот же набор свободных индексов.
При этом значения этих индексов во всех слагаемых должно фиксироваться
одновременно.

3) Немой индекс обязательно встречается один раз сверху и один раз снизу в
каждом слагаемом. Значение этого индекса в каждом слагаемом не может
быть зафиксировано, т.к. по нему проводится суммирование. В разных слага-
емых немые индексы можно обозначать различными буквами, а число их пар
может различаться.

Определение. Кривой 𝛾 = 𝑥(𝑡) =
(
𝑥α(𝑡)

)
в пространстве Rn называется отображе-

ние замкнутого единичного отрезка [0, 1] в пространство Rn,

𝛾 : [0, 1] ∋ 𝑡 ↦→ 𝑥(𝑡) =
(
𝑥α(𝑡)

)
∈ Rn, (2.5)

где 𝑡 – вещественный параметр вдоль кривой. Все функции 𝑥α(𝑡) предполагаются
достаточно гладкими. Говорят, что кривая соединяет две точки 𝑝 и 𝑞, где 𝑥(0) = 𝑝,
𝑥(1) = 𝑞. Если граничные точки кривой совпадают, 𝑝 = 𝑞, то кривая называется
замкнутой. Совокупность функций 𝑥̇α, где точка обозначает дифференцирование
по параметру 𝑡, определяет касательный вектор к кривой,

𝑋(γ) = (𝑋α
(γ) := 𝑥̇α),

который называется вектором скорости кривой. Кривая 𝛾 называется также путем,
при этом точка 𝑝 является началом, а 𝑞 – концом пути.

Кривая 𝛾 называется гладкой (дифференцируемой), если все координатные функ-
ции 𝑥α(𝑡) являются гладкими (дифференцируемыми). Мы предполагаем, что вектор
скорости дифференцируемой кривой отличен от нуля, т.е. отлична от нуля по край-
ней мере одна из компонент 𝑥̇α.

В общем случае кривая может иметь точки самопересечения.
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Единичный отрезок в определении кривой выбран для определенности. Выбор
другого замкнутого интервала соответствует перепараметризации кривой. Под этим
понимается замена параметра 𝑡 ↦→ 𝑡′ = 𝑡′(𝑡), где 𝑡′(𝑡) – произвольная достаточно
гладкая монотонная функция такая, что 𝑑𝑡′/𝑑𝑡 ̸= 0. При этом вектор скорости кривой
преобразуется по правилу дифференцирования сложных функций:

𝑋α
(γ) :=

𝑑𝑥α

𝑑𝑡
=
𝑑𝑥α

𝑑𝑡′
𝑑𝑡′

𝑑𝑡
.

Определение. Длиной дифференцируемой кривой 𝛾, соединяющей точки 𝑝 и 𝑞,
называется интеграл

𝑙(𝛾) :=

∫ q

p

𝑑𝑠 =

∫ 1

0

𝑑𝑡
√
𝑥̇α𝑥̇β𝑔αβ. (2.6)

В евклидовом пространстве Rn длину кривой 𝑠(𝑡) от начала 𝑝 до текущей точки
𝑥(𝑡) ∈ 𝛾 всегда можно выбрать в качестве параметра вдоль кривой. В этом случае
𝑠 называют каноническим параметром. Он однозначно определяется обыкновенным
дифференциальным уравнением

𝑑𝑠 = 𝑑𝑡
√
𝑥̇α𝑥̇β𝑔αβ = 𝑑𝑡

√
𝑋α

(γ)𝑋
β
(γ)𝑔αβ,

с начальным условием 𝑠(0) = 0.

Из формулы (2.6) следует, что определение длины кривой не зависит от выбора
ее параметризации. Ясно также, что длина кривой не зависит от выбора координат
в евклидовом пространстве.

Если кривая параметризована каноническим параметром 𝑠, то вектор скорости
𝑋α

(γ) = 𝑑𝑥α/𝑑𝑠 имеет единичную длину:

𝑋α
(γ)𝑋

β
(γ)𝑔αβ = 1.

В пространстве Rn, используя понятие расстояния (2.2), можно задавать различ-
ные подмножества, которые широко используются в дальнейшем и играют большую
роль в приложениях. Эти подмножества мы определим в декартовой системе коор-
динат.

Пример 2.0.1 (Шар). Подмножество Bnr (𝑝) ⊂ Rn, определяемое неравенством:

Bnr (𝑝) := {𝑥 ∈ Rn : |𝑥− 𝑝| < 𝑟}, 𝑟 = const > 0, (2.7)

называется 𝑛-мерным открытым шаром радиуса 𝑟 с центром в точке 𝑝. В одномерном
случае, 𝑛 = 1, шар называется интервалом1. При 𝑛 = 2 шар B2

r называется диском
или кругом.

Вложение Bnr →˓ R3 тривиально (точки шара и евклидова пространства просто
отождествляются), поэтому метрика на шаре, индуцированная этим вложением, сов-
падает с евклидовой.

Пример 2.0.2 (Сфера). Подмножество Sn−1
r (𝑝) ⊂ Rn, определяемое равенством:

Sn−1
r (𝑝) := {𝑥 ∈ Rn : |𝑥− 𝑝| = 𝑟}, 𝑟 = const > 0, (2.8)

1Этот термин употребляется в дифференциальной геометрии также для обозначения квадрата
расстояния между двумя бесконечно близкими точками (2.3)
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называется (𝑛 − 1)-мерной сферой радиуса 𝑟 с центром в точке 𝑝. При 𝑛 = 1 сфера
вырождается в две точки, являющиеся концами интервала (𝑝 − 𝑟, 𝑝 + 𝑟) ⊂ R. В
дальнейшем для сферы единичного радиуса нижний индекс мы будем опускать, Sn :=
Sn1 .

Поскольку сфера вложена в евклидово пространство, Sn−1 →˓ Rn, то на ней ин-
дуцируется нетривиальная метрика.

Отметим, что 𝑛−1 мерная сфера является краем 𝑛 мерного шара, Sn−1
r = 𝜕Bnr .

На евклидовом пространстве Rn можно задать различные математические струк-
туры. Его можно рассматривать как метрическое, топологическое, векторное (линей-
ное) или аффинное пространства. Естественная метрика в евклидовом пространстве
задается формулой(2.2). Эта метрика определяет в Rn естественную топологию. Ли-
нейная структура – это обычные правила сложения векторов и их умножение на
числа. Если евклидово пространство рассматривается как аффинное пространство,
до к линейной структуре добавляется еще операция сдвига точек на векторы. Мы
не будем подробно останавливаться на этих структурах, а перейдем к обобщению
понятия евклидова пространства, которое делается в дифференциальной геометрии.

Базовым понятием дифференциальной геометрии является дифференцируемое
многообразие M. Топологически нетривиальные многообразия не покрываются одной
системой координат, однако локально устроены так же, как и евклидовы простран-
ства без линейной структуры. Это позволяет использовать математический анализ
для построения и анализа многих важных моделей современной математической фи-
зики.

Определение. Топологическое хаусдорфово пространство M со счетной базой, каж-
дая точка которого имеет окрестность, гомеоморфную открытому 𝑛-мерному шару
единичного радиуса Bn1 в евклидовом пространстве Rn, называется 𝑛-мерным топо-
логическим многообразием. Число 𝑛 называется размерностью многообразия. Мы
пишем dimM = 𝑛.

Замечание. Выбор шаров единичного радиуса Bn1 сделан для определенности и не
является существенным, т.к. шар единичного радиуса можно заменить на произволь-
ную гомеоморфную ему область, в частности, на все евклидово пространство Rn.

Определение. Областью называется произвольное открытое подмножество в M,
гомеоморфное открытому шару в Rn, которое, следовательно, можно покрыть одной
системой координат. Окрестностью точки 𝑥 ∈ M называется произвольная область,
содержащая эту точку.

Окрестность произвольной точки многообразия M устроена так же, как и окрест-
ность точки в евклидовом пространстве Rn. Однако в отличие от евклидова простран-
ства, которое по определению может быть покрыто одной картой, многообразие в
общем случае одной картой не покрывается. Поэтому на многообразии общего вида
нельзя ввести структуру векторного или аффинного пространства.

Предложение 2.0.1. Многообразие представляет собой объединение конечного или
счетного числа областей, M =

⋃
iUi, каждая из которых гомеоморфна 𝑛-мерному

шару, и, следовательно, всему Rn.

Доказательство. Поскольку каждая точка имеет окрестность, гомеоморфную Rn,
то все многообразие можно покрыть, возможно, несчетным числом областей Ui. Вы-
берем счетную базу топологии на M, которая также является покрытием. Каждая
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координатная окрестность Ui является объединением счетного числа элементов ба-
зы и поэтому на каждом элементе базы задан гомеоморфизм в Rn. Теперь можно
выбрать базу топологии в качестве координатного покрытия, а она – счетна.

В приложениях рассматриваются, как правило, многообразия, которые покрыва-
ются конечным числом карт.

Согласно данному определению, многообразие, как объединение открытых мно-
жеств, не имеет границы, которую в случае многообразий принято называть краем.

Определение. Под 0-мерным многообразием мы будем понимать счетное множе-
ство точек с дискретной топологией. Одномерное и двумерное многообразия назы-
ваются, соответственно, кривой и поверхностью.

Данное выше определение задает топологическое многообразие, т.к. в нем гово-
рится только о непрерывности. Теперь перейдем к описанию дифференцируемых
многообразий.

Определение. Из определения многообразия следует, что существует гомеомор-
физм (биекция, непрерывная в обе стороны)

𝜙i : M ⊃ Ui → 𝜙i(Ui) ⊂ Rn,

области Ui на ее образ 𝜙i(Ui) (суммирования нет) в евклидовом пространстве Rn.
Поскольку в евклидовом пространстве есть система координат, например, декартова,
то данный гомеоморфизм можно записать в виде

𝜙i : M ⊃ Ui ∋ 𝑥 ↦→ 𝜙i(𝑥) = (𝑥1, . . . , 𝑥n) ∈ 𝜙i(Ui) ⊂ Rn,

где точку многообразия 𝑥 и ее координаты (𝑥1, . . . , 𝑥n) мы обозначили одной и той
же буквой. Области Ui, покрывающие многообразие, называются координатными
окрестностями, а набор чисел (𝑥1, . . . , 𝑥n) – локальными координатами. Пара (Ui, 𝜙i)
называется картой.

Если две карты пересекаются, Ui

⋂
Uj ̸= ∅, то произвольная точка из пересечения

𝑥 ∈ Ui

⋂
Uj имеет свой набор координат в каждой карте. Отображение областей

евклидова пространства,

𝑓ji := 𝜙j ∘ 𝜙−1
i : Rn ⊃ 𝜙i(Ui ∩ Uj) → 𝜙j(Ui ∩ Uj) ⊂ Rn,

задается набором 𝑛 функций 𝑥α
′
(𝑥) от 𝑛 переменных (2.77), где 𝑥α и 𝑥α

′ (𝛼, 𝛼′ =
1, . . . , 𝑛) – координаты, соответственно, на Ui и Uj. Они называются функциями
склейки, поскольку склеивают между собой различные карты. Совокупность всех
карт, покрывающих многообразие, M =

⋃
iUi, называется координатным покрыти-

ем или атласом {Ui, 𝜙i}, 𝑖 ∈ 𝐼 многообразия M. Атлас, который не содержится ни в
каком другом атласе, называется полным.

При проведении вычислений в одной карте точку многообразия 𝑥 ∈ M и ее ко-
ординаты 𝜙(𝑥) ∈ Rn можно отождествлять. Но всегда следует помнить, что точка
одна, а координат много.

Определение. Многообразие M вместе с полным атласом {Ui, 𝜙i} называется диф-
ференцируемым многообразием класса 𝒞k, 𝑘 ∈ N, если функции склейки (2.77) для
всех пересекающихся карт непрерывны вместе со своими частными производными
вплоть до 𝑘-того порядка: 𝑓ji := 𝜙j ∘𝜙−1

i ∈ 𝒞k(Rn) . Полный атлас {Ui, 𝜙i} называет-
ся дифференцируемой структурой многообразия M.
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Аналогично определяются гладкие 𝒞∞ и вещественно аналитические многообра-
зия 𝒞ω. На 𝒞ω-многообразиях функции склейки задаются сходящимися степенными
рядами. Напомним, что функции склейки имеют ненулевой якобиан и поэтому осу-
ществляют взаимно однозначное отображение областей в Rn. Это означает, что об-
ратное преобразование существует, и дифференцируемость обратных функций такая
же, как и самих функций склейки. В дальнейшем, если не оговорено противное, под
многообразием мы будем понимать 𝒞∞ дифференцируемые многообразия.

Отметим некоторые свойства функций склейки.

Предложение 2.0.2. Функции склейки удовлетворяют тождествам:

𝑓ij = 𝑓−1
ji , ∀ 𝑥 ∈ Ui ∩ Uj, (2.9)

𝑓ij𝑓jk𝑓ki = id , ∀ 𝑥 ∈ Ui ∩ Uj ∩ Uk, (2.10)

где id – тождественное отображение.

Доказательство. Прямая проверка.

Следствие. Справедливо тождество 𝑓ii = id .

Определение. Если связное многообразие покрыто совокупностью карт {Ui, 𝜙i} с
координатами 𝜙i(𝑥) = (𝑥αi ), причем якобианы функций перехода для всех пересека-
ющихся карт Ui и Uj положительны,

det

(
𝜕𝑥αi

𝜕𝑥βj

)
> 0, ∀𝑖, 𝑗

то многообразие называется ориентированным. Многообразие называется неориен-
тируемым, если атласа со всеми положительными якобианами функций склейки не
существует. При неудачно выбранном атласе на ориентируемом многообразии яко-
бианы могут быть разных знаков, однако атлас с положительными якобианами су-
ществует. Такие многообразия называются ориентируемыми.

Связное ориентируемое многообразие допускает в точности две ориентации. Что-
бы поменять ориентацию ориентированного многообразия достаточно заменить каж-
дую карту (Ui, 𝜙i) ориентированного атласа на карту (Ui, 𝜓i), где гомеоморфизм
𝜓i является композицией 𝜙i и отражения первой (или любой другой) координаты:
(𝑥1, 𝑥2, . . . , 𝑥n) ↦→ (−𝑥1, 𝑥2, . . . , 𝑥n).

Рассмотрим простейшие примеры многообразий.

Пример 2.0.3. Все евклидово пространство Rn является простейшим 𝑛-мерным
многообразием, которое можно покрыть одной картой (а можно и несколькими).
Дифференцируемая структура – это полный атлас, содержащий естественную кар-
ту
(
U = Rn, 𝜙 = id (Rn)

)
. При этом класс гладкости многообразия определяется

классом гладкости допустимых преобразований координат. Любое многообразие M,
dimM = 𝑛, которое покрывается одной картой, диффеоморфно Rn и называется
тривиальным.

Пример 2.0.4. Рассмотрим произвольное вещественное векторное пространство V,
dimV = 𝑛. Если в векторном пространстве выбран базис {𝑒a}, 𝑎 = 1, . . . , 𝑛, то каж-
дая точка векторного пространства задается упорядоченным набором вещественных
чисел (𝑥1, . . . , 𝑥n). Тогда его можно отождествить с евклидовым пространством Rn
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и рассматривать, как гладкое многообразие. Дифференцируемая структура в V не
зависит от выбора базиса, т.к. замена базиса задается невырожденной матрицей, и
соответствует преобразованию координат класса 𝒞∞. В дальнейшем мы всегда будем
считать, что все векторные пространства снабжены естественной дифференцируемой
структурой евклидова пространства.

Пример 2.0.5. Рассмотрим новый лист бумаги. Он является гладким двумерным
многообразием (поверхностью) с краем. Сомнём его. С внутренней точки зрения ни-
чего не изменилось, и он по-прежнему остался гладким многообразием. Появившиеся
на листе изломы, которые мы видим, свидетельствуют лишь о недифференцируемом
вложении листа в R3.

Пример 2.0.6. 𝑛-мерная сфера Snr →˓ Rn+1 радиуса 𝑟 с центром в начале координат,
вложенная в (𝑛+1)-мерное евклидово пространство, задается уравнением (2.8). Само
по себе это уравнение задает только множество точек в Rn+1, а никак не многооб-
разие. Зададим на нем топологию, сказав, что топология индуцирована вложением
Snr →˓ Rn+1. Пусть 𝑁 = (0, . . . , 0, 𝑟) и 𝑆 = (0, . . . , 0,−𝑟) – северный и южный полюс
сферы. Гладкая дифференцируемая структура на Snr – это полный атлас, содержащий
две карты: (Snr ∖𝑁,𝜙N) и (Snr ∖ 𝑆, 𝜙S), где 𝜙N и 𝜙S – стереографические проекции из
северного и южного полюса. Тогда сфера становится 𝑛-мерным компактным ориен-
тируемым многообразием. Это многообразие нетривиально и покрывается не менее,
чем двумя картами.

Пример 2.0.7. Тор Tn представляет собой прямое произведение 𝑛 окружностей,

Tn := S× S× · · · × S︸ ︷︷ ︸
n

,

и является 𝑛-мерным компактным ориентируемым многообразием.

Пример 2.0.8. Проективным пространством RPn над полем вещественных чисел
называется множество прямых евклидова пространства Rn+1, проходящих через на-
чало координат. Проективное пространство RPn представляет собой многообразие
размерности 𝑛. Его можно представлять себе как сферу Sn с отождествленными диа-
метрально противоположными точками. Действительно, любая прямая, проходящая
через начало координат, пересекает единичную сферу с центром в начале координат
ровно в двух диаметрально противоположных точках. Обратно, любая из этих двух
точек однозначно определяет прямую, проходящую через начало координат. Таким
образом

RPn ≈ Sn

Z2

,

где циклическая группа Z2 состоит из двух элементов {1,−1}. Проективное про-
странство RPn можно представить также в виде полусферы 𝑥 ∈ Sn, 𝑥n ≥ 0, у которой
отождествлены диаметрально противоположные краевые точки, т.е. точки (𝑛 − 1)-
мерной сферы

Sn−1 = {𝑥 ∈ Sn : 𝑥n = 0}.

Рассмотрим замкнутую кривую в проективном пространстве, проходящую через
одну из краевых точек. На рис. 2.1,a, для наглядности изображена проективная плос-
кость RP2 в трехмерном евклидовом пространстве и возможная кривая. Выберем ор-
тонормированный базис вдоль кривой, включающий единичный касательный вектор
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𝑒1. При прохождении через краевую точку 𝑝 касательный вектор 𝑒1 не меняет ориен-
тации относительно кривой, в то время как все остальные базисные векторы 𝑒2, 𝑒3, . . .
меняют направление. Это значит, что ориентация ортонормированного базиса при
прохождении вдоль этой замкнутой кривой изменится при четных 𝑛 и сохранится
при нечетных 𝑛. Если замкнутая кривая целиком лежит в верхней полусфере, то
ориентация базиса вдоль кривой сохраняется. Тем самым мы показали, что проек-
тивные пространства четного числа измерений неориентируемы, а нечетного числа
измерений – ориентируемы.

Рис. 2.1: Проективная плоскость RP2 как полусфера в R3. Показан замкнутый путь,
проходящий через граничную точку 𝑝, и перенос базиса вдоль пути (a). Две пересе-
кающиеся прямые не являются многообразием (b).

Пример 2.0.9. Продемонстрируем отличие топологического пространства от мно-
гообразия. Пусть множество точек на евклидовой плоскости состоит из двух пере-
секающихся прямых 𝑦2 − 𝑥2 = 0, изображенных на рис. 2.1,b. Пусть топология на
этих прямых индуцирована вложением. Тогда это множество представляет собой
связное хаусдорфово топологическое пространство. В то же время оно не является
многообразием, потому что окрестность точки пересечения прямых нельзя взаимно
однозначно отобразить на интервал вещественной прямой R.

В дальнейшем мы будем изучать различные свойства многообразий. Условимся
о терминологии. Будем говорить, что данное свойство выполняется на многообразии
M глобально, если оно выполнено во всех точках 𝑥 ∈ M. Гораздо чаще встречаются
свойства, которые выполнены только локально. А именно, для каждой точки 𝑥 ∈ M
существует координатная окрестность Ux ⊃ такая, что данное свойство выполнено на
Ux. В этом случае можно говорить, что данное свойство выполнено в фиксированной
системе координат. Конечно, любое свойство, выполненное глобально, справедливо
и локально, но не наоборот.

2.1 Векторные поля и 1-формы

Напомним, что вещественнозначной функцией 𝑓 на многообразии M, dimM = 𝑛,
называется отображение

𝑓 : M → R. (2.11)
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Это отображение часто, особенно в физических приложениях, называют скалярным
полем на M. По определению отображения (??) скалярное поле должно быть одно-
значно. Функция называется дифференцируемой класса 𝒞k, если отображение (2.11),
заданное в координатах,

𝑓 ∘ 𝜙−1
i : Rn ⊃ 𝜙i(Ui) ∋ 𝑥 ↦→ 𝑓(𝑥) ∈ R

𝑘 раз непрерывно дифференцируемо в каждой карте атласа {Ui, 𝜙i}. Конечно, не
имеет смысла говорить о степени гладкости функции, которая превышает степень
гладкости дифференцируемой структуры многообразия. Поэтому мы предполагаем,
что степень гладкости функции меньше или равна степени гладкости многообразия.

В двух областях Ui и Uj скалярное поле задается, соответственно, двумя функци-
ями 𝑓(𝑥) и 𝑓 ′(𝑥′) от 𝑛 переменных 𝑥 = (𝑥α) и 𝑥′ = (𝑥α

′
), 𝛼, 𝛼′ = 1, . . . , 𝑛. Если области

пересекаются, то в области пересечения согласно, (2.77), справедливо равенство

𝑓 ′
(
𝑥′(𝑥)

)
= 𝑓(𝑥), (2.12)

поскольку в каждой точке функция имеет только одно значение. Формулу (2.12)
можно интерпретировать, как правило преобразования функции при замене коорди-
нат 𝑥α ↦→ 𝑥α

′
(𝑥). Другими словами, значение функции после преобразования в точке

𝑥′ равно ее прежнему значению в точке 𝑥.
Теперь дадим локальное определение векторных полей и 1-форм, которое явля-

ется более наглядным. Рассмотрим многообразие M, dimM = 𝑛. Ограничим наше
рассмотрение двумя пересекающимися картами (Ui, 𝜙i) и (Uj, 𝜙j) с координатами 𝑥α
и 𝑥α

′ , соответственно. В области пересечения этих карт (или при преобразовании
координат 𝑥α → 𝑥α

′
(𝑥)) дифференциалы умножаются на матрицу Якоби

𝐽α
α′ :=

𝜕𝑥α
′

𝜕𝑥α
, (2.13)

а частные производные – на ее обратную:

𝑑𝑥α
′
= 𝑑𝑥α

𝜕𝑥α
′

𝜕𝑥α
, (2.14)

𝜕α′ =
𝜕𝑥α

𝜕𝑥α′
𝜕α. (2.15)

Матрицы преобразования дифференциалов и частных производных являются вза-
имно обратными по правилу дифференцирования сложных функций:

𝜕𝑥α

𝜕𝑥β
=
𝜕𝑥α

𝜕𝑥α′
𝜕𝑥α

′

𝜕𝑥β
= 𝛿αβ . (2.16)

Векторные поля и 1-формы на многообразии определяются, исходя из правила
преобразования дифференциалов и частных производных. А именно, 𝑛 достаточно
гладких функций 𝑋α(𝑥), заданных на карте (Ui, 𝜙i) и преобразующихся по правилу
(2.14),

𝑋α′ := 𝑋α𝜕𝑥
α′

𝜕𝑥α
, (2.17)

при преобразовании координат, называются компонентами векторного или контра-
вариантного векторного поля. Аналогично, 𝑛 достаточно гладких функций 𝐴α(𝑥),
преобразующихся по правилу (2.15),

𝐴α′ :=
𝜕𝑥α

𝜕𝑥α′
𝐴α. (2.18)
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называются компонентами ковекторного, или ковариантного векторного поля, или
1-формы. В общем случае (ко)векторное поле имеет 𝑛 независимых компонент. Каж-
дая из функций 𝑋α или 𝐴α является компонентой векторного или ковекторного поля
относительно координатных базисов 𝑒α := 𝜕α и 𝑒α := 𝑑𝑥α. Смысл обозначения коор-
динатных базисов частными производными и дифференциалами не случаен и будет
ясен из дальнейшего.

Пример 2.1.1. Если векторное поле имеет нулевые компоненты в одной системе
координат, то они равны нулю и во всех других системах. Нулевое векторное поле,
компоненты которого равны нулю во всех картах, называется тривиальным. Это
единственное векторное поле, компоненты которого инвариантны относительно пре-
образований координат. Аналогично определяется нулевая 1-форма.

Пример 2.1.2. Частные производные от произвольной функции 𝑓 ∘ 𝜙−1 на образе
𝜙(U) ⊂ Rn являются компонентами ковариантного векторного поля (𝜕α𝑓), которое
называется градиентом функции. Это ковекторное поле определено в произвольной
карте и имеет правильный закон преобразования (2.18).

Пример 2.1.3. Примером векторного поля на кривой 𝛾 =
(
𝑥α(𝑡)

)
∈ M является

вектор скорости (2.5). Действительно, при преобразовании координат компоненты
вектора скорости 𝑥̇α преобразуются, как дифференциалы. При этом вектор скорости
рассматривается в точке кривой 𝛾 ∈ M. В то же время сами координатные функции
𝑥α(𝑡) определены на отрезке 𝑡 ∈ [0, 1], а не на многообразии и векторного поля не
образуют. Векторное поле скорости называется также касательным векторным полем
к кривой 𝛾.

Преобразования векторных полей (2.17) и 1-форм (2.18) различны, поэтому кон-
травариантные и ковариантные индексы необходимо различать и они всегда будут
писаться, соответственно, сверху и снизу.

Из закона преобразования частных производных (2.15) и дифференциалов (2.14)
следует, что суммы

𝑋 = 𝑋α𝜕α = 𝑋α𝑒α, (2.19)
𝐴 = 𝑑𝑥α𝐴α = 𝑒α𝐴α (2.20)

инвариантны относительно преобразований координат. Эти формулы представляют
собой разложения векторов и 1-форм по координатному базису.

Теперь дадим глобальные определения.

Определение. Множество всех касательных векторов 𝑋p в точке 𝑝 называется ка-
сательным пространством к многообразию в точке 𝑝 и обозначается Tp(M). Объ-
единение всех касательных пространств

T(M) :=
⋃
p∈M

Tp(M). (2.21)

называется касательным расслоением с базой M и естественной проекцией 𝜋 : T(M) →
M, которая задана отображением (𝑝,𝑋p) ↦→ 𝑝. Слоем касательного расслоения в точ-
ке 𝑝 является касательное пространство 𝜋−1(𝑝) = Tp(M). Векторным полем 𝑋(𝑥) на
многообразии M называется сечение касательного расслоения T(M), т.е. отображение

𝑋 : M ∋ 𝑥 ↦→ 𝑋(𝑥) ∈ T(M)

такое, что 𝜋
(
𝑋(𝑥)

)
= 𝑥. Множество всех гладких векторных полей на многообразии

M обозначим 𝒳 (M).
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Напомним, что сечением расслоения называется такое отображение

𝜎 : M → T(M),

что 𝜋 ∘ 𝜎 = id .
Типичным слоем касательного расслоения T(M)

π−→ M является евклидово про-
странство Rn, на котором введена структура векторного пространства.

Касательное расслоение является многообразием размерности 2𝑛.
Теперь нетрудно дать глобальное определение ковариантных векторных полей.

Определение. Множество линейных функционалов на касательном пространстве
Tp(M) в точке 𝑝 ∈ M называется кокасательным векторным пространством и обо-
значается T∗p(M). Объединение всех кокасательных пространств

T∗(M) :=
⋃
p∈M

T∗p(M). (2.22)

называется кокасательным расслоением с базой M и естественной проекцией 𝜋 :
T∗(M) → M. Слоем кокасательного расслоения в точке 𝑝 является кокасательное
пространство 𝜋−1(𝑝) = T∗p(M). Кокасательным векторным полем или 1-формой 𝐴(𝑥)
на многообразии M называется сечение кокасательного расслоения T∗(M)

𝐴 : M ∋ 𝑥 ↦→ 𝐴(𝑥) ∈ T∗(M), 𝜋
(
𝐴(𝑥)

)
= 𝑥.

Эквивалентно, кокасательным векторным полем называется линейное отображение
множества векторных полей

𝐴 : 𝒳 (M) ∋ 𝑋 ↦→ 𝐴(𝑋) ∈ 𝒞∞(M).

Множество всех гладких 1-форм на многообразии M обозначим Λ1(M).

В координатах ковекторное поле задается набором 𝑛 компонент 𝐴α(𝑥), которые
при преобразовании координат преобразуются по правилу (2.18). Тогда линейное
отображение задается простым суммированием компонент:

𝐴(𝑋) = 𝑋α𝐴α.

2.1.1 Векторные поля и дифференцирования

Зафиксируем произвольную точку 𝑝 ∈ M и рассмотрим некоторую координатную
окрестность этой точки (U, 𝜙). С каждым векторным полем 𝑋 ∈ 𝒳 (U) естествен-
ным образом связывается оператор дифференцирования в алгебре гладких функций
𝒞∞(U). Его действие на функцию в произвольной карте определяется формулой

𝒞∞(U) ∋ 𝑓 ↦→ 𝑋𝑓 := 𝑋α𝜕α𝑓 ∈ 𝒞∞(U) (2.23)

и представляет собой дифференцирование вдоль векторного поля. Это дифференци-
рование не зависит от выбора карты, т.к. запись (2.23) инвариантна относительно
преобразований координат, и удовлетворяет свойствам:

1) 𝑋(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑋𝑓 + 𝑏𝑋𝑔 – линейность,
2) 𝑋(𝑓𝑔) = (𝑋𝑓)𝑔 + 𝑓(𝑋𝑔) – правило Лейбница,

для всех 𝑎, 𝑏 ∈ R и 𝑓, 𝑔 ∈ 𝒞∞(U).
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Определение. Координатным базисом векторных полей 𝒳 (U) на карте (U, 𝜙) мно-
гообразия M называется набор гладких векторных полей{

𝑒α(𝑥) :=

(
𝜕

𝜕𝑥α

)
x

}
∈ 𝒳 (U), 𝛼 = 1, . . . , 𝑛,

таких, что выполнено равенство(
𝜕

𝜕𝑥α

)
p

𝑓(𝑝) := 𝜕α(𝑓 ∘ 𝜙−1)
∣∣
ϕ(p)

, 𝛼 = 1, . . . , 𝑛. (2.24)

Подчеркнем, что символ
(

∂
∂xα

)
p

не является частной производной, т.к. определен
в точке многообразия 𝑝 ∈ M, а не евклидова пространства Rn. Дуальный базис
{𝑒α(𝑥)} ∈ Λ1(U), 𝑒α(𝑒β) = 𝛿αβ , называется координатным базисом ковекторных по-
лей (1-форм). Координатный базис для ковекторных полей обозначается 𝑑𝑥αp или
просто 𝑑𝑥α.

Замечание. Подчеркнем, что координатный базис – это не набор частных произ-
водных, а векторные поля на многообразии. Их действие как дифференцирований
определено только для достаточно гладких функций 𝒞k(U). Действие векторных по-
лей 𝑒α(𝑥) на тензоры более высокого ранга не определено.

В дальнейшем мы будем писать сокращенно 𝑋 = 𝑋α(𝑥)𝜕α, имея в виду, что
на функции 𝑓 ∘ 𝜙−1 в евклидовом пространстве координатный базис действительно
действует, как частная производная. Для 1-форм в координатном базисе мы часто
будем использовать общепринятую сокращенную запись 𝐴 = 𝑑𝑥α𝐴α, 𝑒α := 𝑑𝑥α.

2.1.2 Векторные поля и интегральные кривые

Определение. Рассмотрим кривую 𝛾 =
(
𝑥α(𝑡)

)
, определяемую системой обыкно-

венных дифференциальных уравнений

𝑑𝑥α

𝑑𝑡
= 𝑋α(𝑥), (2.25)

с начальными условиями
𝑥α
∣∣
t=tp

= 𝑥αp , (2.26)

где 𝑡p – значение параметра вдоль кривой, при котором она проходит через точку
𝑝. Решение этой задачи Коши называется интегральной кривой векторного поля 𝑋,
проходящей через точку 𝑝 ∈ M.

Из существования и единственности решения задачи Коши для системы диффе-
ренциальных уравнений (2.25) (см., например, [?], § 31) вытекает

Теорема 2.1.1. Если векторное поле 𝑋 на многообразии M дифференцируемо, то
через каждую точку 𝑝 ∈ M проходит одна и только одна интегральная кривая
этого векторного поля.

Если решение системы уравнений (2.25) представимо в виде ряда, то вблизи точки
𝑝 оно выглядит очень просто

𝑥α(𝑡) = 𝑥αp +𝑋α
p (𝑡− 𝑡p) + . . . , |𝑡− 𝑡p| ≪ 1.
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То есть компоненты векторного поля определяют главную линейную часть инте-
гральной кривой.

Вообще говоря, параметр 𝑡 в общем случае определен лишь на некотором конеч-
ном или полубесконечном интервале (𝑎, 𝑏) ⊂ R даже для гладких векторных полей,
заданных на всем многообразии.

Определение. Векторное поле 𝑋 ∈ 𝒳 (M) называется полным, если все интеграль-
ные кривые этого поля определены при всех значениях 𝑡 ∈ R.

Ранее мы показали, что всюду отличное от нуля дифференцируемое векторное по-
ле, заданное на многообразии M, определяет семейство интегральных кривых, прохо-
дящих через каждую точку M, причем через каждую точку проходит единственная
кривая.

Определение. Пусть 𝑠(𝑡, 𝑝) – интегральная кривая векторного поля 𝑋 ∈ 𝒳 (M),
проходящая через точку 𝑝: 𝑠(0, 𝑝) = 𝑝. Будем считать, что векторное поле полно.
Тогда отображение

𝑠 : R×M ∋ 𝑡, 𝑝 ↦→ 𝑠(𝑡, 𝑝) ∈ M, (2.27)

генерируемое векторным полем 𝑋, называется потоком векторного поля.

Предложение 2.1.1. Отображение (2.27) удовлетворяет тождеству

𝑠
(
𝑡1, 𝑠(𝑡2, 𝑝)

)
= 𝑠(𝑡1 + 𝑡2, 𝑝), (2.28)

для всех значений 𝑡1, 𝑡2 ∈ R, для которых формула (2.28) имеет смысл.

Доказательство. Предложение следует из единственности решения системы диффе-
ренциальных уравнений. Действительно, в произвольной карте выполнено равенство

𝑑

𝑑𝑡1
𝑠α
(
𝑡1, 𝑠(𝑡2, 𝑝)

)
= 𝑋α

(
𝑠(𝑡2, 𝑝)

)
𝑠
(
0, 𝑠(𝑡2, 𝑝)

)
= 𝑠(𝑡2, 𝑝).

С другой стороны

𝑑

𝑑𝑡1
𝑠α(𝑡1 + 𝑡2, 𝑝) =

𝑑

𝑑(𝑡1 + 𝑡2)
𝑠α(𝑡1 + 𝑡2, 𝑝) = 𝑋α

(
𝑠(𝑡1 + 𝑡2, 𝑝)

)
,

𝑠(0 + 𝑡2, 𝑝) = 𝑠(𝑡2, 𝑝).

Тем самым и правая, и левая часть равенства (2.28) удовлетворяют одной и той же
системы уравнений с одинаковыми начальными условиями.

Замечание. Поток векторного поля можно представлять себе, как стационарный
поток жидкости. В этом случае параметр 𝑡 является временем, а 𝑋 – векторным
полем скорости частиц жидкости.

Предложение 2.1.2. Если дифференцируемое векторное поле 𝑋 обращается в нуль
в некоторой точке многообразия 𝑝 ∈ M, то эта точка является неподвижной от-
носительно потока векторного поля, т.е. 𝑥(𝑡) = 𝑝 для всех 𝑡 ∈ R. Обратно. Если
точка 𝑝 ∈ M является неподвижной на интегральной кривой некоторого вектор-
ного поля, то в этой точке векторное поле обращается в нуль, 𝑋(𝑝) = 0.
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Доказательство. Постоянные функции 𝑥α(𝑡) = 𝑥αp удовлетворяют системе уравне-
ний (2.25), если 𝑋α

p = 0. Обратное утверждение очевидно.

Пример 2.1.4. Рассмотрим гладкое векторное поле 𝐾 = −𝑦𝜕x + 𝑥𝜕y на евклидовой
плоскости R2. Нетрудно проверить, что поток этого векторного поля имеет вид

𝑠 : R× R2 ∋ 𝑡× (𝑥, 𝑦) ↦→ (𝑥 cos 𝑡− 𝑦 sin 𝑡, 𝑥 sin 𝑡+ 𝑦 cos 𝑡) ∈ R2.

Интегральная кривая, проходящая через точку (𝑥, 𝑦), представляет собой окруж-
ность с центром в начале координат. В начале координат векторное поле обращается
в нуль, и интегральная кривая вырождается в точку.

Векторное поле 𝐾 является ничем иным, как векторным полем Киллинга дву-
мерных вращений евклидовой плоскости и принимает особо простой вид в полярных
координатах, 𝐾 = 𝜕ϕ. Интегральные кривые поля 𝐾 являются в данном случае
траекториями Киллинга. Поток векторного поля на R2 определяется независимо от
наличия метрики. Однако интерпретация векторного поля 𝐾, как поля Киллинга
уже связана с наличием на плоскости евклидовой метрики.

Пример 2.1.5. Рассмотрим гладкое векторное поле 𝐾 = 𝑦𝜕x+ 𝑥𝜕y на плоскости R2.
Поток этого векторного поля имеет вид

𝑠 : R× R2 ∋ 𝑡× (𝑥, 𝑦) ↦→ (𝑥 ch 𝑡+ 𝑦 sh 𝑡, 𝑥 sh 𝑡+ 𝑦 ch 𝑡) ∈ R2.

Интегральная кривая, проходящая через точку (𝑥, 𝑦), является ветвью гиперболы
𝑥2 − 𝑦2 = const с центром в начале координат. При 𝑦 = ±𝑥 гиперболы вырождаются
в прямые линии, проходящие через начало координат под углом ±𝜋/4.

Векторное поле 𝐾 является векторным полем Киллинга для метрики Лоренца,
заданной на плоскости R2, а интегральные кривые – траекториями Киллинга.

Определение. При фиксированном значении параметра 𝑡 поток 𝑠(𝑡, 𝑥) представляет
собой диффеоморфизм, обозначаемый также

𝑠t : M → M.

Из предложения 2.1.1 следует, что он представляет собой абелеву группу:
1) 𝑠t1𝑠t2 = 𝑠t1+t2 ;
2) 𝑠0 – единичный элемент;
3) 𝑠−1

t = 𝑠−t – обратный элемент.
Эта группа называется однопараметрической группой преобразований, генерируемой
векторным полем 𝑋. Действительно, из системы уравнений (2.25) следует, что при
малых значениях параметра поток имеет вид

𝑠ε : 𝑥α ↦→ 𝑥α + 𝜖𝑋α.

То есть векторное поле 𝑋 является генератором бесконечно малых преобразований
многообразия M.

Выше было показано, что любое полное векторное поле генерирует единствен-
ную однопараметрическую группу преобразований. Верно и обратное утверждение:
любая однопараметрическая группа 𝑠α(𝑡, 𝑥) определяет векторное поле. Для этого
достаточно положить

𝑋α :=
𝑑𝑠α

𝑑𝑡

∣∣∣∣
t=0

.

Если векторное поле 𝑋(M) является неполным, то понятие потока и однопара-
метрической группы преобразований можно ввести только локально (см., например,
[?].)
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2.1.3 Алгебра Ли векторных полей

Определение. Последовательное применение двух дифференцирований (вектор-
ных полей) 𝑋 и 𝑌 к некоторой функции 𝑓 снова дает функцию из 𝒞∞(M). Опре-
делим композицию двух дифференцирований 𝑋 ∘ 𝑌 формулой (𝑋 ∘ 𝑌 )𝑓 := 𝑋(𝑌 𝑓).
Отображение (𝑋 ∘ 𝑌 ) является линейным, однако правило Лейбница для него не
выполнено:

(𝑋 ∘ 𝑌 )𝑓𝑔 = 𝑋𝑓𝑌 𝑔 + 𝑓𝑋(𝑌 𝑔) +𝑋𝑔𝑌 𝑓 + 𝑔𝑋(𝑌 𝑓) ̸= 𝑓(𝑋 ∘ 𝑌 )𝑔 + 𝑔(𝑋 ∘ 𝑌 )𝑓.

Это означает, что композиция векторных полей 𝑋 ∘𝑌 не является векторным полем.
По другому, отображение 𝑋 ∘ 𝑌 в координатах содержит не только первые, но и
вторые производные. Рассмотрим композицию этих дифференцирований в другом
порядке,

(𝑌 ∘𝑋)𝑓𝑔 = 𝑌 𝑓𝑋𝑔 + 𝑓𝑌 (𝑋𝑔) + 𝑌 𝑔𝑋𝑓 + 𝑔𝑌 (𝑋𝑓).

Нетрудно проверить, что разность 𝑌 ∘𝑋 − 𝑌 ∘𝑋 удовлетворяет правилу Лейбница

(𝑋 ∘ 𝑌 − 𝑌 ∘𝑋)𝑓𝑔 = 𝑓(𝑋 ∘ 𝑌 − 𝑌 ∘𝑋)𝑔 + 𝑔(𝑋 ∘ 𝑌 − 𝑌 ∘𝑋)𝑓,

т.е. является векторным полем. Эта разность называется коммутатором векторных
полей или скобкой Ли и обозначатся

[𝑋, 𝑌 ] := 𝑋 ∘ 𝑌 − 𝑌 ∘𝑋.

Из определения следует, что коммутатор двух векторных полей антисимметричен,

[𝑋, 𝑌 ] = − [𝑌,𝑋] , (2.29)

и коммутаторы трех произвольных векторных полей удовлетворяют тождеству
Якоби [

[𝑋, 𝑌 ], 𝑍
]
+
[
[𝑌, 𝑍], 𝑋

]
+
[
[𝑍,𝑋], 𝑌

]
= 0, (2.30)

где слагаемые отличаются циклической перестановкой.
Рассмотрим векторные поля в произвольной карте 𝑋 = 𝑋α𝜕α, 𝑌 = 𝑌 α𝜕α. Тогда

коммутатор дает новое векторное поле

𝑍 := [𝑋, 𝑌 ] = (𝑋β𝜕β𝑌
α − 𝑌 β𝜕β𝑋

α)𝜕α. (2.31)

Используя закон преобразования компонент векторных полей (2.17), нетрудно про-
верить, что выражение в правой части инвариантно относительно преобразования
координат.

Коммутатор (2.31) билинеен:

[𝑎𝑋 + 𝑏𝑌, 𝑍] = 𝑎[𝑋,𝑍] + 𝑏[𝑌, 𝑍].

[𝑋, 𝑎𝑌 + 𝑏𝑍] = 𝑎[𝑋, 𝑌 ] + 𝑏[𝑋,𝑍],

где 𝑎, 𝑏 ∈ R.

Определение. Множество векторных полей с операциями сложения, коммутирова-
ния и умножения на вещественные числа образует алгебру Ли над полем веществен-
ных чисел. Эта алгебра бесконечномерна и также обозначается 𝒳 (M).
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2.2 Тензорные поля
Рассмотрим многообразие M, dimM = 𝑛. В каждой точке 𝑥 ∈ M у нас есть два
𝑛-мерных векторных пространства: касательное Tx(M) и кокасательное T∗x(M) про-
странства. Рассмотрим их тензорное произведение

Trs,x(M) := Tx(M)⊗ . . .⊗ Tx(M)︸ ︷︷ ︸
r

⊗T∗x(M)⊗ . . .⊗ T∗x(M)︸ ︷︷ ︸
s

, (2.32)

где мы взяли 𝑟 экземпляров касательного и 𝑠 экземпляров кокасательного простран-
ства. Для определенности мы фиксировали порядок сомножителей. Таким образом
в каждой точке многообразия мы построили векторное пространство размерности
dimTrs,x(M) = 𝑛r+s.

Определение. Объединение

Trs(M) :=
⋃
x∈M

Trs,x(M),

взятое по всем точкам многообразия, называется расслоением тензоров типа (𝑟, 𝑠)
на многообразии M. Сечение этого расслоения 𝑇 rs (𝑥) называется тензорным полем
типа (𝑟, 𝑠) или 𝑟 раз контравариантным и 𝑠 раз ковариантным тензорным полем
на многообразии M. Число 𝑟 + 𝑠 называется рангом тензорного поля.

Базой этого расслоения является многообразие M, типичным слоем – векторное
пространство

Rn ⊗ . . .⊗ Rn︸ ︷︷ ︸
r

⊗Rn ⊗ . . .⊗ Rn︸ ︷︷ ︸
s

,

где Rn – типичный слой касательного расслоения. Слоем над 𝑥 ∈ M является век-
торное пространство (2.32) (тем самым мы определили проекцию).

Координатные базисы в касательном и кокасательном пространствах, 𝑒α = 𝜕α и
𝑒α = 𝑑𝑥α, индуцируют координатный базис в тензорном произведении, который мы
обозначим

𝑒α1 ⊗ . . .⊗ 𝑒αr ⊗ 𝑒β1 ⊗ · · · ⊗ 𝑒βs . (2.33)

Напомним, что тензорное произведение векторов не является коммутативным,

𝑒α ⊗ 𝑒β ̸= 𝑒β ⊗ 𝑒α,

поэтому порядок следования базисных векторов в произведении (2.33) фиксирован:
сначала мы пишем базисные векторы касательного, а затем кокасательного простран-
ства.

Рассмотрим произвольную карту (U, 𝜙) на многообразии. Тогда тензорное поле
типа (𝑟, 𝑠) в координатах имеет вид

𝑇 rs (𝑥) = 𝑇β1...βs
α1...αr(𝑥) 𝑒α1 ⊗ . . .⊗ 𝑒αr ⊗ 𝑒β1 ⊗ . . .⊗ 𝑒βs . (2.34)

Нижние и верхние индексы называют, соответственно, ковариантными и контрава-
риантными. Общее число индексов 𝑟 + 𝑠 равно рангу тензорного поля.

Замечание. Для определенности, у компонент 𝑇β1...βs
α1...αr(𝑥) мы сначала выписа-

ли все ковариантные индексы, а затем – все контравариантные. Порядок индексов
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зафиксирован порядком сомножителей в правой части (2.32) и принятом нами со-
глашением для записи тензорного поля типа (1, 1):

𝑑𝑥β𝑇β
α𝜕α.

Контравариантные индексы так же, как и ковариантные, упорядочены между собой.

Набор функций 𝑋β1...βs
α1...αr(𝑥) с 𝑟 верхними и 𝑠 нижними индексами называется

компонентами тензорного поля типа (𝑟, 𝑠) в карте (U, 𝜙). Тензорное поле называется
гладким, если все компоненты – гладкие функции. При преобразованиях координат
каждый контравариантный индекс умножается на матрицу Якоби (2.13) так же, как
и компоненты вектора, а каждый ковариантный индекс – на обратную матрицу Яко-
би так же, как и 1-форма.

Пример 2.2.1. Компоненты тензорного поля типа (1,1) при преобразовании коор-
динат 𝑥α ↦→ 𝑥α

′
(𝑥) преобразуются по правилу:

𝑋β′
α′ =

𝜕𝑥β

𝜕𝑥β′
𝑋β

α𝜕𝑥
α′

𝜕𝑥α
. (2.35)

Аналогично преобразуются компоненты тензорных полей произвольного типа.

В дальнейшем, для краткости, тензорные поля мы часто будем называть просто
тензорами.

Очевидно, что, если все компоненты тензорного поля равны нулю в какой то
одной системе координат, то они равны нулю во всех остальных системах отсчета.
У нетривиальных тензоров хотя бы одна компонента должна быть отлична от нуля.
В общем случае у тензора типа (𝑟, 𝑠) на многообразии размерности 𝑛 имеется 𝑛r+s

независимых компонент в каждой точке.
Обозначим множество гладких тензорных полей типа (𝑟, 𝑠) символом 𝒯 r

s (M). При
этом 𝒯 0

0 (M) = 𝒞∞(M), 𝒯 1
0 = 𝒳 (M) и 𝒯 0

1 = Λ1(M). В дальнейшем индекс 0 у множеств
тензорных полей, имеющих только контравариантные или ковариантные индексы,
писаться не будет: 𝒯 r

0 (M) = 𝒯 r(M) и 𝒯 0
s (M) = 𝒯s(M).

На множестве тензоров введем операцию свертки следующим образом. Пусть за-
дано задано тензорное поле 𝐾 ∈ 𝒯 r

s (M), тогда компоненты свернутого тензора имеют
вид

𝐾β1···βj−1γβj+1···βs
α1···αi−1γαi+1···αr = 𝛿βjαi𝐾β1···βs

α1···αr ,

где произведена свертка (суммирование) по одному верхнему и одному нижнему
индексу.

Пример 2.2.2. Тензору типа (1, 1) ставится в соответствие скалярное поле tr𝐾 =
𝐾α

α, которое называется следом тензора 𝐾 = 𝐾β
α𝑒α ⊗ 𝑒β.

Пример 2.2.3. Значением 1-формы 𝐴 = 𝑑𝑥α𝐴α на векторном поле 𝑋 = 𝑋α𝜕α явля-
ется свертка тензорного произведения 𝐴⊗𝑋: (𝐴,𝑋) := 𝐴(𝑋) = 𝑋α𝐴α.

Если тензор имеет два или более индексов одного типа, то с помощью симмет-
ризации или антисимметризации по верхним или нижним индексам можно строить
новые тензорные поля. Поскольку преобразование координат действует одинаково
на каждый ковариантный и контравариантный индекс, то симметризация и анти-
симметризация индексов является инвариантной операцией и свойство симметрии
по индексам сохраняется при преобразовании координат.
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Определение. Тензорное поле называется неприводимым, если нельзя найти такие
линейные комбинации его компонент с постоянными коэффициентами, которые сами
образовывали бы тензор.

Пример 2.2.4. Скалярные, векторные поля и 1-формы являются неприводимыми
тензорными полями.

Пример 2.2.5. Ковариантные или контравариантные тензорные поля второго ранга
приводимы, т.к. их компоненты можно разложить на симметричную и антисиммет-
ричную неприводимую части:

𝑋αβ = 𝑋(αβ) +𝑋[αβ], (2.36)

где
𝑋(αβ) :=

1

2
(𝑋αβ +𝑋βα), 𝑋[αβ] :=

1

2
(𝑋αβ −𝑋βα).

Пример 2.2.6. Тензорное поле 𝑋α
β типа (1,1) также приводимо, поскольку у него

можно выделить след tr𝑋 и бесследовую часть 𝑌αβ (𝑌α
α = 0):

𝑋α
β = 𝑌α

β +
1

𝑛
𝛿βα tr𝑋, (2.37)

где
tr𝑋 := 𝑋α

α, 𝑌α
β := 𝑋α

β − 1

𝑛
𝛿βα tr𝑋.

Тензорные поля ранга три и выше, в общем случае, приводимы. Если на многооб-
разии не задано никаких других объектов, кроме тензорного поля, то разложение на
неприводимые компоненты может осуществляться только с помощью взятия следа,
симметризации или антисимметризации по индексам.

Пример 2.2.7. Символ Кронекера, компоненты которого в каждой карте многооб-
разия M составляют 𝑛-мерную единичную матрицу,

𝛿αβ =

{
1, 𝛼 = 𝛽,
0, 𝛼 ̸= 𝛽,

(2.38)

и имеют один верхний и один нижний индекс, определяет тензорное поле типа (1, 1).
Он инвариантен относительно преобразований координат

𝛿α
′

β′ =
𝜕𝑥β

𝜕𝑥β′
𝛿αβ
𝜕𝑥α

′

𝜕𝑥α
=
𝜕𝑥β

𝜕𝑥β′
𝜕𝑥α

′

𝜕𝑥β
=

{
1, 𝛼′ = 𝛽′,

0, 𝛼′ ̸= 𝛽′,

т.к. верхний и нижний индексы преобразуется с помощью взаимно обратных матриц.
Символ Кронекера представляет собой исключение в двух отношениях. Во-первых,
он инвариантен относительно преобразований координат и, во-вторых, его индексы
можно писать один под другим, поскольку подъем и опускание индексов с помощью
метрики приводит к симметричным тензорам.

На многообразии M можно также определить тензорные плотности степени 𝑝 ∈
Z и ранга (𝑟, 𝑠), если при преобразовании координат все их компоненты умножить
на якобиан преобразования в степени 𝑝. Например, тензорная плотность типа (1, 1)
и степени 𝑝 преобразуется по правилу

𝑋α′
β′ = 𝐽p

𝜕𝑥α

𝜕𝑥α′
𝑋α

β 𝜕𝑥
β′

𝜕𝑥β
, 𝐽 := det 𝐽α

α′ . (2.39)

В каждой точке многообразия тензорные плотности фиксированного типа и степени
образуют векторное пространство над полем вещественных чисел.
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2.3 Полностью антисимметричные тензоры

В настоящем разделе мы рассмотрим полностью антисимметричные тензоры, ко-
торые играют очень важную роль в различных приложениях дифференциальной
геометрии.

Определение. Рассмотрим тензорные поля типа (𝑟, 0) или (0, 𝑟) при 𝑟 ≤ 𝑛 на много-
образии M, dimM = 𝑛, компоненты которых антисимметричны относительно пере-
становки любой пары индексов. В инвариантном виде условие антисимметричности
для ковариантных тензоров записывается в виде:

𝑇 (𝑋1, . . . , 𝑋i, . . . , 𝑋j, . . . , 𝑋r) = −𝑇 (𝑋1, . . . , 𝑋j, . . . , 𝑋i, . . . , 𝑋r), 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,

где 𝑇 ∈ 𝒯r(M), 𝑋1, . . . , 𝑋r ∈ 𝒳 (M). Эти тензоры неприводимы и называются полно-
стью антисимметричными ковариантными тензорами ранга 𝑟.

Компонента полностью антисимметричного тензорного поля может быть отлична
от нуля только в том случае, если все индексы различны, поскольку при совпадении
двух или более индексов соответствующая компонента равна нулю. На многообразии
размерности 𝑛 не существует полностью антисимметричного тензора ранга большего,
чем размерность многообразия, т.к. в этом случае по крайней мере два индекса будут
совпадать.

Полностью антисимметричный тензор 𝑋α1...αn максимального ранга 𝑛 имеет толь-
ко одну независимую компоненту. Нетрудно проверить, что при преобразовании ко-
ординат 𝑥 ↦→ 𝑦(𝑥) полностью антисимметричный тензор типа (0, 𝑛) преобразуется по
закону

𝑋 ′α1...αn
=
𝜕𝑥[β1

𝜕𝑦α1
. . .

𝜕𝑥βn]

𝜕𝑦αn
𝑋β1...βn = 𝑋α1...αn𝐽

−1, (2.40)

где 𝐽 := det (𝜕𝑦α/𝜕𝑥β) – якобиан преобразования координат. То есть каждая компо-
нента полностью антисимметричного ковариантного тензора максимального ранга
умножается на якобиан преобразования в минус первой степени, и ее фиксирован-
ную компоненту можно рассматривать как скалярную плотность степени −1.

В каждой карте (U, 𝜙) можно построить полностью антисимметричный объект,
компоненты которого равны по модулю единице:

𝜀α1...αn := sgn𝜎(𝛼1 . . . 𝛼n), 𝜀1...n = 1, (2.41)

где sgn𝜎 – знак перестановки 𝜎, который равен +1 или −1, если для получения
последовательности индексов 𝛼1, . . . , 𝛼n из последовательности натуральных чисел
1, . . . , 𝑛 необходимо переставить, соответственно, четное и нечетное число пар индек-
сов. Если многообразие M ориентируемо, и все якобианы преобразования координат
положительны, то формула (2.41) определяет 𝜀α1...αn глобально. На неориентируемых
многообразиях глобальное определение невозможно. Объект 𝜀α1...αn не может быть
тензором, т.к. в общем случае якобиан преобразования 𝐽 отличен от единицы. Из
закона преобразования тензорных плотностей (2.39) следует, что каждую фиксиро-
ванную компоненту 𝜀α1...αn можно рассматривать, как скалярную тензорную плот-
ность степени −1. Поскольку компоненты антисимметричной тензорной плотности
постоянны, то в произвольной системе координат справедливо равенство

𝜕α𝜀α1...αn = 0. (2.42)
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В (псевдо)римановом пространстве при наличии метрики 𝑔αβ (см. раздел 2.6)
можно построить полностью антисимметричный тензор

𝜀α1...αn =
√

|𝑔|𝜀α1...αn , (2.43)

где введено сокращенное обозначение для определителя метрики, которое будет ча-
сто использоваться в дальнейшем

𝑔 := det 𝑔αβ. (2.44)

Полностью антисимметричный тензор (2.43) преобразуется по стандартному закону
(2.40).

Замечание. Здесь и в дальнейшем мы примем следующее обозначение: шляпка над
символом означает, что рассматривается тензорная плотность, а не тензор.

Если на многообразии задана метрика, то наличие тензора полностью антисим-
метричного тензора 𝜀α1...αn позволяет представить компоненты произвольного кова-
риантного антисимметричного тензора максимального ранга в виде

𝑋α1...αn = 𝑋∗(𝑥)𝜀α1...αn , 𝑋∗ := 𝜀α1...αn𝑋α1...αn sgn , (2.45)

где 𝑋∗(𝑥) – псевдоскалярное поле и множитель sgn := sign ( det 𝑔αβ) равен знаку
определителя метрики. Приставка “псевдо” в данном случае означает, что скалярное
поле меняет свой знак при отражении нечетного числа координатных осей.

Аналогичное представление имеет место для произвольного контравариантного
тензора максимального ранга. Это означает, что полностью антисимметричные тен-
зоры максимального ранга имеют ровно одну независимую компоненту.

2.4 Отображения многообразий
Рассмотрим отображение ℎ многообразия M, dimM = 𝑚, в многообразие N, dimN =
𝑛,

ℎ : M ∋ 𝑥 ↦→ 𝑦 ∈ N. (2.46)

Пусть при этом отображении карта (U, 𝜙) многообразия M отображается в некоторую
карту (V, 𝜑) многообразия N, ℎ(U) ⊂ V. Обозначим координаты на U и V через 𝑥α,
𝛼 = 1, . . . ,𝑚, и 𝑦µ, 𝜇 = 1, . . . , 𝑛. Тогда отображение

𝜑 ∘ ℎ ∘ 𝜙−1 : Rm ⊃ 𝜙(U) → 𝜑(V) ⊂ Rn (2.47)

двух областей евклидова пространства 𝜙(U) ⊂ Rm и 𝜑(V) ⊂ Rn задается 𝑛 функ-
циями от 𝑚 переменных 𝑦µ(𝑥). При этом размерность многообразия M может быть
меньше, равна или больше размерности N.

Определение. Отображение гладких многообразий называется гладким (дифферен-
цируемым), если задается гладкими (дифференцируемыми) функциями (2.47) в пол-
ных атласах на M и N.

Определение. Дифференцируемое отображение (2.46) индуцирует линейное отоб-
ражение касательных пространств

ℎ∗ : Tx(M) ∋ 𝑋 = 𝑋α𝜕α ↦→ 𝑌 = ℎ∗𝑋 = 𝑌 µ𝜕µ ∈ Th(x)(N) (2.48)
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следующим образом. Рассмотрим кривую 𝛾 ⊂ M, проходящую через произвольную
точку 𝑝 ∈ M в направлении произвольного вектора 𝑋(γ)(𝑝). Эта кривая отобразится в
некоторую кривую ℎ ∘𝛾 на N. По определению вектор 𝑋(γ)(𝑝) ∈ Tp(M) отображается
в тот вектор 𝑌(h◦γ) ∈ Th(p)(N), который касается кривой ℎ∘𝛾 в точке ℎ(𝑝). По правилу
дифференцирования сложной функции справедливо равенство

𝑦̇µ
(
ℎ ∘ 𝛾(𝑡)

)
=
𝜕𝑦µ

𝜕𝑥α
𝑥̇α
(
𝛾(𝑡)

)
.

Поэтому вектор 𝑌 единственен. Это отображение касательных пространств (2.48)
называется дифференциалом отображения и обозначается ℎ∗.

В компонентах дифференциал отображения задается матрицей Якоби:

𝑌 µ = 𝑋α 𝜕𝑦
µ

𝜕𝑥α
. (2.49)

Дифференциал отображения ℎ∗ является линейным отображением:

ℎ∗(𝑋 + 𝑌 ) = ℎ∗(𝑋) + ℎ∗(𝑌 ), 𝑋, 𝑌 ∈ 𝒳 (M),

ℎ∗(𝑎𝑋) = 𝑎ℎ∗(𝑋), 𝑎 ∈ R.

множества всех векторных полей 𝒳 (M) на M в множество векторных полей 𝒳
(
ℎ(M)

)
на образе ℎ(M) ⊂ N, который может не совпадать со всем N.

Предложение 2.4.1. Дифференциал отображения согласован со структурой ал-
гебры Ли в пространствах векторных полей, т.е.

ℎ∗[𝑋, 𝑌 ] = [ℎ∗𝑋, ℎ∗𝑌 ]. (2.50)

Доказательство. Простая проверка.

Рассмотрим два отображения M h−→ N g−→ P. Если обозначить координаты на мно-
гообразиях M, N и P, соответственно, через 𝑥, 𝑦 и 𝑧, то по правилу дифференци-
рования сложной функции в соответствующих областях определения справедливо
равенство

𝜕𝑧

𝜕𝑥
=
𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑥
. (2.51)

Здесь, для краткости, мы опустили индексы. Отсюда следует, что дифференциал
произведения равен произведению дифференциалов каждого отображения

(𝑔 ∘ ℎ)∗ = 𝑔∗ ∘ ℎ∗. (2.52)

В координатах мы имеем обычное произведение матриц Якоби (2.51).
Дифференциал отображения естественным образом обобщается на случай произ-

вольных тензорных полей типа (𝑟, 0), имеющих только контравариантные индексы,
и обозначается (ℎ∗)

r. При этом каждый контравариантный индекс суммируется с
матрицей Якоби отображения.

Пример 2.4.1. Для компонент контравариантных тензоров второго ранга имеем
следующий закон преобразования

𝑌 µν = 𝑋αβ 𝜕𝑦
µ

𝜕𝑥α
𝜕𝑦ν

𝜕𝑥β
,

где 𝑋 = 𝑋αβ(𝑥)𝜕α ⊗ 𝜕β ∈ 𝒯 2(M) и 𝑌 = 𝑌 µν(𝑦)𝜕µ ⊗ 𝜕ν ∈ 𝒯 2(N)
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Определение. Инъективное отображение многообразий ℎ : M → N индуцирует
возврат отображения в кокасательных пространствах, который мы обозначим тем
же символом, но со звездочкой вверху:

ℎ∗ : T∗h(x)(N) ∋ 𝐵 ↦→ 𝐴 = ℎ∗𝐵 ∈ T∗x(M). (2.53)

Возврат отображения ℎ∗ дуален (сопряжен) к дифференциалу отображения ℎ∗ и
определяется следующим равенством

𝐴(𝑋) = 𝐵(𝑌 ) или ℎ∗𝐵(𝑋) = 𝐵(ℎ∗𝑋), (2.54)

где 𝑌 = ℎ∗𝑋. Возврат отображения называется также отображением дифференци-
альных форм.

Подчеркнем, что возврат отображения действует в сторону, обратную самому
отображению ℎ.

При определении возврата отображения ℎ∗ мы требуем, чтобы исходное отобра-
жение ℎ было инъективным. В противном случае прообраз ℎ−1

(
ℎ(𝑥)

)
для некоторого

𝑥 ∈ M состоит не из одного элемента, и возврат отображения не определен. Возврат
отображения определен не на всех формах из 𝒯1(N), а только на формах из образа
инъективного отображения 𝒯1

(
ℎ(M)

)
. Возврат отображения ℎ∗ будет определен на

множестве всех форм 𝒯1(N) тогда и только тогда, когда отображение ℎ биективно.
В компонентах возврат отображения записывается в виде

𝐴α =
𝜕𝑦µ

𝜕𝑥α
𝐵µ, (2.55)

т.е. так же, как и дифференциал отображения, определяется матрицей Якоби.
Возврат отображения естественным образом обобщается на тензорные поля из

𝒯s(N) типа (0, 𝑠), имеющие только ковариантные индексы, и обозначается (ℎ∗)s.

Пример 2.4.2. Для компонент ковариантных тензоров второго ранга имеем следу-
ющий закон преобразования

𝑋αβ =
𝜕𝑦µ

𝜕𝑥α
𝜕𝑦ν

𝜕𝑥β
𝑌µν ,

где 𝑋 = 𝑋αβ(𝑥)𝑑𝑥
α ⊗ 𝑑𝑥β ∈ 𝒯2(M) и 𝑌 = 𝑌µν(𝑦)𝑑𝑦

µ ⊗ 𝑑𝑦ν ∈ 𝒯2(N)

Из правила дифференцирования сложных функций следует, что возврат про-
изведения отображений равен произведению возвратов отображений, но взятых в
обратном порядке:

(𝑔 ∘ 𝑓)∗ = 𝑓 ∗ ∘ 𝑔∗. (2.56)
Для тензоров смешанного типа в общем случае не существует индуцированного

отображения, поскольку дифференциал и возврат отображения действуют в разные
стороны.

Определение. Назовем рангом отображения ℎ : M → N ранг соответствующей
матрицы Якоби

rankℎ := rank
𝜕𝑦µ

𝜕𝑥α
.

Если rankℎ = 𝑚 во всех точках многообразия M, то отображение ℎ называется
невырожденным. Для этого необходимо, чтобы 𝑚 ≤ 𝑛.

Рассмотрим отображение (2.46) двух многообразий одинаковой размерности dimM=
dimN. Если отображение ℎ биективно, и оба отображения ℎ и ℎ−1 в координатах за-
даются гладкими функциями, то отображение ℎ называется диффеоморфизмом.
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Пример 2.4.3. Преобразование координат в некоторой области (U, 𝜙) → (U, 𝜙′)
является диффеоморфизмом.

С точки зрения дифференциальной геометрии два диффеоморфных между собой
многообразия можно рассматривать, как одно многообразие, заданное в различных
координатах, поэтому мы пишем M ≈ N2. В этом случае индуцированные отображе-
ния касательных пространств представляют собой не что иное, как правила преоб-
разования тензорных полей при преобразовании координат.

Определение. Пусть для отображения (2.46) 𝑚 < 𝑛. Если отображение касательно-
го пространства Tx(M) для всех точек 𝑥 ∈ M на его образ в касательном пространстве
Th(x)(N) является взаимно однозначным, т.е. rankℎ = dimM, то отображение ℎ на-
зывается погружением. По определению любое невырожденное отображение задает
погружение. При погружении само отображение ℎ может не быть взаимно однознач-
ным. Размерность многообразия M не может превосходить размерности многооб-
разия N, т.к. в этом случае не может быть взаимной однозначности дифференци-
ала отображения. Если само отображение ℎ на его образ ℎ(M) и его дифференци-
ал являются взаимно однозначными, то отображение ℎ называется вложением. В
дальнейшем вложение многообразий мы будем обозначать специальным символом:
M →˓ N.

Конечно, каждое вложение одновременно является и погружением.

Пример 2.4.4. Отображение окружности S1 на плоскость R2 в виде восьмерки яв-
ляется погружением, но не вложением, см. рис. 2.2a. В то же время отображение
окружности в гладкую замкнутую кривую без самопересечений представляет собой
вложение, рис. 2.2b.

Рис. 2.2: Отображение окружности на плоскость в виде восьмерки является погру-
жением, но не вложением (a). Вложение окружности в плоскость в виде гладкой
замкнутой кривой без самопересечений (b).

2.5 Подмногообразия

Важным классом отображений многообразий являются подмногообразия.

Определение. Пусть 𝑓 : M →˓ N – вложение многообразия M в N, размерностей 𝑚
и 𝑛, при этом 𝑚 ≤ 𝑛, тогда пара (𝑓,M) называется подмногообразием в N.

2Мы не используем обычный знак равенства, т.к. множества точек M и N могут отличаться по
другим признакам, например, по наличию групповой структуры.
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В дальнейшем, если не оговорено противное, под вложением мы понимаем гладкое
вложение, когда отображение 𝑓 определяется гладкими функциями.

Пример 2.5.1 (Всюду плотная обмотка тора). Двумерный тор T2 = S1 × S1

можно рассматривать, как двумерное многообразие, полученное путем отождеств-
ления противоположных сторон единичного квадрата на евклидовой плоскости. Тем
самым точка тора задается упорядоченной парой чисел (𝑥, 𝑦), каждое из которых
определено по модулю один: 𝑥 ∼ 𝑥+1 и 𝑦 ∼ 𝑦+1. Зафиксируем пару чисел 𝑎 и 𝑏 ̸= 0
и рассмотрим отображение вещественной прямой в тор

𝑓 : R ∋ 𝑡 ↦→ (𝑎𝑡mod 1, 𝑏𝑡mod 1) ∈ T2.

Если отношение 𝑎/𝑏 иррационально, то отображение 𝑓 является вложением, причем
образ прямой 𝑓(R) всюду плотен в T2 (всюду плотная обмотка тора). Если отноше-
ние 𝑎/𝑏 рационально, то 𝑓 представляет собой погружение, и его образ диффеомор-
фен окружности. Согласно данному выше определению всюду плотная обмотка тора
является одномерным подмногообразием на торе. Для всюду плотной обмотки тора
индуцированная топология на образе прямой не совпадает с естественной топологией
на R.

При вложении дифференцируемая структура и топология, заданные на M, есте-
ственным образом переносятся на образ 𝑓(M), поскольку отображение 𝑓 инъектив-
но и дифференцируемо. Тем самым многообразие M диффеоморфно своему образу
𝑓(M). С другой стороны, поскольку образ 𝑓(M) является некоторым подмножеством
в пространстве-мишени N, то на нем определяется индуцированная из N топология.
Рассмотренные выше примеры вложения прямой в плоскость и всюду плотной об-
мотки тора показывает, что топология на 𝑓(M), наследуемая из M при вложении,
совсем не обязательно совпадает с топологией, индуцированной из N. Это наблюде-
ние мотивирует следующее

Определение. Пусть вложение 𝑓 : M →˓ N является также и гомеоморфизмом.
Тогда пара (𝑓,M) называется регулярным подмногообразием, а 𝑓 – регулярным вло-
жением M в N.

Доказательство следующей теоремы приведено в [?], теорема 3.4.

Теорема 2.5.1. Пара (𝑓,M) является регулярным подмногообразием в N тогда и
только тогда, когда для каждой точки 𝑥 ∈ M существует система координат
𝑦α на Uf(x) ⊂ N, 𝑦α

(
𝑓(𝑥)

)
= 0, такая, что пересечение 𝑓(M) ∩ Uf(x) определяется

системой, состоящей из 𝑛−𝑚 уравнений:

𝑦m+1 = 𝑦m+2 = . . . = 𝑦n = 0.

В дальнейшем под вложением мы будем понимать только регулярное вложение,
для краткости не оговаривая этого явно. В этом случае мы будем отождествлять
подмногообразие M и его образ 𝑓(M) и будем писать M ⊂ N.

Определение. Пусть U является открытым подмножеством N. Если ограничить
гладкую структуру N на U, то U становится многообразием той же размерности
dimU = dimN. Тогда вложение 𝑓 : U →˓ N осуществляется тождественным отоб-
ражением, а подмногообразие U ⊂ N называется открытым подмногообразием в
N.
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Пусть 𝑓(M) является подмногообразием в N таким, что выполнены два условия:
1) 𝑓(𝑀) – замкнутое подмножество в N;
2) для каждой точки 𝑦 ∈ 𝑓(M) существует такая система координат 𝑦α на Uy ⊂ N,

что пересечение 𝑓(M) ∩ Uy задается уравнениями 𝑦m+1 = 𝑦m+2 = . . . = 𝑦n = 0,
где 𝑚 = dimM.

Тогда подмногообразие 𝑓(M) называется замкнутым подмногообразием в N. Размер-
ность замкнутого подмногообразия 𝑓(M) всегда меньше размерности N.

Замечание. Если подмногообразие (без края) M ⊂ N имеет ту же размерность, что
и N, то оно будет обязательно открытым подмногообразием, т.к. в противном случае
оно имело бы край. Теорема 2.5.1 утверждает, что любое подмногообразие M ⊂ N
меньшей размерности 1 < 𝑚 < 𝑛 является замкнутым подмногообразием.

Определение. Подмногообразие (𝑓,M) размерности 𝑛− 1 в N называется гиперпо-
верхностью в N.

Пример 2.5.2. Двумерная сфера S2
r радиуса 𝑟 с центром в начале координат явля-

ется замкнутым подмногообразием трехмерного евклидова пространства R3, которое
задается одним уравнением 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2. Она является гиперповерхностью в R3.
В сферической системе координат уравнение сферы задается уравнением 𝑟 = const,
а угловые координаты образуют систему координат на сфере.

В дальнейшем нам понадобится следующее

Определение. Пусть 𝑓 ∈ 𝒞∞(N) – функция и M ⊂ N – подмногообразие, тогда
отображение

𝑓
∣∣
M : M → R.

называется сужением функции 𝑓 на подмногообразие M. Функция 𝑓 является про-
должением функции 𝑔 с некоторого подмногообразия M на все N, если ее сужение
на M совпадает с 𝑔, 𝑓

∣∣
M = 𝑔. Аналогично, сужением произвольного тензорного по-

ля 𝑇 ∈ 𝒯 (N) на подмногообразие называется тензорное поле 𝑇
∣∣
M, рассматриваемое

только в точках 𝑥 ∈ M. Обратно, тензорное поле 𝑇 ∈ 𝒯 (N) является продолжени-
ем тензорного поля 𝐾 ∈ 𝒯 (N), заданного на подмногообразии M, если его сужение
совпадает с 𝐾, 𝑇

∣∣
M = 𝐾.

2.6 Метрика
Одним из важнейших понятий в геометрии и физике является дифференциально гео-
метрическая метрика или просто метрика. Трудно переоценить ту роль, которую мет-
рика играет в физических приложениях. С ее помощью строятся инварианты, опре-
деляется форма объема. Симметрии метрики являются симметриями пространства-
времени, которые определяют сохраняющиеся токи. В частности, фундаментальные
законы сохранения энергии-импульса и момента количества движения связаны с на-
личием у метрики определенных симметрий (см. раздел 5.2).

Рассмотрим многообразие M, dimM = 𝑛.

Определение. Метрикой 𝑔 ∈ 𝒯2(M) на многообразии M называется достаточно
гладкое ковариантное тензорное поле типа (0, 2), которое является симметричным и
невырожденным в каждой точке многообразия:

1) 𝑔αβ = 𝑔βα – симметричность,
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2) det 𝑔αβ ̸= 0 – невырожденность,
где 𝑔 = 𝑑𝑥α⊗𝑑𝑥β𝑔αβ – выражение для метрики в координатном базисе. Метрика назы-
вается римановой, если матрица 𝑔αβ(𝑥) положительно или отрицательно определена
во всех точках 𝑥 ∈ M. В противном случае метрика называется псевдоримановой.

Метрика определяет билинейное невырожденное и симметричное отображение

𝑔 : 𝒳 (M)×𝒳 (M) ∋ 𝑋, 𝑌 ↦→ (𝑋, 𝑌 ) ∈ 𝒞∞(M),

которое называется скалярным произведением векторных полей. В компонентах ска-
лярное произведение векторных полей 𝑋 = 𝑋α𝜕α и 𝑌 = 𝑌 α𝜕α задается сверткой
индексов:

(𝑋, 𝑌 ) := 𝑋α𝑌 β𝑔αβ. (2.57)

Скалярное произведение, очевидно, симметрично: (𝑋, 𝑌 ) = (𝑌,𝑋). Для римановой
метрики скалярное произведение является положительно определенным в каждой
точке. Скалярное произведение базисных векторных полей 𝜕α равно компонентам
метрики:

(𝜕α, 𝜕β) = 𝑔αβ. (2.58)

Поскольку метрика невырождена, то существует обратная метрика, т.е. симмет-
ричное невырожденное контравариантное тензорное поле 𝑔αβ𝜕α ⊗ 𝜕β ∈ 𝒯 2(M) типа
(2, 0), компоненты которого в каждой точке многообразия удовлетворяет условию

𝑔αβ𝑔βγ = 𝑔γβ𝑔
βα = 𝛿αγ . (2.59)

При преобразовании координат 𝑥α → 𝑥α
′
(𝑥) компоненты метрики и ее обратной пре-

образуются по обычным правилам для тензорных полей:

𝑔α′β′ =
𝜕𝑥α

𝜕𝑥α′
𝜕𝑥β

𝜕𝑥β′
𝑔αβ, (2.60)

𝑔α
′β′ = 𝑔αβ

𝜕𝑥α
′

𝜕𝑥α
𝜕𝑥β

′

𝜕𝑥β
. (2.61)

Отсюда следует, что определитель метрики

𝑔(𝑥) := det 𝑔αβ(𝑥) (2.62)

преобразуется по правилу 𝑔′ = 𝐽−2𝑔, где 𝐽 – якобиан преобразования координат
(2.13). То есть определитель метрики является скалярной плотностью степени −2.

В общем случае, ввиду симметрии по индексам, метрика 𝑔αβ задается

[𝑔αβ] =
𝑛(𝑛+ 1)

2

произвольными компонентами с единственным условием невырожденности. Здесь и в
дальнейшем число компонент тензора мы будем обозначать квадратными скобками.

С помощью метрики и ее обратной можно изменить тип тензора путем опускания
или подъема всех или части индексов произвольного тензорного поля.

Пример 2.6.1. Произвольному векторному полю 𝑋 ∈ 𝒳 (M) можно взаимно одно-
значно поставить в соответствие 1-форму и наоборот. В компонентах отображение
задается следующими формулами:

𝑋α := 𝑋β𝑔βα, 𝑋α = 𝑔αβ𝑋β. (2.63)

Операция подъема и опускания индексов естественным образом продолжается на
тензоры произвольного типа.
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Замечание. Если на многообразии задана метрика, то между контравариантными и
ковариантными тензорными полями одного ранга 𝑟 существует взаимно однозначное
соответствие. По этой причине будем считать, что тензоры одного ранга, но с раз-
личным типом индексов, описывают один и тот же геометрический объект и будем
обозначать их, как правило, одной буквой. Например,

𝑇αβ = 𝑇α
γ𝑔γβ = 𝑇 γβ𝑔γα = 𝑇 γδ𝑔γα𝑔δβ,

где 𝑇αβ и 𝑇αβ – ковариантные и контравариантные компоненты тензора второго ран-
га. Компоненты 𝑇α

β и 𝑇αβ называются смешанными. Поскольку при наличии метри-
ки появилась возможность опускать и поднимать индексы, то необходимо следить за
порядком ковариантных и контравариантных индексов. В общем случае 𝑇αβ ̸= 𝑇 βα.
Поэтому не стоит писать контра- и ковариантные индексы один под другим.

Определение. Скалярное произведение вектора в каждой точке 𝑥 ∈ M с самим
собой называется квадратом вектора и обозначается

𝑋2 := (𝑋,𝑋). (2.64)

Если (𝑋, 𝑌 ) = 0, то два вектора называются ортогональными или перпендикуляр-
ными, независимо от положительной определенности метрики.

Определение. Две метрики 𝑔′ = 𝑑𝑥α⊗𝑑𝑥β𝑔′αβ и 𝑔 = 𝑑𝑥α⊗𝑑𝑥β𝑔αβ на многообразии M
называются конформно эквивалентными или связанными преобразованием Вейля,
если они пропорциональны:

𝑔′ = e2φ𝑔, (2.65)

где 𝜑(𝑥) – некоторая достаточно гладкая функция на M. Преобразование (2.65) на-
зывают конформным преобразованием метрики или преобразованием Вейля.

Поскольку метрика невырождена, то у нее существует обратная метрика (2.59),
которая естественным образом определяет скалярное произведение в пространстве 1-
форм. Скалярное произведение двух 1-форм 𝐴 = 𝑑𝑥α𝐴α и 𝐵 = 𝑑𝑥β𝐵β по определению
равно

(𝐴,𝐵) = 𝑔(𝐴,𝐵) := 𝑔αβ𝐴α𝐵β. (2.66)

Это скалярное произведение согласовано с операцией подъема и опускания индексов
(2.63):

𝑔αβ𝐴α𝐵β = 𝑔αβ𝐴
α𝐵β, где 𝐴α := 𝑔αβ𝐴β, 𝐵α := 𝑔αβ𝐵β.

Скалярные произведения векторов (2.57) и 1-форм (2.66) естественным образом про-
должаются на тензорные поля произвольного типа (𝑟, 𝑠).

Метрика на многообразии определяет инвариантную квадратичную форму диф-
ференциалов, которая называется интервалом

𝑑𝑠2 := 𝑔αβ𝑑𝑥
α𝑑𝑥β. (2.67)

Интервал задает расстояние между двумя бесконечно близкими точками с координа-
тами 𝑥α и 𝑥α+ 𝑑𝑥α. Это расстояние зависит от точки многообразия, но не от выбора
системы координат.



2.6. МЕТРИКА 29

2.6.1 Метрика на лоренцевых многообразиях

За счет выбора системы координат метрику всегда можно привести к диагональному
виду в любой наперед заданной точке 𝑥 ∈ M. Действительно, при замене координат
компоненты метрики преобразуются по правилу (2.60). При этом матрица Якоби пре-
образования координат 𝜕𝑥α/𝜕𝑥α′ в фиксированной точке многообразия может быть
выбрана произвольным образом.

Пример 2.6.2. Однородное линейное преобразование координат 𝑥α = 𝑥α
′
𝑀α′

α с
постоянной невырожденной матрицей 𝑀α′

α = const дает

𝑔α′β′ =𝑀α′
α𝑀β′

β𝑔αβ.

Замечание. В общем случае метрику можно привести к диагональному виду в фик-
сированной точке, но не в окрестности. Это связано с тем, что 𝑛 функций преобра-
зований координат, которыми можно воспользоваться, недостаточно для фиксиро-
вания 𝑛(𝑛 − 1)/2 функций, параметризующих недиагональные элементы метрики.
Исключение составляют многообразия двух и трех измерений.

Определение. Сигнатурой метрики, заданной на многообразии M, dimM = 𝑛,
называется пара натуральных чисел (𝑝, 𝑞) таких, что 𝑝 + 𝑞 = 𝑛, где 𝑝 и 𝑞 – количе-
ство, соответственно, положительных и отрицательных чисел, стоящих на диагонали
метрики после ее диагонализации в какой-либо точке многообразия 𝑥 ∈ M.

Если 𝑔αβ – матрица, составленная из компонент метрики в некоторой системе
координат, то числа 𝑝 и 𝑞 равны, соответственно, числу положительных и отрица-
тельных собственных значений. При общих преобразованиях координат собственные
числа могут менять свою величину, но не знаки. Нулевых собственных значений быть
не может, т.к. в этом случае метрика была бы вырожденной.

Предложение 2.6.1. Сигнатура метрики не зависит от точки линейно связного
многообразия.

Доказательство. Допустим, что в некоторых точках 𝑥1, 𝑥2 ∈ M метрика имеет раз-
ную сигнатуру, и соединим эти точки произвольной кривой. Тогда из непрерывности
метрики следует, что ее определитель обратился бы в нуль в некоторой точке кривой,
что недопустимо.

Сигнатура метрики инвариантна, не зависит от выбора системы координат и точ-
ки линейно связного многообразия. Будем считать, что после диагонализации номера
координат выбраны таким образом, что сначала идут все положительные, а затем –
отрицательные собственные значения. Будем писать

sign 𝑔αβ = (+ · · ·+︸ ︷︷ ︸
p

− · · ·−︸ ︷︷ ︸
q

). (2.68)

Определение. Пара (M, 𝑔) называется римановым многообразием, если метрика
является знакоопределенной 𝑝 = 𝑛 или 𝑞 = 𝑛, и псевдоримановым многообразием,
если метрика не является знакоопределенной, 𝑝 ̸= 0 и 𝑞 ̸= 0. Если положительный
элемент на диагонали один,

sign 𝑔αβ = (+− · · ·−),

то говорят, что метрика имеет лоренцеву сигнатуру. Если на многообразии задана
метрика лоренцевой сигнатуры, то будем говорить, что многообразие лоренцево.
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Подчеркнем, что задание метрики на многообразии может быть произвольным.
В частности, на одном многообразии можно задать несколько метрик одновременно,
причем разной сигнатуры, если такие существуют.

Для лоренцевой метрики скалярное произведение двух векторов может быть по-
ложительно, отрицательно или равно нулю, а из условия 𝑋2 = 0 не следует, что
𝑋 = 0.

Определение. Назовем пространством-временем псевдориманово многообразие M
с заданной метрикой 𝑔 = 𝑑𝑥α⊗ 𝑑𝑥β𝑔αβ лоренцевой сигнатуры (лоренцево многообра-
зие). В пространстве-времени векторное поле 𝑋 в точке 𝑥 ∈ M называется:

времениподобным, если (𝑋,𝑋) > 0,
светоподобным (изотропным, нулевым), если (𝑋,𝑋) = 0,
пространственноподобным, если (𝑋,𝑋) < 0.

(2.69)

Это определение распространятся на область U ⊂ M, если во всех точках 𝑥 ∈ U
выполнены соответствующие соотношения.

Определение (2.69) инвариантно относительно замены координат. В общем случае
гладкое векторное поле может иметь различный тип в различных областях связного
многообразия.

Определение. Так же, как и в римановом пространстве, два вектора в пространстве-
времени называются ортогональными (перпендикулярными), если их скалярное про-
изведение равно нулю. В частности, любой изотропный вектор перпендикулярен са-
мому себе.

Определим тип координатного векторного поля 𝜕0. Из (2.58) следует, что (𝜕0, 𝜕0) =
𝑔00. Если в данной системе координат 𝑔00 > 0, то векторное поле 𝜕0 времениподобно.
В этом случае назовем координату 𝑥0 = 𝑡 времениподобной или временем. Проти-
воположно направленное векторное поле −𝜕0 также времениподобно и связано с 𝜕0

преобразованием координат (𝑥0, 𝑥1, . . . , 𝑥n−1) ↦→ (−𝑥0, 𝑥1, . . . , 𝑥n−1), которое назовем
обращением времени. Выберем (произвольно) ориентацию координаты 𝑥0 и будем
говорить, что векторное поле 𝜕0 направлено в будущее, а −𝜕0 – в прошлое. Тогда на
времениподобных векторных полях можно ввести ориентацию. Произвольное време-
ниподобное поле 𝑋 направлено в будущее, если (𝑋, 𝜕0)=𝑋

0 > 0. В противном случае,
когда 𝑋0 < 0, будем говорить, что времениподобное векторное поле направлено в
прошлое.

Замечание. В общем случае метрика, индуцированная на сечениях 𝑡 = 𝑥0 = const
лоренцева многообразия, может быть отрицательно определена или быть знаконе-
определенной. То есть сечения пространства-времени, соответствующие постоянному
времени, совсем не обязательно пространственноподобны (= все касательные векто-
ры пространственноподобны). Это зависит от выбора остальных координат.

Можно доказать, что каждая точка многообразия M лоренцевой сигнатуры (1, 𝑛−
1) имеет такую координатную окрестность с координатами (𝑡, 𝑢1, . . . , 𝑢n−1), что в этих
координатах метрика имеет блочно диагональный вид

𝑑𝑠2 = 𝑑𝑡2 + 𝑔µν(𝑡, 𝑢)𝑑𝑢
µ𝑑𝑢ν , 𝜇, 𝜈 = 1 . . . 𝑛− 1. (2.70)

При этом метрика 𝑔µν , индуцированная на сечениях 𝑡 = const, является отрицатель-
но определенной. Другими словами, все сечения 𝑡 = const для метрики вида (2.70)
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являются пространственноподобными подмногообразиями, т.е. все касательные век-
торы к сечениями пространственноподобны. Эти сечения являются вложенными ри-
мановыми многообразиями с локальной системой координат (𝑢µ) и отрицательно
определенной метрикой 𝑔µν . Отметим также, что все векторы, касательные к этому
подмногообразию ортогональны времениподобному векторному полю 𝜕0.

Замечание. Здесь и в дальнейшем мы будем использовать следующие обозначе-
ния координат на лоренцевом многообразии. Греческие буквы из начала алфавита
𝛼, 𝛽, . . . будут использоваться для нумерации всех координат, а буквы из середины
алфавита 𝜇, 𝜈, . . . – для нумерации остальных координат, (𝑥α) = (𝑥0, 𝑥µ). Это правило
легко запомнить по следующим включениям:

{1, . . . , 𝑛− 1} ⊂ {0, 1, . . . , 𝑛− 1}, {𝜇, 𝜈, . . . } ⊂ {𝛼, 𝛽, . . . }.

Как правило, мы будем считать, что координата 𝑥0 является временем, и все осталь-
ные координатные линии 𝑥µ пространственноподобны. Поэтому координаты 𝑥µ будем
называть пространственноподобными.

В общем случае метрика на лоренцевом многообразии

𝑔αβ =

(
𝑔00 𝑔0ν

𝑔µ0 𝑔µν

)
(2.71)

не имеет блочно диагонального вида (2.70). Приведем критерий того, что метрика
(2.71), заданная на некотором многообразии M, имеет лоренцеву сигнатуру.

Предложение 2.6.2. Пусть в некоторой окрестности U ⊂ M задана метрика
(2.71) такая, что 𝑔00 > 0. Эта метрика имеет лоренцеву сигнатуру тогда и толь-
ко тогда, когда матрица

𝑔µν −
𝑔0µ𝑔0ν

𝑔00

(2.72)

отрицательно определена в каждой точке U.

Доказательство. Достаточно рассмотреть произвольную точку из U. Пусть на U
задана метрика (2.71) для которой 𝑔00 > 0. Интервал в окрестности U ⊂ M имеет
вид

𝑑𝑠2 = 𝑔00𝑑𝑥
0𝑑𝑥0 + 2𝑔0µ𝑑𝑥

0𝑑𝑥µ + 𝑔µν𝑑𝑥
µ𝑑𝑥ν , 𝑔00 > 0.

Зафиксируем произвольную точку 𝑥 ∈ U. Введем вместо 𝑥0 новую координату 𝑥̃0,
для которой в точке 𝑥 ∈ U выполнено соотношение

𝑑𝑥0 = 𝑑𝑥̃0 − 𝑑𝑥µ𝑔0µ

𝑔00

.

В фиксированной точке этого всегда можно добиться линейным преобразованием
координат. Тогда интервал примет вид

𝑑𝑠2 = 𝑔00𝑑𝑥̃
0𝑑𝑥̃0 +

(
𝑔µν −

𝑔0µ𝑔0ν

𝑔00

)
𝑑𝑥µ𝑑𝑥ν . (2.73)

Если метрика (2.71) имеет лоренцеву сигнатуру, то существует такая система ко-
ординат, что в точке 𝑥 ∈ M метрика диагональна, причем 𝑔00 > 0, а все остальные
диагональные компоненты 𝑔µµ отрицательны. Поскольку метрика (2.73) связана с
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диагональной метрикой также невырожденным преобразованием координат, то мат-
рица (2.72) отрицательно определена.

Обратно. Если матрица (2.72) отрицательно определена, то дальнейшим линей-
ным преобразованием координат 𝑥µ ее всегда можно преобразовать к диагональному
виду в фиксированной точке, причем на диагонали будут стоять отрицательные чис-
ла. Следовательно, метрика имеет лоренцеву сигнатуру.

Матрица (2.72) на лоренцевом многообразии симметрична и невырождена, т.к.
отрицательно определена. Она имеет следующий геометрический смысл. Вдоль ко-
ординатных линий времени 𝑡 = 𝑥0 всегда можно определить единичное векторное
поле

𝑛 :=
1

√
𝑔00

𝜕0, (𝑛, 𝑛) = 1.

Рассмотрим произвольное векторное поле 𝑋 = 𝑋0𝜕0 +𝑋µ𝜕µ. У него есть составляю-
щая, перпендикулярная времениподобному векторному полю 𝑛,

𝑋⊥ = 𝑋 − (𝑋,𝑛)𝑛 = 𝑋µ𝜕µ −𝑋µ𝑔0µ𝜕0.

Если задано два произвольных векторных поля 𝑋 и 𝑌 , то скалярное произведение
их перпендикулярных составляющих равно

(𝑋⊥, 𝑌⊥) =

(
𝑔µν −

𝑔0µ𝑔0ν

𝑔00

)
𝑋µ𝑌 ν .

Таким образом, матрица (2.72) играет роль метрики для перпендикулярных состав-
ляющих векторных полей. Из теоремы 2.6.2 следует, что, если M – лоренцево мно-
гообразие и 𝑥0 – время, то составляющие векторных полей, перпендикулярные 𝑛,
всегда пространственноподобны.

В дальнейшем мы всегда предполагаем, что координаты на лоренцевом многооб-
разии выбраны таким образом, что координата 𝑥0 является временем, и все сечения
𝑥0 = const пространственноподобны. Такой выбор координат удобен, например, при
постановке задачи Коши в различных моделях математической физики. На языке
компонент метрики эти условия означают, что 𝑔00 > 0, и матрица 𝑔µν отрицательно
определена.

2.7 Аффинная связность

Пусть на многообразии M, dimM = 𝑛, в некоторой карте заданы: функция 𝑓 ∈
𝒞∞(M), гладкое векторное поле 𝑋 = 𝑋α𝜕α ∈ 𝒳 (M) и гладкая 1-форма 𝐴 = 𝑑𝑥α𝐴α ∈
Λ1(M). Допустим, что на этом многообразии задана также аффинная связность Γ.
Тогда в компонентах ковариантные производные имеют вид:

∇α𝑓 = 𝜕α𝑓 (2.74)
∇α𝑋

β = 𝜕α𝑋
β +𝑋γΓαγ

β, (2.75)
∇α𝐴β = 𝜕α𝐴β − Γαβ

γ𝐴γ, (2.76)

где Γαβ
γ(𝑥) – компоненты локальной формы аффинной связности, которые, как мы

предполагаем, являются достаточно гладкими функциями от координат 𝑥α. То есть
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ковариантная производная для скалярного поля совпадает с обычной частной про-
изводной, а для векторного поля и 1-формы появляются дополнительные слагае-
мые, линейные по компонентам. Обратим внимание, что дополнительные слагаемые
в (2.75) и (2.76) имеют разные знаки.

Покажем, что ковариантная производная от компонент векторного поля при под-
ходящем преобразовании аффинной связности преобразуется как тензор. Рассмот-
рим преобразование координат

𝑥α
′
= 𝑥α

′
(𝑥) 𝛼′ = 1, . . . , 𝑛, (2.77)

Тогда компоненты векторного поля преобразуется по правилу (2.17). Дифференци-
руя соотношение (2.17) по 𝑥β′ , получаем два слагаемых

𝜕β′𝑋
α′ = 𝜕β′𝑥

β𝜕β𝑋
α𝜕α𝑥

α′ + 𝜕β′𝑥
β𝑋α𝜕2

βα𝑥
α′ , (2.78)

где 𝜕β′ = 𝜕β′𝑥
β𝜕β. Первое слагаемое в правой части соответствует тензорному за-

кону преобразования для производной от векторного поля, в то время как второе
слагаемое этот закон нарушает.

Чтобы получить тензорный закон преобразования в общем случае вводится поня-
тие ковариантной производной, которая содержит дополнительное слагаемое в вы-
ражении (2.75). Если потребовать, чтобы ковариантная производная после преобра-
зования координат имела тот же вид с некоторыми новыми компонентами Γβ′γ′

α′ ,

𝜕β′𝑋
α′ + Γβ′γ′

α′𝑋γ′ = 𝜕β′𝑥
β(𝜕β𝑋

α + Γβγ
α𝑋γ)𝜕α𝑥

α′ ,

то с учетом уравнения (2.78) получим следующий закон преобразования компонент
аффинной связности:

Γβ′γ′
α′ = 𝜕β′𝑥

β𝜕γ′𝑥
γΓβγ

α𝜕α𝑥
α′ − 𝜕β′𝑥

β𝜕γ′𝑥
γ𝜕2

βγ𝑥
α′ , (2.79)

Закон преобразования компонент аффинной связности отличается от тензорного
закона наличием неоднородных слагаемых, которые содержат вторые производные
от функций перехода.

Сами по себе компоненты аффинной связности не являются компонентами тензо-
ра, однако они позволяют строить новые тензорные поля из заданных с помощью ко-
вариантного дифференцирования. Собственно, название “ковариантное” и отражает
это обстоятельство. Нетрудно проверить, что ковариантная производная от 1-формы
(2.76) является тензорным полем второго ранга типа (0, 2).

Ковариантное дифференцирование продолжается на тензоры произвольного ран-
га. В компонентах это выглядит следующим образом. Помимо обычной частной про-
изводной в ковариантную производную входят слагаемые с компонентами аффинной
связности со знаком плюс для каждого контравариантного и минус для каждого ко-
вариантного индекса:

∇α𝐾β1...βs
γ1...γr = 𝜕α𝐾β1...βs

γ1...γr − Γαβ1
δ𝐾δβ2...βs

γ1...γr − . . .− Γαβs
δ𝐾β1...βs−1δ

γ1...γr+

+𝐾β1...βs
δγ2...γrΓαδ

γ1 + . . .+𝐾β1...βs
γ1...γr−1δΓαδ

γr .

Пример 2.7.1. Для тензора второго ранга типа (1, 1) ковариантная производная
имеет вид

∇α𝐾β
γ = 𝜕α𝐾β

γ − Γαβ
δ𝐾δ

γ + Γαδ
γ𝐾β

δ. (2.80)
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В частном случае, ковариантная производная от символа Кронекера (2.38) тожде-
ственно равна нулю

∇α𝛿
γ
β = 𝜕α𝛿

γ
β + 𝛿δβΓαδ

γ − Γαβ
δ𝛿γδ = 0. (2.81)

То есть символ Кронекера ковариантно постоянен (параллелен) относительно произ-
вольной аффинной связности.

Определение. Произвольному векторному полю можно поставить в соответствие
бесконечно малую величину

𝐷𝑋α := 𝑑𝑥β∇β𝑋
α = 𝑑𝑥β(𝜕β𝑋

α + Γβγ
α𝑋γ), (2.82)

которая называется ковариантным дифференциалом. Аналогично определяется ко-
вариантный дифференциал для произвольного тензорного поля. Для функции кова-
риантный дифференциал совпадает с обычным.

Рассмотрим произвольную дифференцируемую кривую 𝛾 =
(
𝑥α(𝑡)

)
в римановом

пространстве с положительно определенной метрикой. Тогда длина дуги кривой от-
лична от нуля

𝑑𝑠 := 𝑑𝑡
√
𝑥̇2 ̸= 0, где 𝑥̇2 := 𝑥̇α𝑥̇β𝑔αβ. (2.83)

Выражение
𝐷𝑋α

𝑑𝑠
:= 𝑢β∇β𝑋

α, (2.84)

где

𝑢α :=
𝑑𝑥α

𝑑𝑠
=

𝑥̇α√
𝑥̇2
, 𝑢2 = 1, (2.85)

– единичный касательный вектор к кривой, называется ковариантной производной
вектора 𝑋 вдоль кривой 𝛾.

Аналогично определяется ковариантная производная вдоль кривой от произволь-
ного тензорного поля.

Пусть на многообразии задано векторное поле 𝑋 ∈ 𝒳 (M). Тогда ковариантная
производная вдоль векторного поля 𝑋 от тензорного поля 𝐾α1...αr

β1...βs типа (𝑟, 𝑠) дает
тензорное поле того же типа с компонентами

(∇X𝐾)α1...αr
β1...βs := 𝑋γ∇γ𝐾α1...αr

β1...βs . (2.86)

2.7.1 Кручение и неметричность

В общем случае компоненты связности Γαβ
γ никакой симметрии по индексам не

имеют и никак не связаны с метрикой 𝑔αβ, поскольку эти понятия определяют на
многообразии M разные геометрические операции. А именно, метрика многообра-
зия определяет в каждой точке скалярное произведение векторов из касательного
пространства, а аффинная связность определяет ковариантное дифференцирование.
Геометрия на многообразии M определяется метрикой и аффинной связностью. Бу-
дем говорить, что на M задана аффинная геометрия, если заданы достаточно глад-
кие метрика и аффинная связность, т.е. задано три объекта (M, 𝑔,Γ).

Замечание. В общем случае метрика и аффинная связность задаются произволь-
ным образом и являются совершенно независимыми геометрическими объектами.
Поэтому при построении физических моделей их можно рассматривать как неза-
висимые поля, имеющие разную физическую интерпретацию. В настоящее время
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принято считать, что метрика описывает гравитационное взаимодействие. Физиче-
ский смысл аффинной связности пока не ясен. Это связано с тем, что физическая
интерпретация связности зависит от конкретной модели. Соответствующие модели
сложны с математической точки зрения и в настоящее время изучены недостаточно
хорошо.

По определению кручение связности в локальной системе координат равно анти-
симметричной части аффинной связности:

𝑇αβ
γ := Γαβ

γ − Γβα
γ. (2.87)

Из закона преобразования связности (2.79) следует, что кручение является тензор-
ным полем типа (1, 2).

Определение. Если на многообразии задана аффинная геометрия, то можно по-
строить тензор неметричности 𝑄αβγ. Он равен ковариантной производной от мет-
рики:

−𝑄αβγ := ∇α𝑔βγ = 𝜕α𝑔βγ − Γαβ
δ𝑔δγ − Γαγ

δ𝑔βδ. (2.88)

Тензор неметричности, по построению, симметричен относительно перестановки
двух последних индексов:

𝑄αβγ = 𝑄αγβ.

Заметим, что для определения неметричности необходимы оба объекта: и метрика,
и связность.

Таким образом по заданной метрике и аффинной связности построено два тен-
зорных поля: кручение и тензор неметричности. Докажем, что по заданной метрике,
кручению и тензору неметричности можно однозначно восстановить соответству-
ющую аффинную связность. Уравнение (2.88) всегда можно решить относительно
связности Γ. Действительно, линейная комбинация

∇α𝑔βγ +∇β𝑔γα −∇γ𝑔αβ

приводит к следующему общему решению для аффинной связности с опущенным
верхним индексом

Γαβγ := Γαβ
δ𝑔δγ =

1

2
(𝜕α𝑔βγ + 𝜕β𝑔γα − 𝜕γ𝑔αβ) +

1

2
(𝑇αβγ − 𝑇βγα + 𝑇γαβ)+

+
1

2
(𝑄αβγ +𝑄βγα −𝑄γαβ). (2.89)

Таким образом, справедливо

Предложение 2.7.1. Для того, чтобы на многообразии M задать аффинную гео-
метрию (𝑔,Γ), необходимо и достаточно задать три тензорных поля: метрику 𝑔,
кручение 𝑇 и неметричность 𝑄.

Подчеркнем еще раз, что все три объекта можно задать совершенно независи-
мым образом, и в моделях математической физики их можно рассматривать как
независимые динамические переменные.

Определение. Второе слагаемое в правой части равенства (2.89)

𝐾αβγ :=
1

2
(𝑇αβγ − 𝑇βγα + 𝑇γαβ) (2.90)

называется тензором кокручения.
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Рассмотрим частные случаи аффинной геометрии.
Определение. При попытке объединить гравитацию с электромагнетизмом Г. Вейль
рассмотрел тензор неметричности специального вида [?]

𝑄αβγ := 𝑊α𝑔βγ, (2.91)

где 𝑊α – форма Вейля, отождествленная с электромагнитным потенциалом, (при
этом предполагалось, что кручение тождественно равно нулю). Будем говорить, что
на многообразии задана геометрия Римана–Картана–Вейля, если на нем задана
метрика, кручение и неметричность специального вида (2.91).

Если тензор неметричности тождественно равен нулю, а метрика и кручение
нетривиальны, то будем говорить, что на многообразии задана геометрия Римана–
Картана. В этом случае из уравнения (2.89) следует, что аффинная связность одно-
значно определяется метрикой и кручением:

Γαβγ =
1

2
(𝜕α𝑔βγ + 𝜕β𝑔αγ − 𝜕γ𝑔αβ) +

1

2
(𝑇αβγ − 𝑇βγα + 𝑇γαβ). (2.92)

Такую связность называют метрической, поскольку ковариантная производная от
метрики тождественно равна нулю,

∇α𝑔βγ = 𝜕α𝑔βγ − Γαβ
δ𝑔δγ − Γαγ

δ𝑔βδ = 0. (2.93)

Это равенство называют условием метричности, и оно обеспечивает коммутатив-
ность ковариантного дифференцирования с опусканием и подъемом индексов.

Если и тензор неметричности, и кручение тождественно равны нулю, а метрика
нетривиальна и положительно определена, то будем говорить, что на многообразии
задана геометрия Римана. В этом случае метрическая связность также симметрична
по двум первым индексам и однозначно определяется метрикой:

Γ̃αβ
γ =

1

2
𝑔γδ(𝜕α𝑔βδ + 𝜕β𝑔αδ − 𝜕δ𝑔αβ). (2.94)

Эта связность называется связностью Леви–Чивиты или символами Кристоффеля.
Если метрика не является положительно определенной, то геометрия называется
псевдоримановой.
Замечание. Если на многообразии задана аффинная геометрия общего вида (M, 𝑔,Γ),
то на нем определены две связности: аффинная связность Γ и связность Леви–
Чивиты Γ̃, поскольку задана метрика. В такой ситуации над связностью Леви–Чивиты
и построенных с ее помощью геометрических объектах мы будем писать знак тиль-
ды.

Из выражения для символов Кристоффеля (2.94) или условия метричности (2.93)
следует равенство

𝜕α𝑔βγ = Γ̃αβγ + Γ̃αγβ. (2.95)
Это доказывает следующее
Предложение 2.7.2. Для того, чтобы символы Кристоффеля в некоторой систе-
ме координат были равны нулю, необходимо и достаточно, чтобы в этой системе
координат компоненты метрики были постоянны.

Поскольку символы Кристоффеля не являются компонентами тензора, то в дру-
гой системе координат они могут быть нетривиальны.
Пример 2.7.2. Символы Кристоффеля для евклидова пространства в декартовой
системе координат равны нулю, но, скажем, в сферической или цилиндрической си-
стеме координат они отличны от нуля.
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2.7.2 Ковариантная производная тензорных плотностей

Ковариантная производная тензорного поля естественным образом обобщается на
тензорные плотности произвольной степени 𝑝. Для определенности рассмотрим тен-
зорную плотность 𝑋α

β степени 𝑝 и типа (1, 1). По определению при преобразовании
координат она преобразуется по правилу

𝑋α′
β′ = 𝐽p

𝑑𝑥α

𝑑𝑥α′
𝑋α

β 𝑑𝑥
β′

𝑑𝑥β
,

где 𝐽 := det 𝜕α𝑥
α′ – якобиан преобразования. Потребуем, чтобы ковариантная про-

изводная от тензорной плотности была тензорной плотностью той же степени и того
же типа:

∇α′𝑋β′
γ′ = 𝐽p

𝑑𝑥α

𝑑𝑥α′
𝑑𝑥β

𝑑𝑥β′
∇α𝑋β

γ 𝑑𝑥
γ′

𝑑𝑥γ
. (2.96)

Отсюда следует, что ковариантная производная от тензорной плотности имеет вид

∇α𝑋β
γ = 𝜕α𝑋β

γ − Γαβ
δ𝑋δ

γ +𝑋β
δΓαδ

γ + 𝑝Γα𝑋β
γ, (2.97)

где Γα := Γαβ
β – след аффинной связности. Сравнивая эту ковариантную произ-

водную с ковариантной производной (2.80) от тензорного поля типа (1, 1), находим,
что различие состоит в появлении дополнительного слагаемого, пропорционального
степени тензорной плотности и следу аффинной связности. Чтобы проверить вы-
полнение закона преобразования (2.96) заметим, что в законе преобразования следа
аффинной связности (2.103) содержится неоднородное слагаемое, которое компенси-
рует производную от якобиана

𝜕α𝐽
p = 𝑝𝐽p

𝑑𝑥β

𝑑𝑥β′
𝜕α

(
𝑑𝑥β

′

𝑑𝑥β

)
.

Отсюда следует, что ковариантная производная от тензорной плотности произволь-
ного типа отличается от ковариантной производной соответствующего тензора одним
дополнительным слагаемым, пропорциональным степени тензорной плотности и сле-
ду аффинной связности.

Пример 2.7.3. Определитель метрики 𝑔 и элемент объема
√
|𝑔| являются тензор-

ными плотностями степеней −2 и −1, соответственно. Нетрудно убедиться, что в
геометрии Римана–Картана и, в частности, (псевдо)римановой геометрии, справед-
ливы следующие равенства:

∇α𝑔 = 0, ∇α

√
|𝑔| = 0.

2.7.3 Параллельный перенос

С помощью аффинной связности на многообразии M можно определить параллель-
ный перенос касательных векторов, а также тензоров любого ранга вдоль произволь-
ной кривой.

Определение. Пусть дифференцируемая кривая 𝛾 = 𝑥(𝑡) =
(
𝑥α(𝑡)

)
, 𝑡 ∈ [0, 1] со-

единяет две точки многообразия 𝑝, 𝑞 ∈ M: 𝑥(0) = 𝑝, 𝑥(1) = 𝑞. Касательный вектор
к кривой (вектор скорости) имеет компоненты 𝑢α := 𝑥̇α и предполагается отличным
от нуля. Условие параллельного переноса в компонентах имеет вид

∇u𝑋
α := 𝑢β(𝜕β𝑋

α + Γβγ
α) = 0, (2.98)
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или
𝑋̇α = −𝑥̇β𝑋γΓβγ

α, (2.99)

где все поля рассматриваются как функции от 𝑡. Это – система линейных обыкновен-
ных дифференциальных уравнений на компоненты векторного поля 𝑋α(𝑡), которая
решается с некоторым начальным условием 𝑋α(0) := 𝑋α

0 . Если функции 𝑥̇βΓβγ
α

непрерывны по 𝑡, то решение этой задачи существует и единственно для всех значе-
ний 𝑡 ∈ [0, 1] (см., например, [?], § 27). Решение системы уравнений (2.99) с начальным
условием 𝑋α(0) := 𝑋α

0 называется параллельным переносом вектора 𝑋0 из точки 𝑝 в
точку 𝑥(𝑡) вдоль кривой 𝛾.

Замечание. В отличие от параллельного переноса, уравнения геодезических явля-
ются нелинейными, и поэтому общие теоремы для систем обыкновенных дифферен-
циальных уравнений гарантируют существование и единственность решений только
в некоторой достаточно малой окрестности начальной точки 𝑡 = 0 при надлежащих
условиях на правую часть. Это приводит к проблеме продолжения геодезических.

Условие параллельного переноса (2.99) можно переписать в интегральной форме

𝑋α(𝑡) = 𝑋α
0 −

∫ t

0

𝑑𝑠 𝑥̇β𝑋γΓβγ
α, (2.100)

где все функции в подынтегральном выражении рассматриваются, как функции от
параметра 𝑠 вдоль кривой и точка обозначает дифференцирование по 𝑠. При 𝑡 = 1
получим компоненты вектора в конечной точке 𝑞.

Предложение 2.7.3. Результат параллельного переноса вектора из точки 𝑝 в
точку 𝑞 не зависит ни от параметризации кривой, ни от выбора системы коорди-
нат.

Доказательство. Независимость от параметризации кривой очевидна.
В новой штрихованной системе координат справедливо равенство

𝑋α′(𝑡) = 𝑋α′

0 −
∫ t

0

𝑑𝑠 𝑥̇β
′
𝑋γ′Γβ′γ′

α′ .

Это интегральное уравнение связано с уравнением (2.100) преобразованием коорди-
нат. Чтобы доказать независимость параллельного переноса, представим неоднород-
ное слагаемое в преобразовании компонент аффинной связности (2.79), умноженное
на 𝑥̇β′𝑋γ′ , в виде

𝑥̇β𝑋γ𝜕2
βγ𝑥

α′ = 𝑋γ𝜕t(𝜕γ𝑥
α′)

и проинтегрируем по частям.

В то же время результат параллельного переноса вектора из точки 𝑝 в точку 𝑞 в
общем случае зависит от кривой 𝛾, соединяющей эти точки.

Пример 2.7.4. Рассмотрим евклидово пространство Rn. В декартовой системе ко-
ординат компоненты связности Леви–Чивиты равны нулю. Следовательно, правая
часть уравнений (2.99) обращается в нуль, и решение задачи Коши имеет вид𝑋α(𝑡) =
𝑋α

0 = const. Это согласуется с нашим представлением о параллельном переносе век-
торов в евклидовом пространстве. В данном примере параллельный перенос векторов
не зависит от пути 𝛾, соединяющим точки 𝑝 и 𝑞. Это связано с тем, что кривизна
связности Леви–Чивиты в евклидовом пространстве равна нулю.
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Параллельный перенос вектора вдоль кривой можно естественным образом обоб-
щить на кусочно гладкие кривые, как последовательный параллельный перенос от
одного излома к другому.

Аналогично определяется параллельный перенос 1-форм и тензоров произволь-
ного ранга.

Пример 2.7.5. В геометрии Римана–Картана по определению ковариантная произ-
водная от метрики равна нулю. Поэтому можно считать, что метрика получается в
результате параллельного переноса симметричной невырожденной матрицы из про-
извольной точки многообразия. При этом результат параллельного переноса задан-
ной матрицы не зависит от пути для любой метрической связности.

Пусть на многообразии M помимо аффинной связности задана метрика. Рассмот-
рим, как меняется скалярное произведение (𝑋, 𝑌 ) двух векторов при параллельном
переносе вдоль произвольной кривой 𝛾.

Предложение 2.7.4. Зависимость скалярного произведения (𝑋, 𝑌 ) двух векторов,
которые параллельно переносятся вдоль 𝛾, от точки кривой определяется только
тензором неметричности:

𝜕u(𝑋, 𝑌 ) = ∇u(𝑋
α𝑌 β𝑔αβ) = 𝑋α𝑌 β∇u𝑔αβ = −𝑢γ𝑋α𝑌 β𝑄γαβ. (2.101)

Отсюда следует, что в геометрии Римана–Картана (𝑄 = 0) скалярное произведе-
ние двух векторов при параллельном переносе вдоль произвольной кривой сохраня-
ется. В частности, квадрат вектора скорости 𝑢2 кривой 𝛾 в геометрии Римана–
Картана постоянен вдоль нее.

Доказательство. Следует из определения тензора неметричности (2.88).

Следствие. В римановой геометрии и геометрии Римана–Картана длины векторов
и углы между ними сохраняются при параллельном переносе вдоль произвольной
кривой 𝛾.

Задание аффинной связности позволяет сравнивать компоненты тензоров в бес-
конечно близких точках, причем делать это ковариантным образом. Трудность срав-
нения тензоров в различных точках связана с тем, что при преобразовании коорди-
нат тензоры в разных точках преобразуются по-разному, и их сравнение (сложение
компонент) теряет всякий смысл.

2.7.4 Свойства аффинной связности

Во многих важных моделях математической физики пространство-время рассматри-
вается, как многообразие M, dimM = 𝑛, на котором задана аффинная геометрия, т.е.
метрика и аффинная связность. В настоящем разделе приведены тождества, вклю-
чающие аффинную связность, которые полезны для приложений при проведении
вычислений. Кроме того, определены инвариантные дифференциальные операторы
второго порядка и приведена формула интегрирования по частям. Все формулы на-
стоящего раздела доказываются прямыми вычислениями.

Определим след аффинной связности, который получается после свертки послед-
ней пары индексов:

Γα := Γαβ
β. (2.102)
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Он не является ковекторным полем, поскольку закон преобразования содержит неод-
нородное слагаемое:

Γα′ = 𝜕α′𝑥
αΓα − 𝜕α′𝑥

α𝜕β′𝑥
β𝜕2

αβ𝑥
β′ = 𝜕α′𝑥

αΓα + 𝜕2
α′β′𝑥

α𝜕α𝑥
β′ . (2.103)

Из выражения (2.89) для компонент аффинной связности следует, что след сим-
волов Кристоффеля имеет вид

Γ̃α =
1

2
𝑔βγ𝜕α𝑔βγ = −1

2
𝑔βγ𝜕α𝑔

βγ =
1

2

𝜕α𝑔

𝑔
=
𝜕α

√
|𝑔|

√
|𝑔|

, (2.104)

где 𝑔 := det 𝑔αβ.
Приведем также несколько полезных формул, справедливых в (псевдо)римановой

геометрии:

𝜕α𝑔 = 𝑔𝑔βγ𝜕α𝑔βγ, (2.105)

𝜕α
√
|𝑔| =

1

2

√
|𝑔|𝑔βγ𝜕α𝑔βγ =

√
|𝑔|Γ̃βα

β, (2.106)

𝜕α𝑔
βγ = −𝑔βδ𝑔γε𝜕α𝑔δε, (2.107)

𝜕α
(√
|𝑔|𝑔βγ

)
=

√
|𝑔|(𝑔βγΓ̃α − 𝑔βδΓ̃αδ

γ − 𝑔γδΓ̃αδ
β), (2.108)

𝜕β
(√
|𝑔|𝑔βα

)
= −

√
|𝑔|𝑔βγΓ̃βγ

α, (2.109)

Определим также след тензора кручения

𝑇α := 𝑇βα
β. (2.110)

Предложение 2.7.5. Для метрической связности полностью антисимметричный
тензор является ковариантно постоянным:

∇α𝜀α1...αn = 0. (2.111)

Доказательство. Из определения ковариантной производной и связи между полно-
стью антисимметричным тензором и тензорной плотностью (2.43) следует равенство

∇α𝜀α1...αn = 𝜀α1...αn𝜕α
√
|𝑔|− Γαα1

β𝜀βα2...αn − . . .− Γααn
β𝜀α1...αn−1β.

Это выражение антисимметрично по индексам 𝛼1, . . . , 𝛼n и, следовательно, пропор-
ционально полностью антисимметричному тензору:

∇α𝜀α1...αn = 𝜀α1...αn𝑋α,

где 𝑋α – компоненты некоторого ковектора. Свертка полученного равенства с кон-
травариантным тензором 𝜀α1...αn определяет 𝑋α = 0.

В дифференциальной геометрии естественным образом вводится понятие гради-
ента и дивергенции.

Определение. Назовем градиентом скалярного поля (функции) 𝑓 ковекторное поле
(1-форму):

grad 𝑓 := 𝑑𝑥α∇α𝑓 = 𝑑𝑓 = 𝑑𝑥α𝜕α𝑓. (2.112)

Назовем дивергенцией векторного поля 𝑋 скалярное поле

div𝑋 := ∇α𝑋
α = 𝜕α𝑋

α + Γβα
β𝑋α, (2.113)

построенное с помощью ковариантной производной.
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В (псевдо)римановой геометрии дивергенция векторного поля принимает вид

∇̃α𝑋
α =

1
√
|𝑔|
𝜕α (

√
|𝑔|𝑋α) . (2.114)

Эта полезная формула позволяет переписать инвариантный интеграл от дивергенции
произвольного векторного поля в (псевдо)римановой геометрии в виде∫

𝑑𝑥
√
|𝑔|∇̃α𝑋

α =

∫
𝑑𝑥 𝜕α(

√
|𝑔|𝑋α)

и воспользоваться формулой Стокса.
Наличие ковариантной производной ∇α и метрики 𝑔αβ позволяет строить кова-

риантные дифференциальные операторы, действующие на произвольные тензорные
поля на многообразии. Для их построения достаточно взять произвольный диффе-
ренциальный оператор в (псевдо)евклидовом пространстве, заменить частные про-
изводные 𝜕α на ковариантные ∇α и (псевдо)евклидову метрику 𝜂αβ на метрику мно-
гообразия 𝑔αβ. В общем случае эта процедура неоднозначна.

Инвариантный дифференциальный оператор второго порядка, действующий на
произвольные тензорные поля на многообразии имеет вид

△ := 𝑔αβ∇α∇β. (2.115)

Он часто называется оператором Лапласа–Бельтрами независимо от сигнатуры мет-
рики.

В (псевдо)римановой действие оператора Лапласа–Бельтрами на скалярное поле
можно записать в виде:

△̃𝑓 =
1

√
|𝑔|
𝜕α
(√
|𝑔|𝑔αβ𝜕β𝑓

)
. (2.116)

Если пренебречь граничными слагаемыми, то в (псевдо)римановой геометрии
справедлива формула интегрирования по частям:∫

𝑑𝑥
√
|𝑔|𝑋αa∇̃α𝑌a = −

∫
𝑑𝑥

√
|𝑔|
[
∇̃α𝑋

αa𝑌a

]
, (2.117)

где индекс a обозначает произвольную совокупность ковариантных и контравари-
антных индексов, по которым подразумевается суммирование. Отсюда следует, что
с точностью до граничных членов имеет место равенство∫

𝑑𝑥
√
|𝑔|𝑋a△̃𝑌a =

∫
𝑑𝑥

√
|𝑔|△̃𝑋a𝑌a, (2.118)

т.е. оператор Лапласа–Бельтрами в (псевдо)римановой геометрии самосопряжен.

2.8 Тензор кривизны
Помимо кручения аффинная связность Γαβ

γ на многообразии M задает еще один
важный геометрический объект – тензор кривизны аффинной связности или тензор
Римана–Кристоффеля. В локальной системе координат он имеет следующие компо-
ненты:

𝑅αβγ
δ := 𝜕αΓβγ

δ − Γαγ
εΓβε

δ − (𝛼 ↔ 𝛽), (2.119)

где скобки (𝛼 ↔ 𝛽) обозначают предыдущие слагаемые с переставленными индекса-
ми 𝛼 и 𝛽.
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Замечание. Тензор кривизны никакого отношения к метрике не имеет и определя-
ется только связностью.

Тензор кривизны играет очень важную роль в дифференциальной геометрии и
возникает в различных контекстах. Покажем, что тензор кривизны позволяет сфор-
мулировать критерий локальной тривиальности аффинной связности.

Пусть на многообразии M задана аффинная связность с нулевым кручением,
𝑇αβ

γ = 0. При этом неметричность, если задана также метрика, может быть отлична
от нуля. Рассмотрим соотношения (2.79) как уравнения на функции перехода 𝑥α(𝑥′).
Потребуем, чтобы в новой системе координат компоненты связности обращались в
нуль в некоторой односвязной области. Тогда функции перехода должны удовлетво-
рять уравнению

𝜕2𝑥α

𝜕𝑥β′𝜕𝑥γ′
= − 𝜕𝑥β

𝜕𝑥β′
𝜕𝑥γ

𝜕𝑥γ′
Γβγ

α. (2.120)

Дифференцируя это соотношение по 𝑥δ′ и исключая вторые производные от функций
перехода с помощью исходного уравнения (2.120), получим равенство

𝜕3𝑥α

𝜕𝑥β′𝜕𝑥γ′𝜕𝑥δ′
=
𝜕𝑥β

𝜕𝑥β′
𝜕𝑥γ

𝜕𝑥γ′
𝜕𝑥δ

𝜕𝑥δ′
(
− 𝜕δΓβγ

α + Γβδ
εΓεγ

α + Γδγ
εΓβε

α
)
.

Условия интегрируемости уравнений (2.120) получаются из этих уравнений антисим-
метризацией выражения в круглых скобках по индексам 𝛽′, 𝛿′ или 𝛾′, 𝛿′ и приравнива-
нием результата нулю. Обе антисимметризации приводят к единственному условию:
равенству нулю тензора кривизны (2.119), 𝑅αβγ

δ = 0.
Таким образом, справедлива

Теорема 2.8.1. Пусть на многообразии M задана геометрия Римана–Картана. Ес-
ли тензоры кривизны и кручения равны нулю в некоторой односвязной области
U ⊂ M, то, возможно, в меньшей окрестности существует такая система коор-
динат, в которой компоненты связности обратятся в нуль.

2.8.1 Свойства тензора кривизны

Выведем несколько полезных тождеств, исходя из определения тензора кривизны
(2.119). Прямые вычисления с учетом выражения аффинной связности через метри-
ку, кручение и неметричность показывают, что антисимметризация тензора кривиз-
ны по первым трем индексам определяется только тензором кручения и его ковари-
антными производными:

𝑅αβγ
δ +𝑅βγα

δ +𝑅γαβ
δ =∇α𝑇βγ

δ +∇β𝑇γα
δ +∇γ𝑇αβ

δ+

+ 𝑇αβ
ε𝑇εγ

δ + 𝑇βγ
ε𝑇εα

δ + 𝑇γα
ε𝑇εβ

δ. (2.121)

Пусть на многообразии M задана аффинная геометрия, т.е. метрика и связность.
Приведем явное выражение для тензора кривизны со всеми опущенными индексами.
С учетом разложения связности (2.89) и тождества (2.95) получаем равенство

𝑅αβγδ := 𝑅αβγ
ε𝑔εδ = 𝜕αΓβγδ + Γαγ

εΓβδε − Γαγ
ε(𝑇βδε +𝑄βδε)− (𝛼 ↔ 𝛽). (2.122)

Если у тензора кривизны со всеми опущенными индексами произвести симметриза-
цию по последней паре индексов, то получим тождество

𝑅αβγδ +𝑅αβδγ = ∇α𝑄βγδ −∇β𝑄αγδ + 𝑇αβ
ε𝑄εγδ. (2.123)
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Рассмотрим симметрии тензора кривизны относительно перестановок индексов.
В общем случае аффинной геометрии единственная симметрия тензора кривизны со
всеми опущенными индексами – это антисимметрия по первой паре индексов:

𝑅αβγδ = −𝑅βαγδ, (2.124)

что сразу вытекает из определения (2.119).
В геометрии Римана–Картана тензор кривизны антисимметричен также и по вто-

рой паре индексов, что является следствием уравнения (2.123),

𝑅αβγδ = −𝑅αβδγ. (2.125)

В (псевдо)римановой геометрии тензор кривизны обладает дополнительной сим-
метрией: его антисимметризация по первым трем индексам тождественно обращается
в нуль

𝑅̃[αβγ]δ = 0 ⇔ 𝑅̃αβγδ + 𝑅̃βγαδ + 𝑅̃γαβδ = 0. (2.126)

что следует из уравнения (2.121). Число независимых антисимметризованных индек-
сов [𝛼𝛽𝛾] в уравнении (2.126) равно

𝐶3
n =

𝑛!

3!(𝑛− 3)!
=
𝑛(𝑛− 1)(𝑛− 2)

6
.

Следовательно, число линейно независимых компонент тензора кривизны равно

[
𝑅̃αβγδ

]
=
𝑛2(𝑛− 1)2

4
− 𝑛2(𝑛− 1)(𝑛− 2)

6
=
𝑛2(𝑛2 − 1)

12
.

Из свойств (2.124), (2.125) и (2.126) следует, что в (псевдо)римановой геометрии
тензор кривизны симметричен также относительно перестановки первой пары ин-
дексов со второй:

𝑅̃αβγδ = 𝑅̃γδαβ. (2.127)

В (псевдо)римановой геометрии тензор кривизны со всеми опущенными индекса-
ми следующим образом выражается через метрику:

𝑅̃αβγδ =
1

2
(𝜕2
αγ𝑔βδ − 𝜕2

αδ𝑔βγ − 𝜕2
βγ𝑔αδ + 𝜕2

βδ𝑔αγ) + Γ̃αγ
εΓ̃βδε − Γ̃αδ

εΓ̃βγε. (2.128)

Как видим, он линеен по вторым производным от метрики и квадратичен по первым
производным.

Определение. По заданному тензору кривизны путем свертки пары индексов мож-
но построить тензор Риччи

𝑅αγ := 𝑅αβγ
β. (2.129)

Замечание. Тензор кривизны и тензор Риччи строятся только по аффинной связ-
ности, без использования метрики.

В общем случае тензор Риччи не обладает никакой симметрией по своим ин-
дексам. В (псевдо)римановой геометрии он симметричен относительно перестановки
индексов:

𝑅̃αγ = 𝑅̃γα.
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Определение. Свертывая тензор Риччи с обратной метрикой, получаем скалярную
кривизну многообразия

𝑅 := 𝑅αβ𝑔
αβ. (2.130)

Скалярная кривизна зависит и от связности, и от метрики.
В дальнейшем, для упрощения некоторых формул, мы используем также функ-

цию
𝐾 := − 1

𝑛(𝑛− 1)
𝑅, (2.131)

где 𝑅 – скалярная кривизна. При 𝑛 = 2 эта функция совпадает с гауссовой кривиз-
ной поверхности (произведением главных кривизн) K , вложенной в R3. В форму-
ле (2.131) коэффициент подобран таким образом, что кривизна 𝐾 𝑛-мерной сферы
радиуса 𝑎 равна 1/𝑎2. Будем называть функцию (2.131) нормированной скалярной
кривизной

Рассмотрим на многообразии M произвольное векторное поле 𝑋 = 𝑋α𝜕α ∈ 𝒳 (M)
и 1-форму 𝐴 = 𝑑𝑥α𝐴α ∈ Λ1(M). Ковариантные производные от их компонент имеют
вид (2.75), (2.76). Прямые вычисления показывают, что коммутатор двух ковариант-
ных производных определяется тензором кривизны и кручения:

[∇α,∇β]𝑋
γ = 𝑅αβδ

γ𝑋δ − 𝑇αβ
δ∇δ𝑋

γ, (2.132)
[∇α,∇β]𝐴γ = −𝑅αβγ

δ𝐴δ − 𝑇αβ
δ∇δ𝐴γ. (2.133)

и отличается только знаком перед слагаемым с кривизной. Коммутатор ковариант-
ных производных от скалярного поля 𝜙(𝑥) проще:

[∇α,∇β]𝜙 = −𝑇αβγ∇γ𝜙 (2.134)

и определяется только тензором кручения.
Формулы (2.132), (2.133) обобщаются на тензоры произвольного ранга.

Пример 2.8.1. Коммутатор ковариантных производных от компонент тензора 𝐾 ∈
𝒯 1

1 (M) типа (1, 1) имеет вид

[∇α,∇β]𝐾
γ
δ = 𝑅αβε

γ𝐾ε
δ −𝑅αβδ

ε𝐾γ
ε − 𝑇αβ

ε∇ε𝐾
γ
δ.

Для тензоров более высокого ранга будем иметь по одному слагаемому с кривизной
со знаком плюс и минус, соответственно, для каждого контравариантного и ковари-
антного индекса и одно общее слагаемое с тензором кручения.

2.9 Неголономный базис
Аффинная геометрия на многообразии M, dimM = 𝑛, задается метрикой 𝑔αβ и аф-
финной связностью Γαβ

γ или, что эквивалентно, метрикой 𝑔αβ, кручением 𝑇αβ
γ и

неметричностью 𝑄αβγ. При таком описании каждое преобразование координат сопро-
вождаются соответствующим преобразованием компонент тензорных полей относи-
тельно координатного базиса. Существует также другой способ описания геометрии,
когда компоненты тензорных полей рассматриваются относительно репера, который
не меняется при преобразовании координат. В этом случае на компоненты тензорных
полей действует группа локальных преобразований GL(𝑛,R), что соответствует вра-
щению репера. В результате аффинная геометрия на многообразии M будет задана
репером 𝑒α

a и линейной или GL(𝑛,R) связностью 𝜔αa
b.
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Определение. Переменные репер 𝑒α
a(𝑥) и GL(𝑛,R) связность 𝜔αa

b(𝑥), задающие
на многообразии M аффинную геометрию, называются переменными Картана. В
четырехмерном пространстве-времени репер называется тетрадой. В двумерном и
трехмерном пространстве репер называется, соответственно, диадой и триадой.

Замечание. В моделях математической физики переменные Картана, как правило,
упрощают вычисления и необходимы при рассмотрении спинорных полей на много-
образии M.

Напомним, что координатный базис касательных пространств Tx(M) во всех точ-
ках многообразия 𝑥 ∈ M мы обозначаем 𝜕α, и он называется голономным. Важным
свойством координатных базисных векторов 𝜕α является их коммутативность:

[𝜕α, 𝜕β] = 0.

Предположим, что в каждой точке многообразия 𝑥 ∈ M задан произвольный ба-
зис касательного пространства 𝑒a(𝑥) (репер) и дуальный к нему базис 1-форм 𝑒a(𝑥)
(корепер), 𝑎 = 1, . . . , 𝑛. Дуальность означает, что значение 1-форм 𝑒a на векторных
полях 𝑒b равно символу Кронекера: 𝑒a(𝑒b) = 𝛿ab .

Репер и корепер можно разложить по координатному базису:

𝑒a = 𝑒αa𝜕α, 𝑒a = 𝑑𝑥α𝑒α
a,

где 𝑒αa и 𝑒αa – взаимно обратные невырожденные матрицы, что является следствием
дуальности базисов,

𝑒αa𝑒α
b = 𝛿ba, 𝑒αa𝑒β

a = 𝛿αβ .

По предположению матрицы 𝑒αa и 𝑒αa невырождены и достаточно гладко зависят от
точки многообразия.

В общем случае репер представляет собой неголономный базис касательного про-
странства, т.е. не существует такой системы координат 𝑥a = 𝑥a(𝑥), что

𝑒αa = 𝜕a𝑥
α. (2.135)

Репер определен с точностью до локальных GL(𝑛,R) преобразований, действующих
на латинские индексы. Его важнейшей характеристикой являются компоненты него-
лономности 𝑐abc, которые определяются коммутатором базисных векторных полей:

[𝑒a, 𝑒b] := 𝑐ab
c𝑒c (2.136)

и антисимметричны по нижним индексам:

𝑐ab
c(𝑥) = −𝑐bac(𝑥).

Нетрудно проверить, что равенство нулю компонент неголономности является
необходимым и достаточным условием локальной разрешимости системы уравнений
(2.135). Это означает, что, если компоненты неголономности равны нулю в некоторой
области, то для любой точки из этой области существует окрестность, в которой
можно выбрать такую систему координат, что базис станет голономным 𝑒a = 𝜕/𝜕𝑥a.

Из определения (2.136) следует явное выражение для компонент неголономности
через компоненты репера и их производные:

𝑐αβ
c := 𝑒α

a𝑒β
b𝑐ab

c = −𝜕α𝑒βc + 𝜕β𝑒α
c. (2.137)
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Компоненты неголономности ковариантны относительно преобразования коор-
динат 𝑥α→𝑥α

′
(𝑥), но не являются компонентами какого-либо тензора относительно

локальных GL(𝑛,R) преобразований.
Использование неголономного базиса вместо координатного бывает значительно

удобнее и часто используется в приложениях. Поэтому получим основные формулы
дифференциальной геометрии в неголономном базисе.

Произвольное векторное поле можно разложить как по координатному, так и по
некоординатному (неголономному) базису

𝑋 = 𝑋α𝜕α = 𝑋a𝑒a,

где 𝑋α = 𝑒αa𝑋
a и 𝑋a = 𝑋α𝑒α

a. Предположим, что переход от греческих индексов
к латинским и наоборот у компонент тензорных полей произвольного ранга всегда
осуществляется с помощью компонент репера и корепера. При этом все симметрии
относительно перестановок индексов, конечно, сохраняются.

Если на M задана метрика 𝑔αβ, то ее компоненты в неголономном базисе имеют
вид

𝑔ab = 𝑒αa𝑒
β
b𝑔αβ. (2.138)

В общем случае компоненты метрики 𝑔ab(𝑥) зависят от точки многообразия. Метрика
𝑔ab всегда имеет ту же сигнатуру, что и метрика 𝑔αβ, т.к. матрица 𝑒αa невырождена.
Подъем и опускание греческих и латинских индексов осуществляется с помощью
метрик 𝑔αβ и 𝑔ab, соответственно.

Как правило, репер используют в тех случаях, когда матрица 𝑔ab является диа-
гональной и постоянной, а на диагонали расположены плюс и минус единицы:

𝑔ab = 𝜂ab := diag (+ · · ·+︸ ︷︷ ︸
p

− · · ·−︸ ︷︷ ︸
q

), 𝑝+ 𝑞 = 𝑛.

Локально такой репер существует, поскольку уравнение (2.138) при одинаковых сиг-
натурах метрик 𝑔ab и 𝑔αβ всегда разрешимо относительно репера. Такой репер на-
зывается ортонормальным и определен с точностью до O(𝑝, 𝑞) вращений. Ортонор-
мальный базис часто бывает более удобным, т.к. метрика в этом базисе постоянна.

Компоненты тензоров второго и более высокого рангов могут содержать одновре-
менно и греческие, и латинские индексы. По построению ковариантная производная
от компонент такого тензора содержит по одному слагаемому с аффинной связно-
стью для каждого греческого индекса и одному слагаемому с линейной связностью
для каждого латинского индекса. Если репер задан, то локальная форма линейной
связности взаимно однозначно определяется компонентами аффинной связности:

𝜔αa
b = Γαβ

γ𝑒βa𝑒γ
b − 𝜕α𝑒β

b𝑒βa. (2.139)

Эту формулу можно переписать в виде равенства нулю ковариантной производной
от компонент корепера:

∇α𝑒β
a = 𝜕α𝑒β

a − Γαβ
γ𝑒γ

a + 𝑒β
b𝜔αb

a = 0. (2.140)

Отсюда следует, что ковариантная производная от компонент репера также обраща-
ется в нуль

∇α𝑒
β
a = 𝜕α𝑒

β
a + Γαγ

β𝑒γa − 𝜔αa
b𝑒βb = 0.
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Тогда, используя правило Лейбница, можно свободно переходить от греческих ин-
дексов к латинским и наоборот под знаком ковариантного дифференцирования:

∇α𝑋
a = ∇α(𝑋

β𝑒β
a) = (∇α𝑋

β)𝑒β
a,

∇α𝑋a = ∇α(𝑋β𝑒
β
a) = (∇α𝑋β)𝑒

β
a,

где

∇α𝑋
a = 𝜕α𝑋

a + 𝜔αb
a𝑋b,

∇α𝑋a = 𝜕α𝑋a − 𝜔αa
b𝑋b

(2.141)

– ковариантные производные от компонент векторного поля относительно неголо-
номного базиса.

В (псевдо)римановой геометрии кручение и неметричность равны нулю. Тогда из
формулы (2.139) для ортонормального репера следует выражение для соответству-
ющей SO(𝑛) или SO(𝑝, 𝑞) связности через компоненты неголономности:

𝜔̃abc := 𝑒αa𝜔αbc =
1

2
(𝑐abc − 𝑐bca + 𝑐cab), (2.142)

т.е. компоненты связности однозначно выражаются через репер и его первые произ-
водные.

2.10 Тождества Бианки
Тождества Бианки играют большую роль в дифференциальной геометрии и ее при-
ложениях. В настоящем разделе мы рассмотрим их в компонентах. Громоздкие, но
прямые вычисления позволяют записать следующие тождества в переменных Кар-
тана:

∇α𝑅βγa
b +∇β𝑅γαa

b +∇γ𝑅αβa
b =𝑇αβ

δ𝑅γδa
b + 𝑇βγ

δ𝑅αδa
b + 𝑇γα

δ𝑅βδa
b, (2.143)

∇α𝑇βγ
a +∇β𝑇γα

a +∇γ𝑇αβ
a =𝑇αβ

δ𝑇γδ
a + 𝑇βγ

δ𝑇αδ
a + 𝑇γα

δ𝑇βδ
a+

+𝑅αβγ
a +𝑅βγα

a +𝑅γαβ
a. (2.144)

В (псевдо)римановой геометрии, когда кручение и неметричность равны нулю,
тождества Бианки (2.143), (2.144) существенно упрощаются:

∇̃α𝑅̃βγa
b + ∇̃β𝑅̃γαa

b + ∇̃γ𝑅̃αβa
b =0, (2.145)

𝑅̃αβγ
a + 𝑅̃βγα

a + 𝑅̃γαβ
a =0. (2.146)

Свернем эти тождества, соответственно, с реперами 𝑒γb и 𝑒γa. Тогда свернутые тож-
дества Бианки примут вид

∇̃α𝑅̃βγ − ∇̃β𝑅̃αγ + ∇̃δ𝑅̃αβγ
δ = 0, (2.147)

𝑅̃αβ − 𝑅̃βα = 0. (2.148)

Как видим, свойства симметрии тензора кривизны (2.146) и (2.148) в (псевдо)римановой
геометрии, которые уже были получены в разделе 2.8.1, можно рассматривать как
тождества Бианки.

Свертка тождества (2.147) с 𝑔αγ приводит к равенству

2∇̃β𝑅̃α
β − ∇̃α𝑅̃ = 0, (2.149)
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которое можно переписать в виде

∇̃β𝐺
βα = 0, (2.150)

где
𝐺αβ := 𝑅̃αβ −

1

2
𝑔αβ𝑅̃

– тензор Эйнштейна, построенный из тензора Риччи и скалярной кривизны при ну-
левом кручении и тензоре неметричности.

2.11 Бесконечно малые преобразования координат
В настоящем разделе рассматриваются свойства различных полей на многообразии
при бесконечно малых преобразованиях координат. Полученные ниже формулы важ-
ны в приложениях, в частности, они будут использованы в следующем разделе для
вычисления производных Ли.

Поскольку рассмотрение носит локальных характер, то для простоты и наглядно-
сти мы рассмотрим евклидово пространство Rn с фиксированной декартовой систе-
мой координат. Бесконечно малые (инфинитезимальные) преобразования координат

𝑥′α := 𝑥α + 𝑢α(𝑥) (2.151)

определяются векторным полем
𝑢 = 𝑢α𝜕α.

Рассмотрим, как меняются тензорные поля при инфинитезимальных преобразо-
ваниях координат (2.151). Начнем с простейшего случая скалярного поля (функции)
𝑓 ∈ 𝒞∞(Rn). Из закона преобразования скалярного поля (2.12) следует равенство

𝑓 ′(𝑥+ 𝑢) = 𝑓(𝑥). (2.152)

Разлагая левую часть этого равенства в ряд Тейлора, в первом порядке по 𝑢 получим
следующее выражение

𝑓 ′ = 𝑓 − 𝑢α𝜕α𝑓, (2.153)

где все поля рассматриваются в точке 𝑥. Полученное соотношение интерпретирует-
ся следующим образом. При инфинитезимальном преобразовании координат (2.151)
значение функции 𝑓(𝑥) в точке 𝑥 меняется на бесконечно малую величину

𝛿𝑓(𝑥) := 𝑓 ′(𝑥)− 𝑓(𝑥) = −𝑢α𝜕α𝑓 = −𝑢𝑓. (2.154)

которая называется приращением или вариацией формы функции 𝑓 в точке 𝑥. Пра-
вая часть этого равенства с обратным знаком представляет собой производную от
функции 𝑓 вдоль векторного поля 𝑢, определяющего преобразование координат.

Из закона преобразования векторных полей (2.17), который для инфинитезималь-
ных преобразований в первом порядке по 𝑢 можно переписать в виде

𝑋 ′α(𝑥+ 𝑢) = 𝑋β(𝛿αβ + 𝜕β𝑢
α),

следует, что вариация формы компонент векторного поля имеет вид

𝛿𝑋α = 𝑋β𝜕β𝑢
α − 𝑢β𝜕β𝑋

α = [𝑋, 𝑢]α. (2.155)
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То есть приращение векторного поля в точке 𝑥 равно коммутатору этого векторного
поля с инфинитезимальным векторным полем смещения 𝑢.

Закон преобразования компонент 1-формы (2.18) приводит к следующему прира-
щению компонент

𝛿𝜔α = −𝜕α𝑢β𝜔β − 𝑢β𝜕β𝜔α (2.156)

или, в ковариантном виде,

𝛿𝜔α = −∇̃α𝑢
β𝜔β − 𝑢β∇̃β𝜔α. (2.157)

При этом использовано явное выражение для аффинной связности (2.89). Напомним,
что символ ∇̃ обозначает ковариантную производную с символами Кристоффеля.

Аналогично находится явный вид бесконечно малых преобразований координат
для тензоров произвольного ранга.

Приращения компонент тензорных полей, а также связности при инфинитези-
мальных преобразованиях координат являются тензорными полями. Поскольку бес-
конечно малые преобразования координат параметризуются векторным полем 𝑢, то
вариации полей всегда можно записать в явно ковариантном виде.

Рассмотрим бесконечно малые преобразования основных геометрических объек-
тов: метрики и аффинной связности. Для метрики справедливо равенство

𝛿𝑔αβ = −𝜕α𝑢γ𝑔γβ − 𝜕β𝑢
γ𝑔αγ − 𝑢γ𝜕γ𝑔αβ (2.158)

или, в ковариантном виде,

𝛿𝑔αβ = −∇̃α𝑢β − ∇̃β𝑢α. (2.159)

Из уравнения (2.158) следует правило преобразования определителя метрики

𝛿𝑔 = −𝑢α𝜕α𝑔 − 2𝜕α𝑢
α𝑔. (2.160)

Отсюда вытекает выражение для вариации формы элемента объема:

𝛿
√
|𝑔| = −𝑢α𝜕α

√
|𝑔|−

√
|𝑔|𝜕α𝑢

α = −
√
|𝑔|∇̃α𝑢

α, (2.161)

Бесконечно малые приращения различных полей, рассмотренные в настоящем
разделе, называются вариацией формы, т.к. показывают как меняется значение по-
лей в фиксированной точке многообразия. Следующее свойство проверяется прямой
проверкой и используется при доказательстве теоремы Нетер.

Предложение 2.11.1. Вариация формы производной скалярного поля равно произ-
водной от вариации

𝛿(𝜕α𝑓) = 𝜕α(𝛿𝑓).

Рассмотрим коммутатор двух бесконечно малых преобразований координат. Пусть
эти преобразования задаются векторными полями 𝑢 = 𝑢α𝜕α и 𝑣 = 𝑣α𝜕α. Для про-
стоты, ограничимся их последовательным действием на функцию 𝑓(𝑥). Коммутатор
двух преобразований также является преобразованием координат с параметром, ко-
торый квадратичен по компонентам 𝑢α и 𝑣α. Поэтому, в отличие от предыдущего
рассмотрения, для вычисления коммутатора необходимо удерживать квадратичные
слагаемые.
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Сначала совершим преобразование координат, определяемое векторным полем
𝑢. Из закона преобразования функции (2.152) с учетом квадратичных слагаемых
получаем равенство

𝑓 ′ + 𝑢α𝜕α𝑓
′ +

1

2
𝑢α𝑢β𝜕2

αβ𝑓
′ = 𝑓.

Во втором слагаемом в левой части равенства 𝑓 ′ можно выразить через 𝑓 , восполь-
зовавшись линейным приближением (2.153), а в третьем слагаемом заменим 𝑓 ′ на 𝑓 ,
потому что коэффициент перед ним уже квадратичен по 𝑢. В результате с точностью
до квадратичных слагаемых получаем разложение

𝑓 ′ := (1 + 𝑇u)𝑓 = 𝑓 − 𝑢α𝜕α𝑓 + 𝑢α𝜕α𝑢
β𝜕β𝑓 +

1

2
𝑢α𝑢β𝜕2

αβ𝑓 + . . . , (2.162)

где мы ввели генератор общих преобразований координат 𝑇u и выписали его действие
на функцию в квадратичном приближении.

Совершим теперь второе преобразование координат с параметром 𝑣

(1 + 𝑇v)𝑓
′ = (1 + 𝑇v)(1 + 𝑇u)𝑓 =

= 𝑓 ′ − 𝑣α𝜕α𝑓
′ + 𝑣α𝜕α𝑣

β𝜕β𝑓
′ +

1

2
𝑣α𝑣β𝜕2

αβ𝑓
′ + . . . =

= 𝑓 − (𝑢α + 𝑣α − 𝑢β𝜕β𝑢
α − 𝑣β𝜕β𝑣

α − 𝑣β𝜕β𝑢
α)𝜕α𝑓+

+
1

2
(𝑢α𝑢β + 2𝑢α𝑣β + 𝑣α𝑣β)𝜕2

αβ𝑓 + . . . .

Вычитая из этого выражения результат тех же преобразований в обратном порядке,
получим явное выражение для коммутатора двух преобразований координат

[𝑇v, 𝑇u]𝑓 = 𝑇[v,u]𝑓 = (𝑣β𝜕β𝑢
α − 𝑢β𝜕β𝑣

α)𝜕α𝑓. (2.163)

Таким образом, коммутатор двух преобразований координат в евклидовом простран-
стве Rn, определяемых инфинитезимальными векторными полями 𝑢 и 𝑣, является
преобразованием координат, которое задается коммутатором векторных полей [𝑣, 𝑢].

Из групповых соображений следует, что коммутатор двух преобразований коор-
динат не зависит от представления. Другими словами, это же выражение для комму-
татора имеет место не только для функций, но и для тензорных полей или плотностей
более высокого ранга. В последнем случае вычисления являются более громоздкими.

2.12 Производная Ли

Понятие потока R×M s−→ M, генерируемого отличным от нуля дифференцируемым
векторным полем 𝑋 ∈ 𝒳 (M) (раздел 2.1.2), позволяет определить производную Ли
LX от произвольного тензорного поля 𝑇 вдоль векторного поля 𝑋.

Рассмотрим произвольную точку 𝑥 ∈ M. Тогда у нее существует окрестность
Ux такая, что отображение 𝑠 : Ux → 𝑠(Ux) является диффеоморфизмом. Поэтому
для него определены дифференциал отображения 𝑠∗ и обратное отображение 𝑠∗−1

к возврату отображения 𝑠∗. Пусть в некоторой окрестности точки 𝑥 ∈ M задано
тензорное поле 𝑇 ∈ 𝒯 r

s (M) типа (𝑟, 𝑠). В результате экспоненциального отображения
𝑠(𝜖, 𝑥) с малым параметром 𝜖 тензор 𝑇 (𝑥) в точке 𝑥 отобразится в тензор 𝑠𝑇 (𝑥) в
точке 𝑠(𝜖, 𝑥), где 𝑠𝑇 обозначает продолжение отображения (𝑠∗)

r(𝑠∗−1)s𝑇 , заданного в
касательном и кокасательном пространствах, на всю тензорную алгебру (в компонен-
тах: на каждый контравариантный индекс действует дифференциал отображения 𝑠∗,



2.12. ПРОИЗВОДНАЯ ЛИ 51

а на каждый ковариантный индекс – обратное отображение 𝑠∗−1). Это значит, что в
точку 𝑥 отобразится тензор из точки 𝑠(−𝜖, 𝑥):

𝑇
(
𝑠(−𝜖, 𝑥)

)
↦→ 𝑠

(
𝜖, 𝑠(−𝜖, 𝑥)

)
𝑇
(
𝑠(−𝜖, 𝑥)

)
.

Определение. Производной Ли от тензорного поля 𝑇 вдоль векторного поля 𝑋 в
точке 𝑥 называется предел

LX𝑇 := lim
ε→0

𝑇 (𝑥)− 𝑠
(
𝜖, 𝑠(−𝜖, 𝑥)

)
𝑇
(
𝑠(−𝜖, 𝑥)

)
𝜖

. (2.164)

В упрощенной записи мы пишем

LX𝑇 = lim
ε→0

𝑇 (𝑥)− 𝑠(𝜖)𝑇

𝜖
, (2.165)

где мы опустили аргумент 𝑠(−𝜖, 𝑥) ∈ M.

Для дифференцируемых векторных и тензорных полей этот предел существует.
При малых 𝜖 экспоненциальное отображение имеет вид 𝑥α ↦→ 𝑠α(𝜖, 𝑥) = 𝑥α+𝜖𝑋α+

. . . , т.е. соответствует бесконечно малым преобразованиям координат, рассмотрен-
ным в предыдущем разделе, с вектором смещения 𝑢α = 𝜖𝑋α. При этом выражение,
стоящее в числителе производной Ли (2.164), совпадает с вариацией формы тензор-
ного поля 𝑇 , взятой с обратным знаком. Это следует непосредственно из определения
вариации формы тензорного поля. Поэтому определение (2.164) для компонент тен-
зорного поля типа (𝑟, 𝑠) принимает вид

LX𝑇β1...βs
α1...αr(𝑥) = − lim

ε→0

𝛿𝑇β1...βs
α1...αr(𝑥)

𝜖
, (2.166)

где 𝛿𝑇β1...βsα1...αr(𝑥) – вариация формы компонент тензорного поля типа (𝑟, 𝑠), рас-
смотренная в разделе 2.11. Несложные вычисления приводят к следующему выра-
жению для производной Ли компонент тензорного поля

LX𝑇β1...βs
α1...αr =𝑋γ𝜕γ𝑇β1...βs

α1...αr+

+ 𝜕β1𝑋
γ𝑇γβ2...βs

α1...αr + . . .+ 𝜕βs𝑋
γ𝑇β1...βs−1γ

α1...αr−
− 𝑇β1...βs

γα2...αr𝜕γ𝑋
α1 − . . .− 𝑇β1...βs

α1...αr−1γ𝜕γ𝑋
α1 .

(2.167)

Первое слагаемое в правой части (2.167) соответствует смещению самой точки 𝑥,
слагаемые во второй и третьей строках (2.167) возникают при действии отображений
𝑠∗−1 и 𝑠∗ на каждый ковариантный и контравариантный индекс, соответственно.

Формула (2.167) конструктивна и позволяет получить явные выражения для про-
изводных Ли различных тензорных полей в координатах.

Пример 2.12.1. В простейшем случае скалярного поля 𝑓(𝑥) производная Ли сов-
падает с производной функции вдоль векторного поля. Покажем это. Поскольку на
скалярное поле ни дифференциал отображения, ни его возврат не действуют, то из
определения (2.164) следует

LX𝑓 = lim
ε→0

𝑓(𝑥)− 𝑓(𝑥− 𝜖𝑋)

𝜖
= 𝑋α𝜕α𝑓.

Таким образом, производная Ли от функции – это просто производная вдоль век-
торного поля.
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Пример 2.12.2. Из уравнения (2.167) следует выражение для производной Ли от
векторного поля 𝑌 в координатах:

LX𝑌
α = 𝑋β𝜕β𝑌

α − 𝑌 β𝜕β𝑋
α,

что совпадает с коммутатором векторных полей (2.31)

LX𝑌 = [𝑋, 𝑌 ]. (2.168)

Пример 2.12.3. Из формулы (2.156) для инфинитезимальных преобразований сле-
дует, что производная Ли от 1-формы 𝐴 = 𝑑𝑥α𝐴α ∈ Λ1(M) имеет вид

LX𝐴α = 𝑋β𝜕β𝐴α + 𝜕α𝑋
β𝐴β = ∇̃X𝐴α + ∇̃α𝑋

β𝐴β.

Пример 2.12.4. Приведем также явное выражение для производной Ли от метрики

LX𝑔αβ = 𝑋γ𝜕γ𝑔αβ + 𝜕α𝑋
γ𝑔γβ + 𝜕β𝑋

γ𝑔αγ.

Это выражение можно переписать в виде

LX𝑔αβ = ∇̃α𝑋β + ∇̃β𝑋α, (2.169)

где ∇̃α – ковариантная производная со связностью Леви–Чивиты (раздел 2.7.1).

Замечание. Производная Ли не зависит ни от метрики, ни от аффинной связности,
которые могут быть заданы на многообразии совершенно независимо.

Определение. Пусть 𝑇 ∈ 𝒯 r
s (M) и 𝑋 ∈ 𝒳 (M) – произвольное тензорное поле типа

(𝑟, 𝑠) и полное векторное поле на многообразии M. Полное векторное поле порож-
дает однопараметрическую группу преобразований 𝑠(𝑡, 𝑥). Если значение тензорного
поля 𝑇 (𝑠) в точке 𝑠(𝑡, 𝑥) равно 𝑠(𝑡, 𝑥)𝑇 (𝑥), то мы говорим, что тензорное поле 𝑇 (𝑥)
инвариантно при действии однопараметрической группы преобразований.

Из определения производной Ли следует

Предложение 2.12.1. Тензорное поле 𝑇 ∈ 𝒯 r
s (M) инвариантно относительно од-

нопараметрической группы преобразований 𝑠(𝑡, 𝑥), порожденной векторным полем
𝑋, для всех 𝑡 тогда и только тогда, когда производная Ли равна нулю, LX𝑇 = 0.



Глава 3

Геодезические и экстремали

Пусть на многообразии M задана аффинная геометрия, т.е. метрика 𝑔 и аффинная
связность Γ. Тогда можно построить два типа выделенных кривых: геодезические и
экстремали. Геодезические линии определяются только связностью как линии, каса-
тельный вектор к которым остается касательным при параллельном переносе. Экс-
тремали, напротив, определяются только метрикой как линии экстремальной длины.
Поскольку метрика и связность являются независимыми геометрическими объекта-
ми, то в общем случае геодезические линии и экстремали различны. В частном случае
(псевдо)римановой геометрии, когда связностью является связность Леви–Чивиты,
геодезические и экстремали совпадают.

В настоящей главе мы рассмотрим оба типа кривых, т.к. они играют важную
роль в моделях математической физики. Достаточно сказать, что одним из посту-
латов общей теории относительности является предположение о том, что свободные
точечные частицы, подверженные действию только гравитационных сил, движутся
по экстремалям. Кроме того, понятие полноты многообразий связано также с экс-
тремалями.

3.1 Геодезические

В аффинной геометрии (M, 𝑔,Γ) существует выделенное семейство линий, которые
называются геодезическими. Рассмотрим произвольную кривую 𝛾 = 𝑥(𝑡) =

(
𝑥α(𝑡)

)
,

где −∞ ≤ 𝑡1 < 𝑡 < 𝑡2 ≤ ∞, на многообразии M. Вектор скорости кривой, 𝑢(𝑡) =(
𝑢α(𝑡) := 𝑥̇α(𝑡)

)
, как всегда, предполагается отличным от нуля.

Определение. Геодезической линией на многообразии M называется кривая 𝑥(𝑡)
класса 𝒞2([𝑡1, 𝑡2]), касательный вектор к которой остается касательным при парал-
лельном переносе вдоль нее.

Замечание. В определении геодезической линии присутствует только аффинная
связность. Поэтому понятие геодезической линии никакого отношения к метрике не
имеет, которой может вообще не быть на многообразии.

Получим уравнения, которым должны удовлетворять координатные функции 𝑥α(𝑡)
для того, чтобы кривая 𝛾 была геодезической. Выберем произвольный отличный от
нуля вектор 𝑋0, который касается кривой 𝛾 в некоторой точке 𝑥(𝑡0), и разнесем его
вдоль всей кривой с помощью параллельного переноса. В результате получим вектор-
ное поле 𝑋

(
𝑥(𝑡)

)
, определенное на кривой 𝛾. Из определения геодезической следует,

53
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что это векторное поле всюду касается 𝛾 и, следовательно, пропорционально вектор-
ному полю скорости: 𝑋α(𝑡) = 𝑓(𝑡)𝑢α(𝑡), где 𝑓 – некоторая отличная от нуля функция
на 𝛾. Изменим параметризацию кривой 𝑡 ↦→ 𝑠(𝑡). Тогда условие параллельности при-
мет вид

𝑋α = 𝑓
𝑑𝑠

𝑑𝑡

𝑑𝑥α

𝑑𝑠
. (3.1)

Выберем новый параметр 𝑠 вдоль геодезической таким образом, чтобы было выпол-
нено уравнение

𝑑𝑠

𝑑𝑡
=

1

𝑓
,

которое всегда имеет решение, поскольку 𝑓 ̸= 0. Таким образом, на геодезической
линии существует такая параметризация, что вектор скорости 𝑢 при параллельном
переносе остается вектором скорости. В дальнейшем мы предполагаем, что пара-
метр 𝑡 вдоль геодезической выбран таким образом, что 𝑓 = 1. Если вектор скорости
геодезической при параллельном переносе остается касательным, то ковариантная
производная от него вдоль геодезической равна нулю (2.98):

∇u𝑢 = 𝑢α(𝜕α𝑢
β + Γαγ

β𝑢γ)𝜕β = 0. (3.2)

Поскольку 𝑑/𝑑𝑡 = 𝑢α𝜕α, то это уравнение в компонентах принимает вид

𝑥̈α = −Γβγ
α𝑥̇β𝑥̇γ. (3.3)

Это уравнение не инвариантно относительно перепараметризации кривой. Однако
оно допускает линейную замену параметра

𝑡 ↦→ 𝑎𝑡+ 𝑏, 𝑎, 𝑏 ∈ R, 𝑎 ̸= 0. (3.4)

Таким образом, мы получили критерий того, что кривая 𝑥(𝑡) является геодезической.

Предложение 3.1.1. Кривая 𝑥(𝑡) на многообразии M с заданной аффинной связ-
ностью Γ является геодезической тогда и только тогда, когда существует такая
параметризация кривой, что ее координатные функции 𝑥α(𝑡) удовлетворяют си-
стеме уравнений (3.3).

Замечание. В уравнение (3.2) входит частная производная 𝜕α𝑢β от вектора скоро-
сти. Эта производная не определена, т.к. векторное поле скорости 𝑢β

(
𝑥(𝑡)

)
задано

только вдоль кривой 𝛾. Тем не менее в уравнение входит производная по направле-
нию 𝑢α𝜕α𝑢

β = 𝑥̈α, которая имеет смысл. Это значит, что, для определения частной
производной 𝜕α𝑢β, векторное поле скорости можно продолжить в некоторую окрест-
ность кривой 𝛾 произвольным дифференцируемым образом, а конечный ответ от
такого продолжения не зависит.

Определение. Параметр 𝑡, по которому проводится дифференцирование в системе
обыкновенных дифференциальных уравнений (3.3), определяющих геодезическую
линию, называется каноническим или аффинным.

Предложение 3.1.2. Любые два канонических параметра вдоль геодезической свя-
заны между собой линейным преобразованием (3.4).
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Доказательство. Рассмотрим вопрос как меняется уравнение для геодезических при
произвольной замене канонического параметра. При другой параметризации геоде-
зической 𝑥α(𝑠), где 𝑠 = 𝑠(𝑡), 𝑑𝑠/𝑑𝑡 ̸= 0, уравнение (3.3) изменится:(

𝑑𝑠

𝑑𝑡

)2
𝑑2𝑥α

𝑑𝑠2
+
𝑑2𝑠

𝑑𝑡2
𝑑𝑥α

𝑑𝑠
= −

(
𝑑𝑠

𝑑𝑡

)2

Γβγ
α𝑑𝑥

β

𝑑𝑠

𝑑𝑥γ

𝑑𝑠
. (3.5)

Отсюда следует, что форма уравнений (3.3) не изменится тогда и только тогда, когда
𝑑2𝑠/𝑑𝑡2 = 0, т.е. замена параметра является аффинной.

Уравнение (3.5) представляет собой уравнение геодезической 𝑥(𝑠) при произволь-
ной параметризации кривой. Действительно, из правила дифференцирования слож-
ной функции вытекает формула

𝑑2𝑠

𝑑𝑡2

/(𝑑𝑠
𝑑𝑡

)2

= − 𝑑2𝑡

𝑑𝑠2

/ 𝑑𝑡
𝑑𝑠
.

где (
𝑑𝑡

𝑑𝑠

)2

= 𝑔αβ
𝑑𝑥α

𝑑𝑠

𝑑𝑥β

𝑑𝑠
.

Тогда уравнение для геодезической в произвольной параметризации примет вид

𝑑2𝑥α

𝑑𝑠2
= −Γβγ

α𝑑𝑥
β

𝑑𝑠

𝑑𝑥γ

𝑑𝑠
+
𝑑𝑥α

𝑑𝑠

𝑑2𝑡

𝑑𝑠2

/ 𝑑𝑡
𝑑𝑠
. (3.6)

Пример 3.1.1. В пространстве Минковского R1,3 точечная частица движется по
некоторой мировой линии 𝑥(𝑡). Если в качестве параметра вдоль траектории выбра-
но время 𝑡 = 𝑥0, то скорость и ускорение кривой совпадают со скоростью и уско-
рением частицы. Если частица свободна, т.е. на нее не действуют никакие силы и,
следовательно, ее ускорение равно нулю, то траекторией частицы будет одна из гео-
дезических линий. Поскольку связность в R1,3 в декартовой системе координат имеет
равные нулю компоненты, то уравнения (3.3) сводятся к уравнениям

𝑥̈α = 0,

которые определяют прямые линии. Таким образом, в пространстве Минковского
R1,3 прямые и только они являются геодезическими. Это значит, что свободная части-
ца в пространстве Минковского равномерно движется вдоль прямой линии (первый
закон Ньютона).

Геодезическая линия в аффинной геометрии обобщает понятие прямой в (псев-
до)евклидовом пространстве, сохраняя то свойство, что касательный вектор остается
касательным при параллельном переносе.

Уравнения для геодезических (3.3) – это система нелинейных обыкновенных диф-
ференциальных уравнений второго порядка. Поэтому при достаточно гладких ком-
понентах связности для однозначного решения задачи Коши необходимо задать на-
чальную точку

(
𝑥α(0)

)
и вектор скорости

(
𝑥̇α(0)

)
. Геометрически это означает, что

через данную точку многообразия в данном направлении проходит одна и только
одна геодезическая.

Для геодезической линии можно также поставить краевую задачу: найти геодези-
ческую, соединяющую две фиксированные точки многообразия, которое предпола-
гается линейно связным. Эта задача разрешима в малом, т.е. любые две достаточно
близкие точки можно соединить геодезической и притом только одной. Для удален-
ных точек эта задача может не иметь решения или иметь несколько решений.
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Пример 3.1.2. Рассмотрим сферу, вложенную в евклидово пространство, S2 →˓ R3.
Пусть метрика на сфере индуцирована вложением и на ней задана связность Леви–
Чивиты. Тогда любые две точки на сфере S2, не являющиеся диаметрально проти-
воположными, можно соединить двумя разными геодезическими (две дуги большой
окружности, проходящей через эти точки). Диаметрально противоположные точки
соединяются бесконечным числом геодезических.

Введем важное понятие полноты геодезической по каноническому параметру 𝑡, В
силу однозначного разрешения задачи Коши, через каждую точку многообразия в
заданном направлении проходит одна геодезическая. Это значит, что геодезическую
линию, если она заканчивается в некоторой точке 𝑞 ∈ M, всегда можно продолжить.
Действительно, если при конечном значении канонического параметра геодезическая
попадает в точку 𝑞, то продолжим ее, склеив с геодезической, выходящей из точки
𝑞 в том же направлении.

Определение. Геодезическая в M называется полной, если ее можно продолжить в
обе стороны до бесконечного значения канонического параметра, 𝑡 ∈ (−∞,∞).

Замечание. Поскольку канонический параметр определен с точностью до аффинно-
го преобразования и не зависит от выбора системы координат, то данное определение
корректно.

Пусть на многообразии M задана не только аффинная связность Γ, но и метрика
𝑔. Тогда компоненты аффинной связности можно выразить через метрику, круче-
ние и неметричность по формуле (2.89). Хотя в уравнение для геодезических входит
только симметричная часть связности, тем не менее оно нетривиально зависит от
кручения и неметричности. Действительно, из формулы (2.89) следует, что симмет-
ричная часть аффинной связности имеет вид

Γ{βγ}
α =

1

2
(Γβγ

α + Γγβ
α) =

= Γ̃βγ
α +

1

2
(𝑇αβγ + 𝑇αγβ) +

1

2
(𝑄βγ

α +𝑄γβ
α −𝑄α

βγ), (3.7)

где Γ̃βγ
α – символы Кристоффеля. Ясно, что две связности, имеющие одинаковую

симметричную часть определяют одно и то же семейство геодезических.
Рассмотрим два вектора 𝑋 и 𝑌 , которые параллельно переносятся вдоль геоде-

зической 𝛾.

Предложение 3.1.3. Зависимость скалярного произведения (𝑋, 𝑌 ) двух векторов,
которые параллельно переносятся вдоль 𝛾, от точки геодезической определяется
только тензором неметричности:

𝜕u(𝑋, 𝑌 ) = ∇u(𝑋
α𝑌 β𝑔αβ) = −𝑢γ𝑋α𝑌 β𝑄γαβ. (3.8)

Отсюда следует, что в римановой геометрии и геометрии Римана–Картана, где
𝑄 = 0, скалярное произведение двух векторов при параллельном переносе вдоль гео-
дезической сохраняется. В частности, квадрат вектора скорости геодезической по-
стоянен вдоль нее.

Доказательство. Следует из определения тензора неметричности (2.88).
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Замечание. Это утверждение верно и для произвольной кривой (предложение 2.7.4).
Скалярное произведение двух векторных полей, полученных в результате параллель-
ного переноса двух векторов вдоль произвольной кривой 𝛾 в римановой геометрии и
геометрии Римана–Картана, не зависит от точки кривой.

Следствие. Если неметричность лоренцева многообразия M равна нулю, то квад-
рат вектора скорости постоянен вдоль геодезических, и их можно разделить на три
класса: времениподобные, пространственноподобные и светоподобные (изотропные).
При этом тип геодезической не может меняться от точки к точке.

3.2 Экстремали
Другим выделенным типом кривых в аффинной геометрии (M, 𝑔,Γ) являются экс-
тремали, которые определяются как линии экстремальной длины. Рассмотрим про-
извольную достаточно гладкую кривую 𝛾 = 𝑥(𝑡) ∈ M, 𝑡 ∈ [𝑡1, 𝑡2]. Предположим,
что квадрат вектора скорости кривой, 𝑢α := 𝑥̇α(𝑡), всюду отличен от нуля, 𝑢2 :=
𝑢α𝑢β𝑔αβ ̸= 0.

Замечание. Для римановой метрики это условие автоматически выполняется, по-
скольку вектор скорости предполагается отличным от нуля. Если метрика не явля-
ется знакоопределенной, то это условие нетривиально. Например, для лоренцевой
метрики это условие равносильно тому, что мы рассматриваем либо времени-, либо
пространственноподобные кривые.

Пусть кривая соединяет две точки 𝑝 =
(
𝑥α(𝑡1)

)
и 𝑞 =

(
𝑥α(𝑡2)

)
. Тогда длина этой

кривой задается интегралом

𝑆 =

q∫
p

𝑑𝑠, 𝑑𝑠 := 𝑑𝑡
√
|𝑔αβ𝑥̇α𝑥̇β| = 𝑑𝑡

√
|𝑢2|. (3.9)

Этот функционал инвариантен относительно общих преобразований координат 𝑥α и
произвольной перепараметризации кривой 𝑡→ 𝜏(𝑡).

Определение. Экстремалью, соединяющей две точки (псевдо)риманова многооб-
разия 𝑝, 𝑞 ∈ M, если она существует, называется неизотропная кривая 𝛾 класса
𝒞2
(
[𝑡1, 𝑡2]

)
, для которой функционал (3.9) принимает экстремальное значение.

Замечание. Если метрика на многообразии M не является знакоопределенной, то
существуют изотропные кривые, для которых функционал длины (3.9) равен ну-
лю и данное выше определение экстремалей не проходит. Определение изотропных
экстремалей будет дано ниже.

Экстремали в римановом пространстве обобщают понятие прямой в евклидовом
пространстве, сохраняя свойство быть линиями минимальной (экстремальной) дли-
ны, соединяющей две точки.

Найдем уравнения, которым должны удовлетворять координатные функции 𝑥α(𝑡)
для того, чтобы кривая 𝑥(𝑡) была экстремалью. Пусть экстремаль соединяет две точ-
ки 𝑝 и 𝑞 многообразия. Выберем такую карту на многообразии, которая целиком
содержит данную экстремаль. Для этого достаточно взять объединение всех доста-
точно малых шаров, центры которых лежат на экстремали. Пусть в этой карте экс-
тремаль и ее вариация задаются набором функций 𝑥α(𝑡) и 𝛿𝑥α(𝑡). Мы предполагаем,
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что вариации кривой в конечных точках 𝑝, 𝑞 ∈ M равны нулю, 𝛿𝑥α(𝑝) = 𝛿𝑥α(𝑞) = 0,
и поэтому вкладом граничных членов при интегрировании по частям можно прене-
бречь. Вариация длины кривой (3.9) с точностью до знака имеет вид

𝛿𝑆 =

∫
𝑑𝑡

2
√

|𝑢2|
[
2𝛿(𝑥̇α)𝑥̇β𝑔αβ + 𝑥̇α𝑥̇β𝛿𝑔αβ

]
.

Проинтегрируем первое слагаемое по частям и воспользуемся равенством

𝛿𝑔βγ = 𝜕α𝑔βγ𝛿𝑥
α.

Тогда вариация длины кривой принимает вид

𝛿𝑆 = −
∫
𝑑𝑡

[
𝑑

𝑑𝑡

(
𝑥̇β𝑔αβ√
|𝑢2|

)
− 1

2
√

|𝑢2|
𝑥̇β𝑥̇γ𝜕α𝑔βγ

]
𝛿𝑥α.

Поскольку

𝑑𝑠 =
√
|𝑢|2𝑑𝑡, и 𝑥̇α =

√
|𝑢2|𝑑𝑥

α

𝑑𝑠
,

то вариацию длины кривой можно переписать в виде

𝛿𝑆 = −
∫
𝑑𝑠

(
𝑑2𝑥β

𝑑𝑠2
+ Γ̃γδ

β 𝑑𝑥
γ

𝑑𝑠

𝑑𝑥δ

𝑑𝑠

)
𝑔αβ𝛿𝑥

α,

где Γ̃βγ
α – символы Кристоффеля (2.94). Фактически, на этом этапе мы воспользо-

вались инвариантностью интеграла (3.9) относительно перепараметризации кривой,
выбрав длину кривой в качестве параметра, 𝑡 ↦→ 𝑠. Параметр 𝑠 вдоль экстремали на-
зывается каноническим. В дальнейшем канонический параметр мы будем обозначать
буквой 𝑡. Таким образом, мы доказали следующее утверждение.

Теорема 3.2.1. Для того, чтобы кривая 𝑥(𝑡) была экстремалью в канонической
параметризации, необходимо и достаточно, чтобы координатные функции 𝑥α(𝑡)
удовлетворяли системе обыкновенных дифференциальных уравнений

𝑥̈α = −Γ̃βγ
α𝑥̇β𝑥̇γ, (3.10)

где точка обозначает дифференцирование по каноническому параметру 𝑡.

В приложениях иногда полезно использовать произвольную параметризацию экс-
тремалей. Обозначим экстремаль в произвольной параметризации через

(
𝑥α(𝑢)

)
, где

𝑢 – произвольный параметр. Он связан с каноническим параметром некоторым до-
статочно гладким и невырожденным преобразованием 𝑡 ↦→ 𝑢(𝑡), 𝑑𝑡/𝑑𝑢 ̸= 0. Равенство
(3.5) представляет собой уравнение экстремалей (если Γβγ

α – символы Кристоффе-
ля), записанные в произвольной параметризации. Запишем их в виде

𝑑2𝑥α

𝑑𝑢2
= −Γ̃βγ

α𝑑𝑥
β

𝑑𝑢

𝑑𝑥γ

𝑑𝑢
− 𝑑𝑥α

𝑑𝑢

𝑑2𝑢

𝑑𝑡2

(
𝑑𝑡

𝑑𝑢

)2

. (3.11)

Легко проверить формулу дифференцирования

𝑑2𝑢

𝑑𝑡2

(
𝑑𝑡

𝑑𝑢

)2

= − 𝑑2𝑡

𝑑𝑢2

𝑑𝑢

𝑑𝑡
.
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Тогда уравнение экстремалей в произвольной параметризации (3.11) примет вид

𝑑2𝑥α

𝑑𝑢2
= −Γ̃βγ

α𝑑𝑥
β

𝑑𝑢

𝑑𝑥γ

𝑑𝑢
+
𝑑𝑥α

𝑑𝑢

𝑑2𝑡

𝑑𝑢2

𝑑𝑢

𝑑𝑡
. (3.12)

Если в качестве канонического параметра выбрана длина экстремали 𝑡 = 𝑠,

𝑑𝑠2 := 𝑔αβ𝑑𝑥
α𝑑𝑥β,

то равенство (3.12) необходимо дополнить уравнением на параметр(
𝑑𝑠

𝑑𝑢

)2

= 𝑔αβ
𝑑𝑥α

𝑑𝑢

𝑑𝑥β

𝑑𝑢
. (3.13)

Мы получили критерий того, что неизотропная кривая является экстремалью.
При выводе уравнений (3.10) из вариационного принципа для действия (3.9) суще-
ственно используется условие 𝑢2 ̸= 0, которое исключает изотропные (светоподоб-
ные) экстремали. Поэтому изотропные экстремали определим не с помощью функци-
онала длины, а непосредственно уравнениями (3.10). Для любой изотропной кривой
𝑢2 = 0 и интеграл (3.9) равен нулю. В то же время уравнения (3.10) имеют смысл.

Определение. Изотропной экстремалью в канонической параметризации называ-
ется изотропная кривая 𝛾 класса 𝒞2([𝑡1, 𝑡2]), которая задана функциями 𝑥α(𝑡), удо-
влетворяющими системе обыкновенных дифференциальных уравнений (3.10).

Это определение корректно, т.к. квадрат вектора скорости экстремали постоянен.
При этом не всякая изотропная кривая является экстремалью.

Если параметр вдоль изотропной экстремали 𝑥α(𝑢) не канонический, то систе-
ма уравнений меняется на уравнения (3.12). При этом длина касательного вектора
остается нулевой.

Уравнения (3.10) определяются только метрикой, поскольку функционал длины
не зависит от аффинной связности. Тем самым экстремали не зависят от того зада-
ны ли на многообразии M тензоры кручения и неметричности или нет. Сравнение
уравнений (3.10) с уравнением для геодезических (3.3) показывает, что экстремали
являются геодезическими линиями по отношению к параллельному переносу, опре-
деляемому символами Кристоффеля. Это означает, что все свойства геодезических
справедливы также и для экстремалей. В частности, канонический параметр вдоль
экстремали инвариантен относительно преобразования координат. При произвольной
параметризации уравнение для экстремалей имеет вид (3.12).

Определение. Экстремаль 𝛾 в M называется полной, если ее можно продолжить
до бесконечного значения канонического параметра в обе стороны, 𝑡 ∈ (−∞,∞).

Замечание. При продолжении экстремали (или геодезической) возможны два слу-
чая. Во-первых, она может оказаться полной и иметь бесконечную длину. К полным
экстремалям мы относим также и замкнутые экстремали, которые имеют конечную
длину. Хотя их длина конечна, но канонический параметр продолжается до бесконеч-
ности, что соответствует бесконечному числу проходов вдоль экстремали. Во-вторых,
при конечном значении канонического параметра экстремаль может попасть в та-
кую точку многообразия, в которой один из геометрических инвариантов, например,
скалярная кривизна, неопределен. Эта точка является сингулярной, и продолжение
экстремали через нее не имеет смысла.
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3.3 Интегрирование уравнений для экстремалей и
геодезических

Уравнения для экстремалей и геодезических в ряде случаев имеют первые инте-
гралы, наличие которых существенно упрощает их исследование. Начнем с универ-
сального закона сохранения. Поскольку при параллельном переносе и в римановой
геометрии, и в геометрии Римана–Картана длины векторов не меняется, то отсюда
сразу следует, что длина вектора скорости 𝑢 = (𝑢̇α) вдоль экстремалей и геодезиче-
ских постоянна.

Предложение 3.3.1. В геометрии Римана–Картана и (псевдо)римановой геомет-
рии для уравнений геодезических (3.3) и экстремалей (3.10) существует первый
интеграл

𝐶0 = 𝑢2 := 𝑥̇α𝑥̇β𝑔αβ = const, (3.14)

квадратичный по первым производным (скоростям).

Доказательство. Следствие предложения 3.1.3. Можно доказать и формально, про-
дифференцировав уравнение (3.14) по каноническому параметру и воспользовавшись
уравнением для геодезических или экстремалей.

Первый интеграл (3.14) имеет кинематический характер и существует для любой
экстремали и геодезической в (псевдо)римановой геометрии и геометрии Римана–
Картана. Если метрика имеет лоренцеву сигнатуру, то экстремали и геодезические
можно разделить на три класса: времениподобные, 𝐶0 > 0, изотропные или свето-
подобные, 𝐶0 = 0, и пространственноподобные, 𝐶0 < 0. Поскольку канонический
параметр определен с точностью до аффинных преобразований, то для временипо-
добных и пространственноподобных экстремалей его всегда можно выбрать таким
образом, что 𝐶0 = ±1. В этом случае для времениподобных экстремалей канониче-
ский параметр называется собственным временем, а для пространственноподобных
– длиной экстремали.

Существование других первых интегралов связано с инфинитезимальными сим-
метриями метрики, которые определяются векторными полями Киллинга.

Предложение 3.3.2. Если метрика на многообразии имеет один или несколько
векторов Киллинга 𝐾i = (𝐾α

i ), 𝑖 = 1, . . . ,n, то для каждого вектора Киллинга
имеется свой интеграл движения и для экстремалей, и для геодезических в кано-
нической параметризации

𝐶i = 𝐾α
i 𝑥̇

β𝑔αβ = const, 𝑖 = 1, . . . ,n, (3.15)

который линеен по компонентам скорости.

Доказательство. Дифференцируем соотношения (3.15) по каноническому парамет-
ру и используем уравнения (3.3) или (3.10).

3.4 Уравнение Гамильтона–Якоби для экстремалей

Уравнения для экстремалей 𝛾 = 𝑥(𝑡) вытекают из вариационного принципа для дей-
ствия (3.9). Важным обстоятельством является то, что уравнения для экстремалей
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являются уравнениями Эйлера–Лагранжа также и для другого действия

𝑆m =

∫ b

a

𝑑𝑡𝐿m, 𝐿m = −1

2
𝑚𝑔αβ𝑥̇

α𝑥̇β, (3.16)

где точка обозначает дифференцирование по каноническому параметру 𝑡 и𝑚 = const
– постоянная, имеющая физический смысл массы точечной частицы. Действие (3.16)
приводит к уравнениям для экстремалей, в которых переменная 𝑡 уже является ка-
ноническим параметром. Это согласуется с тем обстоятельством, что рассмотренное
действие инвариантно относительно общих преобразований координат и сдвигов па-
раметра 𝑡. Для сравнения напомним, что исходное действие для экстремалей (3.9)
инвариантно также относительно произвольных преобразований параметра 𝑡 вдоль
экстремали.

Действие (3.16) имеет простой физический смысл. Предположим, что метрика
имеет лоренцеву сигнатуру и зафиксируем временну́ю калибровку:

𝑔αβ =

(
1 0
0 𝑔µν

)
, sign 𝑔µν = (− . . .−). (3.17)

Символы Кристоффеля для этой метрики имеют вид

Γ00
0 = Γ00

µ = Γ0µ
0 = Γµ0

0 = 0,

Γ0µ
ν = Γµ0

ν =
1

2
𝑔νρ𝜕0𝑔µρ,

Γµν
0 = −1

2
𝜕0𝑔µν ,

Γµν
ρ = Γ̂µν

ρ,

(3.18)

где Γ̂µν
ρ – символы Кристоффеля на пространственноподобном сечении 𝑥0 = const,

построенные только по метрике 𝑔µν . Предположим также, что пространственная
часть метрики 𝑔µν не зависит от времени 𝑥0. Тогда уравнения для экстремалей рас-
щепляются:

𝑥̈0 = 0, (3.19)

𝑥̈µ = −Γ̂νρ
µ𝑥̇ν 𝑥̇ρ. (3.20)

Из первого уравнения следует, что, не ограничивая общности, канонический пара-
метр 𝑡 можно отождествить с временем 𝑥0 = 𝑐𝑡, где 𝑐 = const – скорость света.
Тогда лагранжиан (3.16) имеет прямой физический смысл – с точностью до адди-
тивной постоянной это – кинетическая энергия точечной частицы, которая движется
в римановом пространстве со статической метрикой 𝑔µν(𝑥). Несмотря на то, что по-
тенциальная энергия частицы равна нулю, ее траекториями уже не будут прямые
линии, если метрика нетривиально зависит от точки пространства.

Вернемся к исходному действию (3.16) до фиксирования временно́й калибровки.
Переформулируем эту лагранжеву систему на гамильтоновом языке, рассматривая
канонический параметр 𝑡 в качестве параметра эволюции. Под временем мы подра-
зумеваем координату 𝑥0 и, соответственно, предполагаем, что 𝑔00 > 0. Кроме этого
мы предполагаем, что все сечения постоянного времени 𝑥0 = const пространственно-
подобны. Импульс, сопряженный координатам 𝑥α, и гамильтониан системы равны

𝑝α =
𝜕𝐿m

𝜕𝑥̇α
= −𝑚𝑔αβ𝑥̇β,

𝐻m = − 1

2𝑚
𝑔αβ𝑝α𝑝β.

(3.21)
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Соответствующие уравнения Гамильтона (уравнения движения) имеют вид

𝑥̇α = [𝑥α, 𝐻m] = − 1

𝑚
𝑔αβ𝑝β, (3.22)

𝑝̇α = [𝑝α, 𝐻m] =
1

2𝑚
𝜕α𝑔

βγ𝑝β𝑝γ. (3.23)

Дифференцируя первое из этих уравнений по каноническому параметру и исклю-
чая импульсы 𝑝α и производные 𝑝̇α с помощью уравнений движения, нетрудно про-
верить, что система уравнений (3.22), (3.23) эквивалентна системе уравнений для
экстремалей (3.10). Тем самым мы переписали уравнения для экстремалей в виде
канонической системы уравнений движения.

Ранее было доказано, что длина касательного вектора к экстремали постоянна
(3.14). В гамильтоновом форме это утверждение имеет вид

𝐶0 =
1

𝑚2
𝑔αβ𝑝α𝑝β = const. (3.24)

По своей физической сути это есть закон сохранения энергии точечной частицы. В
данном случае только кинетической, т.к. потенциальная энергия тождественно равна
нулю.

Продолжим анализ гамильтоновой формы уравнений для экстремалей. Функция
действия 𝑆m(𝑥, 𝑡) удовлетворяет уравнению Гамильтона–Якоби

𝜕𝑆m

𝜕𝑡
− 1

2𝑚
𝑔αβ

𝜕𝑆m

𝜕𝑥α
𝜕𝑆m

𝜕𝑥β
= 0. (3.25)

Поскольку гамильтониан (3.21) не зависит от параметра 𝑡 явно, то функция действия
имеет вид

𝑆m(𝑥
α, 𝑡) =

𝑚𝐶0

2
𝑡+𝑊m(𝑥

α), 𝐶0 = const,

где укороченная функция действия 𝑊m удовлетворяет укороченному уравнению Га-
мильтона–Якоби

𝑔αβ
𝜕𝑊m

𝜕𝑥α
𝜕𝑊m

𝜕𝑥β
= 𝑚2𝐶0. (3.26)

Поскольку экстремали не зависят от массы пробной частицы, то, не ограни-
чивая общности, можно положить 𝑚 = 1 (включить в постоянную 𝐶0). Так как
𝑝α = 𝜕𝑊m/𝜕𝑥

α, то постоянная 𝐶0 равна длине касательного вектора к экстремали

𝑔αβ𝑥̇
α𝑥̇β = 𝑔αβ𝑝α𝑝β = 𝐶0.

Для экстремалей в пространстве-времени знак постоянной 𝐶0 определяет тип экс-
тремали: постоянные 𝐶0 > 0, 𝐶0 = 0 и 𝐶0 < 0 соответствуют времениподобным,
светоподобным и пространственноподобным экстремалям. Поскольку канонический
параметр определен с точностью до линейных преобразований, то можно считать,
что 𝐶0 = 1, 𝐶0 = 0 или 𝐶0 = −1. Отметим, что для экстремалей нулевой длины
𝐶0 = 0, и укороченное действие совпадает с полным 𝑊m = 𝑆m.

Рассмотрим волновое уравнение для скалярного поля 𝜙(𝑥) ∈ 𝒞2(M) на лоренцевом
многообразии:

𝑔αβ∇̃α∇̃β𝜙 = 𝑔αβ𝜕α𝜕β𝜙− 𝑔αβΓ̃αβ
γ𝜕γ𝜙 = 0, (3.27)
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или, эквивалентно,

1
√
|𝑔|
𝜕α
(√
|𝑔|𝑔αβ𝜕β𝜙

)
= 0, 𝑔 := det 𝑔αβ,

где мы воспользовались тождеством (2.116). Это – линейное дифференциальное урав-
нение в частных производных второго порядка с переменными коэффициентами ги-
перболического типа, т.к. метрика имеет лоренцеву сигнатуру. Важным понятием в
теории дифференциальных уравнений является характеристика (или характеристи-
ческая поверхность), которая для дифференциальных уравнений второго порядка
определяется квадратичной формой 𝑔αβ.

Определение. Характеристикой гиперболического дифференциального уравнения
второго порядка (3.27) называется 𝒞1 гиперповерхность в многообразии M, которая
задается уравнением

𝑊 (𝑥) = 0, (3.28)

где функция 𝑊 ∈ 𝒞1(M) на поверхности 𝑊 = 0 удовлетворяет условию

𝑔αβ𝜕α𝑊𝜕β𝑊
∣∣
W=0

= 0. (3.29)

При этом требуется, чтобы по крайней мере одна из частных производных 𝜕α𝑊 была
отлична от нуля на гиперповерхности (3.28).

Замечание. Отметим, что в определении характеристики важна гиперболичность,
т.к. при положительно или отрицательно определенной метрике уравнение (3.29) не
имеет вещественных решений.

Уравнение (3.29) для характеристики совпадает с укороченным уравнением Га-
мильтона–Якоби для экстремалей (3.26) при 𝐶0 = 0. Это значит, что характери-
стика соответствует укороченной функции действия для экстремалей нулевой дли-
ны. Напомним, что для экстремалей нулевой длины укороченная и полная функции
действия совпадают. Однако условие (3.29) является более слабым, т.к. мы требуем
выполнения (3.29) только на характеристике, а не во всем пространстве-времени.



Глава 4

Векторные поля Киллинга

Изучение преобразований, которые сохраняют метрику пространства-времени игра-
ет исключительно важную роль в математической физике. Достаточно сказать, что
с такими преобразованиями связаны наиболее важные законы сохранения. В настоя-
щей главе мы рассмотрим (псевдо)риманово многообразие (M, 𝑔) и найдем условия,
при которых метрика инвариантна относительно действия группы преобразований
(M,G). Дадим определение векторных полей Киллинга, которые являются генера-
торами локальных симметрий метрики, а также изучим некоторые из их свойств.
Будет доказана теорема о том, что, если (псевдо)риманово многообразие обладает
максимально возможной группой симметрии, то это – пространство постоянной кри-
визны.

4.1 Изометрии и инфинитезимальные изометрии
Рассмотрим 𝑛-мерное (псевдо)риманово многообразие (M, 𝑔) с метрикой 𝑔(𝑥) =
𝑔αβ(𝑥)𝑑𝑥

α⊗𝑑𝑥β, 𝛼, 𝛽 = 0, 1, . . . , 𝑛−1, и соответствующей связностью Леви-Чивиты Γ.
В настоящей главе, для простоты, мы не будем использовать знак тильды для обо-
значения компонент связности Леви–Чивиты, т.к. аффинная связность общего вида
с кручением и неметричностью использоваться не будет.

Определение. Диффеоморфизм

𝚤 : M ∋ 𝑥 ↦→ 𝑥′ = 𝚤(𝑥) ∈ M

называется изометрией или движением многообразия M, если он сохраняет метрику,

𝑔(𝑥) = 𝚤∗𝑔(𝑥′), (4.1)

где 𝚤∗ – возврат отображения 𝚤.

Поскольку изометрия сохраняет метрику, то она сохраняет также связность Леви-
Чивиты, соответствующий тензор кривизны, экстремали и, вообще, все геометриче-
ские объекты, которые определяются только метрикой.

Запишем отображение (4.1) в координатах. Пусть обе точки 𝑥 и 𝑥′ принадлежат
одной координатной окрестности и имеют, соответственно, координаты 𝑥α и 𝑥′α. То-
гда изометрия 𝚤 в координатах запишется в виде условия

𝑔αβ(𝑥) =
𝜕𝑥′γ

𝜕𝑥α
𝜕𝑥′δ

𝜕𝑥β
𝑔γδ(𝑥

′), (4.2)
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связывающего компоненты метрики в различных точках многообразия. Это условие
по виду совпадает с правилом преобразования компонент метрики при преобразо-
вании координат (2.60). Разница заключается в следующем. При преобразовании
координат мы считаем, что одной и той же точке 𝑥 ∈ M соответствует два набора
координат (𝑥α) и (𝑥α

′
:= 𝑥′α) в двух различных системах координат. При рассмотре-

нии изометрий 𝑥 и 𝑥′ – это две различные точки одного и того же многообразия M,
и равенство (4.2) связывает значения компонент метрики в этих точках.

Предложение 4.1.1. Множество всех изометрий данного (псевдо)риманова мно-
гообразия (M, 𝑔) является группой, которую обозначим I(M) ∋ 𝚤.

Доказательство. Две последовательных изометрии также являются изометрией.
Произведение (последовательное действие изометрий) ассоциативно. Тождественное
отображение многообразия M является изометрией и представляет собой единицу
группы. У каждого диффеоморфизма 𝚤 есть обратной диффеоморфизм 𝚤−1, который
является обратной изометрией.

Если метрика на многообразии задана, т.е. определены значения ее компонент во
всех точках 𝑥, то соотношение (4.2) представляет собой уравнение на функции 𝑥′(𝑥),
которые определяют изометрию. В общем случае это уравнение не имеет решений
и у соответствующего (псевдо)риманова многообразия нет никаких нетривиальных
изометрий. В этом случае группа изометрий состоит из одного единичного элемента.
Чем шире группа изометрий, тем уже класс соответствующих (псевдо)римановых
многообразий.

Пример 4.1.1. Евклидово пространство Rn с евклидовой метрикой 𝛿αβ допускает
группу изометрий, которая состоит из преобразований неоднородной группы враще-
ний IO(𝑛,R), dim IO(𝑛,R) = 1

2
𝑛(𝑛 + 1), состоящей из вращений, сдвигов и отраже-

ний.

Группа изометрий I(M) может быть дискретной или группой Ли.

Определение. Если группа изометрий I(M) является группой Ли, то имеет смысл
говорить об инфинитезимальных преобразованиях (см. раздел ??). В этом случае мы
говорим об инфинитезимальных изометриях

𝑥α ↦→ 𝑥′α = 𝑥α + 𝜖𝐾α + o(𝜖), 𝜖≪ 1.

Каждая инфинитезимальная изометрия генерируется некоторым достаточно глад-
ким векторным полем 𝐾(𝑥) = 𝐾α(𝑥)𝜕α, которое называется векторным полем Кил-
линга.

Запишем условие инвариантности метрики относительно инфинитезимальных пре-
образований из группы изометрий в координатах. В разделе 2.1.2 было показано,
что каждое векторное поле генерирует однопараметрическую группу преобразова-
ний, которая называется экспоненциальным отображением. Формально условие ин-
вариантности метрики записывается в виде равенства нулю производной Ли вдоль
векторного поля Киллинга 𝐾 = 𝐾α𝜕α от метрики

LK𝑔 = 0. (4.3)

Используя явное выражение для производной Ли (2.167), это уравнение в локальной
системе координат принимает вид [?]

∇α𝐾β +∇β𝐾α = 0, (4.4)
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где 𝐾α := 𝐾β𝑔βα – компоненты 1-формы Киллинга, а ковариантная производная

∇α𝐾β = 𝜕α𝐾β − Γαβ
γ𝐾γ

строится по символам Кристоффеля Γαβ
γ (связность Леви–Чивиты).

Определение. Уравнение (4.4) называется уравнением Киллинга, а интегральные
кривые полей Киллинга называются траекториями Киллинга. Если 𝐾 = 𝐾α𝜕α –
векторное поле Киллинга, то ему взаимно однозначно ставится в соответствие 1-
форма 𝐾 = 𝑑𝑥α𝐾α, где 𝐾α := 𝐾β𝑔βα, которая называется формой Киллинга, и для
которой мы сохранили то же обозначение.

На любом (псевдо)римановом многообразии (M, 𝑔) уравнения Киллинга (4.3) все-
гда имеют тривиальное решение 𝐾 = 0. Если уравнения Киллинга имеют только
тривиальное решение, то в этом случае нетривиальные непрерывные изометрии от-
сутствуют.

Траектории Киллинга
(
𝑥α(𝑡)

)
∈ M, где 𝑡 ∈ R, определяются системой обыкновен-

ных дифференциальных уравнений

𝑥̇α = 𝐾α. (4.5)

Если траектория Киллинга при 𝑡 = 0 проходит через точку 𝑝 = (𝑝α) ∈ M, то при
малых 𝑡 она имеет вид

𝑥α(𝑡) = 𝑝α + 𝑡𝐾α(𝑝) + o(𝑡). (4.6)

Если в некоторой точке векторное поле Киллинга равно нулю, то эта точка остает-
ся неподвижной, т.е. является стационарной точкой группы изометрий. Поскольку
изометрии определены для всего многообразия M и образуют группу, то векторные
поля Киллинга обязаны быть полными, т.е. параметр 𝑡 должен меняться на всей
вещественной прямой R.

Если для (псевдо)риманова многообразия (M, 𝑔) известно векторное поле Кил-
линга, то оно определяет не только инфинитезимальные изометрии, но и всю одно-
параметрическую подгруппу изометрий I(M). Для этого нужно найти интегральные
кривые 𝑥(𝑡), проходящие, через все точки многообразия 𝑝 ∈ M. Если 𝑥(0) = 𝑝, то
каждому значению 𝑡 ∈ R соответствует диффеоморфизм

𝚤 : M ∋ 𝑝 ↦→ 𝑥(𝑡) ∈ M.

В моделях математической физики часто ставится задача нахождения векторов
Киллинга для заданной метрики на многообразии. Для решения этой задачи бы-
вает удобнее использовать контравариантные компоненты векторов Киллинга, для
которых уравнение Киллинга принимает вид

𝑔αγ𝜕β𝐾
γ + 𝑔βγ𝜕α𝐾

γ +𝐾γ𝜕γ𝑔αβ = 0. (4.7)

Уравнения Киллинга (4.3), которые в компонентах имеют вид (4.7), линейны и по
векторам Киллинга, и по метрике. Отсюда сразу следует, что две метрики, которые
отличаются постоянным множителем, имеют один и тот же набор векторов Киллин-
га. Кроме того, векторное поле Киллинга определено с точностью до умножения на
произвольную постоянную, отличную от нуля. В частности, если 𝐾 – векторное поле
Киллинга, то и −𝐾 также является полем Киллинга. Если независимых векторных
полей Киллинга для заданной метрики несколько, то любая линейная комбинация
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этих полей также является полем Киллинга. То есть множество всех векторных полей
Киллинга образует линейное пространство над полем вещественных чисел, которое
является подпространством в множестве векторных полей 𝒳 (M). В этом векторном
пространстве можно ввести билинейную операцию. Простые вычисления показыва-
ют, что коммутатор двух векторных полей Киллинга 𝐾1 и 𝐾2 снова дает поле Кил-
линга:

L[K1,K2]𝑔 = LK1 ∘ LK2𝑔 − LK2 ∘ LK1𝑔 = 0,

Отсюда следует, что векторные поля Киллинга образуют алгебру Ли i(M) над по-
лем вещественных чисел, которая является подалгеброй алгебры Ли множества всех
векторных полей, i(M) ⊂ 𝒳 (M). Эта алгебра является алгеброй Ли группы Ли изо-
метрий I(M). В дальнейшем мы увидим, что алгебра Ли векторных полей Киллинга
конечномерна.

Уравнения Киллинга (4.7) представляют собой систему линейных уравнений в
частных производных первого порядка на компоненты векторных полей Киллинга.
Эта система переопределена: мы имеем 𝑛(𝑛+ 1)/2 уравнений на 𝑛 неизвестных ком-
понент 𝐾α(𝑥)

(
или 𝐾α(𝑥)

)
. Ниже мы увидим, что общее решение уравнений Киллин-

га при фиксированной метрике не содержит функционального произвола, но может
зависеть от нескольких параметров, число которых совпадает с числом линейно неза-
висимых решений. Максимальное число независимых параметров в общем решении
𝑛(𝑛+ 1)/2 достигается на пространствах постоянной кривизны (теорема 4.3.2).

В дальнейшем нам понадобится также следующее наблюдение. Допустим, что
метрика 𝑔αβ(𝑥, 𝑡) зависит от некоторого параметра 𝑡 ∈ R, и для каждого значения
𝑡 уравнения Киллинга выполнены. Тогда разность метрик для различных значений
параметра, 𝑔αβ(𝑥, 𝑡2) − 𝑔αβ(𝑥, 𝑡1), также будет удовлетворять уравнениям Киллинга.
Отсюда следует, что производная 𝜕t𝑔αβ является инвариантным тензором второго
ранга относительно действия группы изометрий.

Предложение 4.1.2. Пусть (псевдо)риманово многообразие (M, 𝑔) имеет n ≤ dimM
отличных от нуля коммутирующих между собой и линейно независимых вектор-
ных полей Киллинга 𝐾i, 𝑖 = 1, . . . ,n. Тогда существует такая система координат,
в которой все компоненты метрики не зависят от n координат, соответствую-
щих траекториям Киллинга. Обратно. Если в некоторой системе координат ком-
поненты метрики не зависят от n координат, то метрика 𝑔 допускает локально
по крайней мере n коммутирующих между собой ненулевых векторных полей Кил-
линга.

Доказательство. Мы дадим доказательство предложения только для несветоподоб-
ных векторных полей. В разделе 2.1.2 была построена специальная система коорди-
нат, связанная с произвольным векторным полем, отличным от нуля. Применительно
к коммутирующим векторным полям Киллинга 𝐾i это означает, что существует та-
кая система координат (𝑥1, . . . , 𝑥n), в которой каждое поле Киллинга имеет только
одну постоянную компоненту, 𝐾i = 𝜕i. В этой системе координат уравнение (4.7) для
каждого поля Киллинга принимает особенно простой вид

𝜕i𝑔αβ = 0, 𝑖 = 1, . . . ,n. (4.8)

Это значит, что все компоненты метрики не зависят от координат 𝑥i. В этой системе
координат траектории Киллинга определяются уравнениями

𝑥̇i = 1, 𝑥̇µ = 0, 𝜇 ̸= 𝑖.



68 ГЛАВА 4. ВЕКТОРНЫЕ ПОЛЯ КИЛЛИНГА

Отсюда следует, что координатные линии 𝑥i являются траекториями Киллинга.
Обратно. Если метрика не зависит от n координат, то выполнены уравнения (4.8).

Эти уравнения совпадают с уравнениями Киллинга для векторных полей 𝐾i := 𝜕i,
которые коммутируют.

Согласно сформулированной теореме, в предельном случае, когда количество
коммутирующих полей Киллинга равно размерности многообразия, n = 𝑛, суще-
ствует такая система координат, в которой все компоненты инвариантной метрики
постоянны.

Пример 4.1.2. В евклидовом пространстве Rn в декартовой системе координат 𝑥α,
𝛼 = 1, . . . , 𝑛, компоненты метрики постоянны, 𝑔αβ = 𝛿αβ. Эта метрика допускает 𝑛
коммутирующих между собой векторных полей Киллинга𝐾α := 𝜕α, которые соответ-
ствуют трансляциям. Все координатные оси являются траекториями Киллинга.

В общей теории относительности мы предполагаем, что пространство-время явля-
ется псевдоримановым многообразием с метрикой лоренцевой сигнатуры. Используя
понятие векторного поля Киллинга, можно дать инвариантное

Определение. Пространство-время или его область называются стационарными,
если на них существует времениподобное векторное поле Киллинга.

В стационарном пространстве-времени интегральную кривую времениподобного
векторного поля можно выбрать в качестве временно́й координаты. Тогда согласно
предложению 4.1.2 в этой системе координат компоненты метрики не будут зависеть
от времени, что оправдывает название “стационарное”.

4.2 Свойства векторных полей Киллинга
Векторные поля Киллинга обладают рядом замечательных свойств. Начнем с про-
стейших.

Предложение 4.2.1. Векторные поля Киллинга не имеют точек самопересечения.

Доказательство. От противного. Допустим, что точка самопересечения существует.
Тогда траектории Киллинга, проходящие через эту точку, должны совпасть в силу
единственности решения задачи Коши для системы уравнений (4.5).

Предложение 4.2.2. Длина вектора Киллинга остается постоянной вдоль тра-
ектории Киллинга:

LK𝐾
2 = ∇K𝐾

2 = 𝐾α𝜕α𝐾
2 = 0. (4.9)

Доказательство. Свернем уравнения Киллинга (4.4) с 𝐾α𝐾β:

2𝐾α𝐾β∇α𝐾β = 𝐾α∇α𝐾
2 = 𝐾α𝜕α𝐾

2 = 0.

Следствие. Если векторные поля Киллинга существуют на лоренцевом многообра-
зии, то они имеют определенную ориентацию: времениподобную, светоподобную или
пространственноподобную.

Метрика 𝑔 на многообразии M определяет два типа выделенных кривых: экстре-
мали (или геодезические, если рассматривается связность Леви–Чивиты) и траекто-
рии Киллинга, если они существуют. Сравним траектории Киллинга с экстремалями
[?].
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Предложение 4.2.3. Пусть (M, 𝑔) – (псевдо)риманово многообразие с векторным
полем Киллинга 𝐾. Траектории Киллинга являются экстремалями тогда и только
тогда, когда их длина постоянна на M, 𝐾2 = const для всех 𝑥 ∈ M.

Доказательство. Рассмотрим траектории Киллинга 𝑥α(𝑡), которые определяются
системой уравнений

𝑥̇α = 𝐾α. (4.10)

Длина дуги траектории Киллинга

𝑑𝑠2 = 𝑔αβ𝑥̇
α𝑥̇β𝑑𝑡2 = 𝐾2𝑑𝑡2

постоянна вдоль траектории, т.е. параметр 𝑡 пропорционален длине и, следовательно,
является каноническим. Дифференцируя уравнение (4.10) по каноническому пара-
метру 𝑡, получим равенство

𝑥̈α = 𝜕β𝐾
α𝑥̇β = (∇β𝐾

α − Γβγ
α𝐾γ)𝑥̇β,

которое перепишем в виде

𝑥̈α = 𝐾β∇β𝐾
α − Γβγ

α𝑥̇β𝑥̇γ. (4.11)

Уравнения Киллинга позволяют переписать первое слагаемое в правой части в виде

𝐾β∇β𝐾
α = −1

2
𝑔αβ𝜕β𝐾

2.

Тогда уравнения (4.11) примут вид

𝑥̈α = −1

2
𝑔αβ𝜕β𝐾

2 − Γβγ
α𝑥̇β𝑥̇γ.

Это уравнение совпадает с уравнением для экстремалей (3.10) тогда и только тогда,
когда 𝐾2 = const на всем M.

Доказанное утверждение показывает, что далеко не каждая траектория Киллинга
является экстремалью.

Пример 4.2.1. Рассмотрим евклидову плоскость R2 с евклидовой метрикой. Эта
метрика инвариантна относительно трехпараметрической неоднородной группы вра-
щений IO(2). Обозначим декартовы и полярные координаты на плоскости, соответ-
ственно, через 𝑥, 𝑦 и 𝑟, 𝜙. Тогда векторные поля Киллинга имеют вид 𝐾1 = 𝜕ϕ для
вращений вокруг начала координат и 𝐾2 = 𝜕x, 𝐾3 = 𝜕y – для сдвигов. Квадраты
длин векторов Киллинга равны:

𝐾2
1 = 𝑟2, 𝐾2

2 = 𝐾2
3 = 1.

Векторы Киллинга 𝐾2 и 𝐾3 имеют постоянную длину на всей плоскости, их траек-
ториями Киллинга являются прямые линии, которые являются экстремалями. Это
согласуется с предложением 4.2.3. Траекториями Киллинга для вращений 𝐾1 явля-
ются концентрические окружности с центром в начале координат. Длина вектора
Киллинга 𝐾1 постоянна на траекториях в соответствии с предложением 4.2.2, од-
нако непостоянна на всей плоскости R2. Соответствующие траектории Киллинга –
окружности – не являются экстремалями.
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4.3 Однородные и изотропные многообразия
Рассмотрим геодезически полное (псевдо)риманово многообразие (M, 𝑔), метрика ко-
торого допускает одно или несколько полных векторных полей Киллинга. Уравнения
Киллинга (4.4) накладывают сильные ограничения на векторные поля Киллинга, ко-
торые мы сейчас обсудим. Воспользовавшись тождеством для коммутатора ковари-
антных производных (2.133), получаем равенство

∇α∇β𝐾γ −∇β∇α𝐾γ = −𝑅αβγ
δ𝐾δ. (4.12)

Теперь воспользуемся тождеством (2.126) для тензора кривизны и уравнениями Кил-
линга (4.4). В результате получим тождество для векторных полей Киллинга:

∇α∇β𝐾γ +∇β∇γ𝐾α +∇γ∇α𝐾β = 0,

где слагаемые отличаются циклической перестановкой индексов. Это равенство поз-
воляет переписать уравнение (4.12) в виде

∇γ∇α𝐾β = 𝑅αβγ
δ𝐾δ. (4.13)

Полученное равенство (4.13) является следствием уравнений Киллинга, но не эк-
вивалентно им. Тем не менее оно позволяет сделать важные выводы. Предположим,
что и (псевдо)риманово многообразие (M, 𝑔), и векторные поля Киллинга веществен-
но аналитичны, т.е. в окрестности произвольной точки многообразия 𝑝 ∈ M компо-
ненты векторного поля Киллинга разлагаются в ряд Тейлора, который сходится в
некоторой окрестности этой точки Up. Допустим, что в точке 𝑝 ∈ M нам заданы
компоненты формы Киллинга 𝐾α(𝑝) и их первых производных 𝜕β𝐾α(𝑝). Тогда соот-
ношения (4.13) позволяют вычислить все вторые производные от компонент формы
Киллинга 𝜕2

βγ𝐾α в той же точке 𝑝. Теперь возьмем ковариантную производную от ра-
венства (4.13) и получим некоторое соотношение, линейное по третьим производным.
Из него можно найти все третьи производные от вектора Киллинга и т.д. до беско-
нечности. Важно отметить, что все соотношения линейны по компонентам формы
Киллинга и их производным. Это значит, что в окрестности Up компоненты формы
Киллинга имеют вид

𝐾α(𝑥, 𝑝) = 𝐴α
β(𝑥, 𝑝)𝐾β(𝑝) +𝐵α

βγ(𝑥, 𝑝)
[
𝜕β𝐾γ(𝑝)− 𝜕γ𝐾β(𝑝)

]
, (4.14)

где 𝐴αβ(𝑥, 𝑝) и 𝐵α
βγ(𝑥, 𝑝) – некоторые функции. Антисимметрия последнего слага-

емого по индексам 𝛽, 𝛾 связана с тем, что симметризованная частная производная
выражается через компоненты формы Киллинга в силу уравнения Киллинга (4.4).
Таким образом, компоненты формы Киллинга в окрестности Up являются линейны-
ми функциями от компонент формы Киллинга в точке 𝑝 и ее внешней производной
в той же точке.

У формы Киллинга 𝐾α(𝑥, 𝑝) второй аргумент 𝑝 означает, что эта форма име-
ет определенные свойства в точке 𝑝 ∈ M. По предположению представление (4.14)
справедливо для всех точек многообразия 𝑝 ∈ M, необходимо только задать значения
𝐾(𝑝) и 𝑑𝐾(𝑝). Мы предполагаем, что функции 𝐾α(𝑥, 𝑝) вещественно аналитичны и
по 𝑥, и по 𝑝.

По предположению компоненты формы Киллинга разлагаются в ряды Тейлора
в окрестности каждой точки 𝑝 ∈ M. Обозначим через Up окрестность точки 𝑝, в
которой разложение (4.14) справедливо и обратимо, т.е. аргументы 𝑥 и 𝑝 можно
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поменять местами для некоторых новых матриц 𝐴 и 𝐵. Рассмотрим точку 𝑞, которая
лежит вне Up. Для этой точки также справедливо обратимое разложение вида (4.14) в
некоторой окрестности Uq. Предположим, что точка 𝑞 лежит достаточно близко к Up,
так, что окрестности пересекаются, Up∩Uq ̸= ∅. Тогда для всех точек из пересечения
𝑥 ∈ Up ∩ Uq справедливо разложение (4.14) по компонентам форм Киллинга 𝐾(𝑝) и
𝐾(𝑞) и их внешним производным. Отсюда следует, что компоненты формы Киллинга
и ее внешней производной в точке 𝑞 линейно выражаются через компоненты формы
Киллинга и ее внешней производной в точке 𝑝. Таким образом, разложение (4.14)
справедливо также в объединении Up ∪ Uq. Это построение можно продолжить на
все многообразие M. Поэтому разложение (4.14) справедливо для всех точек 𝑥, 𝑝 ∈ M.

Теперь предположим, что (псевдо)риманово многообразие (M, 𝑔) имеет несколько
векторных полей Киллинга 𝐾i, 𝑖 = 1, . . . ,n. Тогда для каждого векторного поля
Киллинга справедливо разложение (4.14)

𝐾iα(𝑥, 𝑝) = 𝐴α
β(𝑥, 𝑝)𝐾iβ(𝑝) +𝐵α

βγ(𝑥, 𝑝)
[
𝜕β𝐾iγ(𝑝)− 𝜕γ𝐾iβ(𝑝)

]
. (4.15)

Функции 𝐴αβ(𝑥, 𝑝) и 𝐵α
βγ(𝑥, 𝑝) одинаковы для всех форм Киллинга, потому что опре-

деляются соотношениями (4.13), которые линейны по компонентам форм Киллинга
и их производным. Они полностью определяются метрикой, тензором кривизны и их
ковариантными производными. В полученном разложении точка 𝑝 ∈ M произвольна,
но фиксирована, а точка 𝑥 ∈ M пробегает все многообразие.

Соотношение (4.13) представляет собой систему уравнений в частных производ-
ных на компоненты формы Киллинга, у которой есть нетривиальные условия разре-
шимости. Одно из этих условий в ковариантной форме имеет вид

[∇γ∇δ]∇α𝐾β = −𝑅γδα
ε∇ε𝐾β −𝑅γδβ

ε∇α𝐾ε,

где квадратные скобки обозначают коммутатор ковариантных производных. Подста-
новка в левую часть этого уравнения исходного выражения для вторых производных
от формы Киллинга (4.13) после несложных алгебраических преобразований приво-
дит к равенству(

𝑅αβγ
ε𝛿ζδ −𝑅αβδ

ε𝛿ζγ +𝑅γδα
ε𝛿ζβ −𝑅γδβ

ε𝛿ζα

)
∇ζ𝐾ε = (∇γ𝑅αβδ

ε −∇δ𝑅αβγ
ε)𝐾ε. (4.16)

Если кривизна нетривиальна, то это уравнение дает некоторые линейные соотноше-
ния между компонентами формы Киллинга 𝐾α и их ковариантными производными
∇β𝐾α. Наоборот, если существует некоторая информация в формах Киллинга, то
полученное уравнение может определить структуру тензора кривизны. В теореме
4.3.2, которая сформулирована ниже, соотношение (4.16) использовано для доказа-
тельства того, что однородное и изотропное многообразие является пространством
постоянной кривизны.

Перейдем к определениям.

Определение. (Псевдо)риманово многообразие (M, 𝑔) размерности dimM = 𝑛 на-
зывается однородным в точке 𝑝 ∈ M, если существуют инфинитезимальные изомет-
рии, которые переводят эту точку в любую другую точку из некоторой окрестно-
сти Up этой точки. Другими словами, метрика должна допускать такие векторные
поля Киллинга, которые в точке 𝑝 имеют все возможные направления. Поскольку
векторы Киллинга образуют линейное пространство, то в сопряженном простран-
стве необходимо и достаточно существования такого набора из 𝑛 форм Киллинга
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𝐾(γ) = 𝑑𝑥α𝐾α
(γ)(𝑥, 𝑝), где индекс 𝛾 в скобках нумерует формы Киллинга, что выпол-

нены условия:
𝐾α

(γ)(𝑝, 𝑝) = 𝛿γα. (4.17)

То есть из векторных полей Киллинга можно выбрать базис касательного простран-
ства в точке 𝑝. Если (псевдо)риманово многообразие (M, 𝑔) однородно в каждой своей
точке, то оно называется однородным. При этом мы требуем, чтобы векторные поля
Киллинга были полны. Другими словами, группа изометрий действует на M тран-
зитивно.

(Псевдо)риманово многообразие (M, 𝑔) называется изотропным в точке 𝑝 ∈ M,
если существуют такие инфинитезимальные изометрии с формами Киллинга𝐾(𝑥, 𝑝),
которые оставляют эту точку на месте, т.е. 𝐾(𝑝, 𝑝) = 0, и для которых внешняя
производная 𝑑𝐾(𝑥, 𝑝) в точке 𝑝 принимает любое значение в пространстве 2-форм
Λ2(M)

∣∣
p

в точке 𝑝. Для этого необходимо и достаточно существования такого набора
из 𝑛(𝑛 − 1)/2 форм Киллинга 𝐾 [γδ] = −𝐾 [δγ] = 𝑑𝑥α𝐾α

[γδ](𝑥, 𝑝), где индексы 𝛾, 𝛿
нумеруют формы Киллинга, что выполнены условия:

𝐾α
[γδ](𝑝, 𝑝) = 0,

𝜕𝐾β
[γδ](𝑥, 𝑝)

𝜕𝑥α

∣∣∣∣
x=p

= 𝛿γδαβ − 𝛿δγαβ.
(4.18)

Последнее равенство означает, что из векторных полей Киллинга можно выбрать
базис 2-форм в точке 𝑝. Если (псевдо)риманово многообразие (M, 𝑔) изотропно в
каждой своей точке, то оно называется изотропным. При этом мы требуем, чтобы
векторные поля Киллинга были полны.

Теорема 4.3.1. Любое изотропное (псевдо)риманово многообразие (M, 𝑔) является
также однородным.

Доказательство. Если многообразие изотропно, то формы Киллинга 𝐾 [γ,δ](𝑥, 𝑝) и
𝐾 [γ,δ](𝑥, 𝑝+ 𝑑𝑝) удовлетворяют условиям (4.18) в близких точках 𝑝 и 𝑝+ 𝑑𝑝, соответ-
ственно. Любая их линейная комбинация будет формой Киллинга и, следовательно,
произвольная линейная комбинация производных

𝑐α
𝜕𝐾β

[γδ](𝑥, 𝑝)

𝜕𝑝α
:= 𝑐α lim

dpα→0

𝐾β
[γ,δ](𝑥, 𝑝+ 𝑑𝑝)−𝐾β

[γ,δ](𝑥, 𝑝)

𝑑𝑝α

также будет формой Киллинга для любого набора постоянных 𝑐α. Вычислим произ-
водную по 𝑥 формы Киллинга 𝐾 [γδ] в точке 𝑝. Из первого условия в (4.18) следует
равенство

𝜕

𝜕𝑝α
𝐾β

[γδ](𝑝, 𝑝) =
𝜕𝐾β

[γδ](𝑥, 𝑝)

𝜕𝑥α

∣∣∣∣
x=p

+
𝜕𝐾β

[γδ](𝑥, 𝑝)

𝜕𝑝α

∣∣∣∣
x=p

= 0.

Откуда, с учетом второго условия в (4.18), получаем равенство

𝜕𝐾β
[γδ](𝑥, 𝑝)

𝜕𝑝α

∣∣∣∣
x=p

= −𝛿γδαβ + 𝛿δγαβ.

Отсюда следует, что из форм Киллинга 𝐾 [γδ] можно построить форму Киллинга,
которая в точке 𝑝 принимает любое заданное значение 𝑑𝑥α𝑎α, где 𝑎α ∈ R. Для этого
достаточно положить

𝐾α :=
𝑎γ

𝑛− 1

𝜕𝐾α
[γδ](𝑥, 𝑝)

𝜕𝑝δ
.
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Выбрав соответствующим образом постоянные 𝑎γ, получим набор форм Киллинга,
который удовлетворяет условиям (4.17).

Из данной теоремы вытекает, что достаточно говорить “изотропное пространство”,
однако мы предпочитаем традиционное название “однородное и изотропное простран-
ство”, т.к. оно отражает важные физические свойства.

Теорема 4.3.2. Пусть задано связное вещественно аналитическое (псевдо)рима-
ново многообразие (M, 𝑔), метрика которого допускает вещественно аналитические
векторные поля Киллинга. Тогда алгебра Ли i(M) инфинитезимальных изометрий
имеет размерность не более, чем 𝑛(𝑛 + 1)/2, где 𝑛 := dimM. Максимальная раз-
мерность dim i(M) = 𝑛(𝑛 + 1)/2 достигается тогда и только тогда, когда много-
образие M является однородным и изотропным. В этом случае оно представляет
собой пространство постоянной кривизны.

Доказательство. Размерность алгебры Ли i(M) равна максимальному числу ли-
нейно независимых векторных полей Киллинга на многообразии M. Из равенства
(4.15) следует, что число независимых векторных полей Киллинга n не может пре-
вышать числа независимых компонент формы

(
𝐾α(𝑝)

)
и ее внешней производной(

𝜕β𝐾α(𝑝) − 𝜕α𝐾β(𝑝)
)

в фиксированной точке 𝑝 ∈ M. Число независимых компонент
любой 1-формы в фиксированной точке не превосходит 𝑛, а число независимых ком-
понент внешней производной не может превышать 𝑛(𝑛− 1)/2. Поэтому справедливо
следующее ограничение на размерность алгебры Ли векторных полей Киллинга:

dim i(M) ≤ 𝑛+
1

2
𝑛(𝑛− 1) =

1

2
𝑛(𝑛+ 1).

Это доказывает первое утверждение теоремы.
В этом месте важна вещественная аналитичность метрики, т.к. она была исполь-

зована при получении представления (4.15).
Связность многообразия M необходима для того, чтобы число независимых век-

торных полей Киллинга было определено. В противном случае, если многообразие
M имеет несколько компонент связности, число независимых векторных полей Кил-
линга может отличаться для каждой компоненты связности.

Однородные и изотропные многообразия имеют максимальное число 𝑛(𝑛 + 1)/2
линейно независимых векторных полей Киллинга и, в силу разложения (4.15), опре-
деляют все возможные векторы Киллинга на многообразии M. Следовательно, если
некоторое многообразие имеет максимальное число независимых полей Киллинга, то
оно с необходимостью должно быть однородным и изотропным.

Теперь докажем, что любое однородное и изотропное пространство является про-
странством постоянной кривизны. Если пространство однородно и изотропно, то для
каждой точки 𝑥 ∈ M найдутся такие формы Киллинга, для которых 𝐾α(𝑥) = 0, а
∇β𝐾α(𝑥) является произвольной антисимметричной матрицей. Отсюда следует, что
антисимметризированный коэффициент при ∇ζ𝐾ε в уравнении (4.16) должен быть
равен нулю, что приводит к равенству

𝑅αβγ
ε𝛿ζδ −𝑅αβδ

ε𝛿ζγ +𝑅γδα
ε𝛿ζβ −𝑅γδβ

ε𝛿ζα = 𝑅αβγ
ζ𝛿εδ −𝑅αβδ

ζ𝛿εγ +𝑅γδα
ζ𝛿εβ −𝑅γδβ

ζ𝛿εα. (4.19)

Если пространство однородно и изотропно, то для произвольной точки 𝑥 ∈ M суще-
ствуют также такие формы Киллинга, которые принимают в этой точке произволь-
ные значения. Следовательно, из уравнений (4.16) и (4.19) вытекает равенство

∇γ𝑅αβδ
ε = ∇δ𝑅αβγ

ε. (4.20)
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Свернем уравнение (4.19) по индексам 𝛿, 𝜁 и опустим верхний индекс. В результате
получим выражение тензора кривизны через тензор Риччи и метрику:

(𝑛− 1)𝑅αβγδ = 𝑅βδ𝑔αγ −𝑅αδ𝑔βγ. (4.21)

Поскольку правая часть этой формулы должна быть антисимметрична по индексам
𝛿, 𝛾, то возникает дополнительное ограничение

𝑅βδ𝑔αγ −𝑅αδ𝑔βγ = −𝑅βγ𝑔αδ +𝑅αγ𝑔βδ.

Свертка полученного равенства по индексам 𝛽, 𝛾 дает связь между тензором Риччи
и скалярной кривизной:

𝑅αδ =
1

𝑛
𝑅𝑔αδ. (4.22)

Подстановка этого выражения в (4.21) приводит к следующему выражению для пол-
ного тензора кривизны

𝑅αβγδ =
𝑅

𝑛(𝑛− 1)
(𝑔αγ𝑔βδ − 𝑔αδ𝑔βγ) . (4.23)

Теперь осталось доказать, что скалярная кривизна 𝑅 однородного и изотропного
пространства постоянна. Для этой цели используем свернутые тождества Бианки
(2.149)

2∇β𝑅α
β −∇α𝑅 = 0.

Подставляя в это тождество выражение для тензора Риччи (4.22), получаем условие(
2

𝑛
− 1

)
𝜕α𝑅 = 0.

При 𝑛 ≥ 3 отсюда следует, что 𝑅 = const.
Случай 𝑛 = 2 требует особого рассмотрения. Свертка равенства (4.20) по индек-

сам 𝛽, 𝜖 приводит к равенству

∇γ𝑅αδ −∇δ𝑅αγ = 0.

дальнейшая свертка с 𝑔αδ с учетом уравнения (4.22) приводит к условию 𝜕γ𝑅 = 0,
т.е. 𝑅 = const и при 𝑛 = 2.

Таким образом, скалярная кривизна в выражении для полного тензора кривизны
(4.23) равна константе, 𝑅 = const, и максимально симметричное (псевдо)риманово
многообразие является пространством постоянной кривизны.

Если тензор кривизны имеет вид (4.23), где 𝑅 = const, то соответствующее мно-
гообразие является пространством постоянной кривизны, т.к. ковариантная произ-
водная от метрики в римановой геометрии равна нулю, ∇ε𝑅αβγδ = 0.

Выше мы доказали, что любое однородное и изотропное пространство является
пространством постоянной кривизны. Верно также обратное утверждение. А именно,
в разделе ?? будет доказано, что пространства постоянной кривизны вида (4.23)
являются однородными и изотропными.
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4.4 Симметричные тензоры на пространстве посто-
янной кривизны

В разделе 4.3 мы выяснили, что однородные и изотропные 𝑛-мерные многообразия
с необходимостью являются пространствами постоянной кривизны, которое имеют
максимальное число 𝑛(𝑛+1)/2 линейно независимых векторных полей Киллинга. Бо-
лее того, если под пространством постоянной кривизны понимать (псевдо)риманово
многообразие с метрикой, удовлетворяющей условию (4.23), где скалярная кривиз-
на 𝑅 постоянна, то пространство постоянной кривизны определяется, по существу,
единственным образом сигнатурой метрики и знаком скалярной кривизны. Такие
пространства часто встречаются в приложениях, причем помимо метрики на таких
многообразиях, как правило, задаются дополнительные тензорные поля, например,
поля материи. Для того, чтобы вся модель была максимально симметричной необхо-
димо потребовать симметрию не только от метрики, но и от всех остальных полей.
В настоящем разделе мы получим условия, которые налагают требования однород-
ности и изотропии на простейшие тензорные поля, заданные на пространстве посто-
янной кривизны.

Пусть на 𝑛-мерном пространстве постоянной кривизны S помимо метрики 𝑔αβ
задано произвольное тензорное поле

𝑇 = 𝑑𝑥α ⊗ . . .⊗ 𝑑𝑥β 𝑇α...β.

Для определенности мы рассмотрим ковариантные тензорные поля. Пусть задана
изометрия 𝚤 : 𝑥 ↦→ 𝑥′. Тогда условие симметрии тензорного поля относительно дей-
ствия данной изометрии имеет тот же вид, что и для метрики (4.1):

𝑇 (𝑥) = 𝚤∗𝑇 (𝑥′),

где 𝚤∗ – возврат отображения. Пусть инфинитезимальные изометрии генерируются
векторными полями Киллинга 𝐾 = 𝐾α𝜕α. Тогда условие симметрии (??) запишется
в виде равенства нулю производной Ли:

LK𝑇 = 0. (4.24)

Такое же условие инвариантности должно выполняться и для произвольных тен-
зорных полей, содержащих как ковариантные, так и контравариантные индексы.

Теперь рассмотрим простейшие случаи, которые часто встречаются в приложе-
ниях.

Пример 4.4.1. Пусть на пространстве постоянной кривизны S задано дифференци-
руемое скалярное поле 𝜙(𝑥) ∈ 𝒞1(S) (функция). Тогда равенство нулю производной
Ли примет вид

𝐾α(𝑥)𝜕α𝜙(𝑥) = 0.

Поскольку для пространства постоянной кривизны векторное поле Киллинга мож-
но выбрать таким образом, что компоненты 𝐾α(𝑥) будут принимать произвольные
значения в любой точке 𝑥 ∈ S, то отсюда вытекает условие постоянства скалярного
поля, 𝜙 = const, на всем S. Таким образом, однородное и изотропное скалярное поле
на пространстве постоянной кривизны S – это постоянная: 𝜙(𝑥) = const для всех
𝑥 ∈ S.
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Пример 4.4.2. В качестве второго примера выберем дифференцируемое ковектор-
ное поле 𝐴 = 𝑑𝑥α𝐴α. Производная Ли для него была вычислена в разделе 2.12, и
условие инвариантности (4.24) принимает вид

𝐾β𝜕β𝐴α + 𝜕α𝐾
β𝐴β = 0.

Выберем векторное поле Киллинга таким образом, что 𝐾β(𝑥) = 0 в произвольной,
но фиксированной точке 𝑥 ∈ S. Кроме этого, векторное поле Киллинга можно вы-
брать так, что частная производная 𝜕β𝐾α будет антисимметрична и произвольна.
Поскольку в выбранной точке 𝜕α𝐾β = ∇α𝐾

β, то справедливы равенства:

𝜕α𝐾
β𝐴β = 𝜕α𝐾β𝐴

β = 𝜕γ𝐾β(𝛿
γ
α𝐴

β).

Данное построение можно провести в произвольной точке многообразия S, и, следо-
вательно,

𝛿γα𝐴
β = 𝛿βα𝐴

γ.

После свертки по индексам 𝛼 и 𝛾 возникает соотношение

𝑛𝐴β = 𝐴β.

Поэтому, исключая тривиальный случай 𝑛 = 1, после опускания индекса получаем
равенство 𝐴α = 0. Следовательно, если ковекторное поле однородно и изотропно, то
оно тождественно равно нулю.

Это же относится и к векторному полю 𝑋 = 𝑋α𝜕α: однородное и изотропное
векторное поле на пространстве постоянной кривизны S тождественно равно нулю.

Пример 4.4.3. В качестве третьего примера рассмотрим дифференцируемый кова-
риантный тензор второго ранга с компонентами 𝑇αβ. Мы не предполагаем наличия
какой-либо симметрии по индексам 𝛼, 𝛽. Производная Ли от тензора второго ранга
имеет вид

LK𝑇αβ = 𝐾γ𝜕γ𝑇αβ + 𝜕α𝐾
γ𝑇γβ + 𝜕β𝐾

γ𝑇αγ.

Как и в предыдущем примере выберем векторное поле Киллинга таким образом,
чтобы в точке 𝑥 ∈ S было выполнено равенство 𝐾γ(𝑥) = 0 и частная производная
𝜕α𝐾β была антисимметрична и произвольна. Тогда из равенства нулю производной
Ли вытекает равенство

𝛿δα𝑇
γ
β + 𝛿δβ𝑇α

γ = 𝛿γα𝑇
δ
β + 𝛿γβ𝑇α

δ.

После свертки по индексам 𝛼, 𝛿 и опускания 𝛾 получаем соотношение

(𝑛− 1)𝑇γβ + 𝑇βγ = 𝑔βγ𝑇, 𝑇 := 𝑇α
α.

Теперь поменяем местами индексы 𝛽 и 𝛾 и вычтем полученное равенство:

(𝑛− 2)(𝑇γβ − 𝑇βγ) = 0.

Отсюда следует, что при 𝑛 ̸= 2 инвариантный тензор второго ранга должен быть
симметричен. С учетом симметрии получаем выражение для инвариантного тензора
второго ранга:

𝑇αβ =
𝑇

𝑛
𝑔αβ.
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Поскольку след тензора 𝑇 – скаляр, то из его инвариантности вытекает, что он
должен быть равен постоянной, как в примере 4.4.1. Таким образом, однородное и
изотропное ковариантное тензорное поле второго ранга на пространстве постоянной
кривизны имеет вид

𝑇αβ = 𝐶𝑔αβ, 𝐶 = const. (4.25)

Эта формула справедлива для 𝑛 ≥ 3 и для симметричной части тензора при
𝑛 = 2.

В двумерном случае инвариантный тензор может иметь антисимметричную часть,
пропорциональную 𝜀αβ = −𝜀βα – полностью антисимметричному тензору второго
ранга:

𝑇[αβ] = −𝑇[βα] = 𝐶𝜀αβ,

если мы не учитываем пространственные отражения. При пространственных отраже-
ниях полностью антисимметричный тензор второго ранга меняет знак 𝜀αβ ↦→ −𝜀αβ.
Поэтому с учетом пространственных отражений наиболее общий вид однородного
и изотропного тензора второго ранга при 𝑛 = 2 такой же, как и в более высоких
размерностях (4.25).

Аналогичное построение можно провести для инвариантного контравариантного
тензора второго ранга и тензора со смешанными индексами:

𝑇αβ = 𝐶𝑔αβ, 𝑇αβ = 𝐶𝛿αβ .

Полученные формулы для симметричных тензоров будут использованы при постро-
ении космологических моделей, где роль 𝑇αβ будет играть тензор энергии-импульса
полей материи.

4.5 Пространства с максимально симметричными
подпространствами

Во многих важных с физической точки зрения случаях, например, в космологии,
(псевдо)риманово многообразие M, dimM = 𝑛, представляет собой топологическое
произведение двух многообразий, M = R×S, где R – вещественная прямая, которую
мы в дальнейшем отождествим со временем, и S – пространство постоянной кривиз-
ны. При этом каждой точке 𝑡 ∈ R соответствует подмногообразие S ⊂ M. Поскольку
S – пространство постоянной кривизны вида (4.23), то оно однородно и изотропно
(теорема 4.3.2). Соответствующая группа изометрий на S генерируется 𝑛(𝑛 − 1)/2
векторными полями Киллинга, где 𝑛 := dimM. В настоящем разделе мы найдем
наиболее общий вид метрики на M, инвариантной относительно группы симметрий,
которая порождается действием группы изометрий на S.

Обозначим координаты на пространстве постоянной кривизны S через 𝑥µ, 𝜇 =

1, . . . , 𝑛 − 1. Пусть компоненты инвариантной метрики на S будут ◦
𝑔µν(𝑥). По по-

строению эта метрика однородна и изотропна. Она инвариантна относительно груп-
пы изометрий, генерируемых векторными полями Киллинга 𝐾i = 𝐾µ

i (𝑥)𝜕µ, 𝑖 =
1, . . . , 𝑛(𝑛− 1)/2.

Предположим, что на M = R× S задана достаточно гладкая метрика лоренцевой
сигнатуры такая, что координата 𝑡 является временем, т.е. 𝑔00 > 0, и все сечения
постоянного времени 𝑡 = const пространственноподобны. Кроме этого, предположим,
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что сужение метрики на S при каждом значении 𝑡 ∈ R совпадает с ◦𝑔µν . Ясно, что в
общем случае такая метрика имеет вид

𝑔αβ =

(
𝑔00 𝑔0ν

𝑔µ0 ℎµν

)
, (4.26)

где 𝑔00(𝑡, 𝑥) и 𝑔0µ(𝑡, 𝑥) = 𝑔µ0(𝑡, 𝑥) – произвольные функции от 𝑡 и 𝑥, а ℎµν(𝑡, 𝑥) –
метрика постоянной кривизны на S, которая зависит от 𝑡 как от параметра. Все
компоненты метрики предполагаются достаточно гладкими и по 𝑡, и по 𝑥. Поскольку
метрика имеет лоренцеву сигнатуру, то согласно предложению 2.6.2 матрица

ℎµν −
𝑔0µ𝑔0ν

𝑔00

отрицательно определена. Кроме этого, по предположению, матрица ℎµν также от-
рицательно определена.

Продолжим действие группы изометрий из S на все M следующим образом.
Будем считать, что пространственные компоненты продолженных векторных по-
лей Киллинга зависят от 𝑡 как от параметра. Поскольку мы имеем максимальное
число векторных полей Киллинга, то зависимость может быть только линейной:
𝐾̃µ
i (𝑡, 𝑥) = 𝑀i

j(𝑡)𝐾µ
j (𝑥), где 𝑀i

j(𝑡) – некоторая невырожденная матрица. Тем са-
мым мы сохраняем группу симметрии, действующую на пространственных сечени-
ях. Определим действие группы инфинитезимальных изометрий на M следующими
равенствами:

𝑡 ↦→ 𝑡′ = 𝑡,

𝑥µ ↦→ 𝑥′µ = 𝑥µ + 𝜖𝐾̃µ + o(𝜖), 𝜖≪ 1,
(4.27)

где 𝐾̃ – произвольный вектор Киллинга из алгебры Ли, порожденной векторами 𝐾̃i.
То есть преобразования не сдвигают точки вещественной прямой 𝑡 ∈ R ⊂ M. Это
означает, что векторные поля Киллинга продолжаются на все M таким образом, что
у них не возникает дополнительной компоненты: 𝐾0 = 0. Нетривиальность продол-
жения сводится лишь к тому, что пространственные компоненты векторов Киллинга
теперь могут зависеть от 𝑡 как от параметра. Следовательно, алгебра Ли продолжен-
ных на M векторов Киллинга остается прежней.

Пример 4.5.1. В четырехмерном случае векторные поля Киллинга, продолженные
на M = R× S, порождают группу преобразований (M,G), где

G =


SO(4), S = S3 – сфера,
ISO(3), S = R3 – евклидово пространство,
SO(3, 1), S = H3 – двуполостный гиперболоид.

Этот случай важен в космологии.

Теорема 4.5.1. Если метрика (4.26) на M = R × S инвариантна относительно
преобразований (4.27), то в окрестности произвольной точки существует такая
система координат, в которой метрика имеет блочно диагональный вид

𝑑𝑠2 = 𝑑𝑡2 + ℎµν𝑑𝑥
µ𝑑𝑥ν , (4.28)

где ℎµν(𝑡, 𝑥) – метрика постоянной кривизны на S при всех 𝑡 ∈ R. В этой системе
координат компоненты векторных полей Киллинга не зависят от времени: 𝐾̃µ =
𝐾̃µ(𝑥) ⇔𝑀i

j = 𝛿ji .
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Доказательство. Пусть 𝑥µ – координаты на S. Зафиксируем одну из гиперповерхно-
стей 𝑡 = const. Касательный к ней вектор имеет только пространственные компонен-
ты: 𝑋 = 𝑋µ𝜕µ. Ортогональный к ней вектор 𝑛α𝜕α должен удовлетворять равенству

𝑛0𝑋ν𝑁ν + 𝑛µ𝑋ν𝑔µν = 0,

где использована АДМ параметризация метрики, см. раздел ??. Поскольку данное
равенство должно быть выполнено для всех 𝑋, то оно определяет пространственные
компоненты нормальных векторов,

𝑛µ = −𝑛0𝑁µ.

Следовательно, квадрат ортогонального вектора положителен:

(𝑛, 𝑛) = (𝑁2 +𝑁ρ𝑁ρ)(𝑛
0)2 − 2(𝑛0)2𝑁µ𝑁µ + (𝑛0)2𝑁µ𝑁 ν𝑔µν = 𝑁2(𝑛0)2 > 0.

Поэтому вектор, ортогональный к пространственноподобной гиперповерхности, яв-
ляется времениподобным.

Выпустим из каждой точки гиперповерхности геодезическую (экстремаль), кото-
рая является времениподобной по построению. Выберем в качестве временно́й ко-
ординаты длину геодезической 𝑠. Не ограничивая общности, можно считать, что
фиксированная гиперповерхность соответствует значению 𝑠 = 0. Тогда в некоторой
окрестности поверхности S можно выбрать систему координат (𝑥0 := 𝑠, 𝑥µ). Согласно
предложению 6.12.2 в построенной таким образом системе координат метрика имеет
блочно диагональный вид в некоторой окрестности фиксированной поверхности:

𝑔00 = 1, 𝑔0µ = 𝑔µ0 = 0, ℎµν = ℎµν(𝑠, 𝑥).

Возвращаясь к обозначению 𝑠 ↦→ 𝑡, получаем метрику (4.28).

Замечание. То, что в построенной системе координат метрика имеет блочно диаго-
нальный вид является общим утверждением, которое не связано с наличием вектор-
ных полей Киллинга.

На исходной гиперповерхности 𝑡 = 0 нулевая компонента вектора Киллинга рав-
на нулю, 𝐾̃0(0, 𝑥) = 0, по построению. Из (0, 0) компоненты уравнения Киллинга,
которое удобнее использовать в форме (4.7), следует равенство 𝜕t𝐾̃

0(𝑡, 𝑥) = 0. Это
дифференциальное уравнение с начальным условием 𝐾̃0(0, 𝑥) = 0 имеет единствен-
ное решение 𝐾̃0(𝑡, 𝑥) = 0 для всех значений координаты 𝑡, где определена система
координат.

Если метрика является блочно диагональной (4.28), то (0, 𝜇) компоненты уравне-
ния Киллинга (4.7) принимают вид 𝜕t𝐾̃µ = 0. Отсюда следует, что пространственные
компоненты векторных полей Киллинга не зависят от времени.

Пространственные (𝜇, 𝜈) компоненты уравнения Киллинга удовлетворяются, по-
скольку 𝐾 – векторы Киллинга на S. Следовательно, все гиперповерхности, опреде-
ляемые уравнением 𝑡 = const, будут инвариантными многообразиями, т.е. простран-
ствами постоянной кривизны по крайней мере в некоторой окрестности исходной
гиперповерхности.

Поскольку векторные поля Киллинга на M в выбранной системе координат не
зависят от времени, то знак тильды, для краткости, опустим.
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Если метрика имеет блочно диагональный вид (4.28) и 𝐾 = 𝐾µ𝜕µ, то уравнения
Киллинга (4.7) расщепляются на временны́е и пространственные компоненты:

(𝛼, 𝛽) = (0, 0) : 0 = 0, (4.29)
(𝛼, 𝛽) = (0, 𝜇) : ℎµν𝜕0𝐾

ν = 0, (4.30)
(𝛼, 𝛽) = (𝜇, 𝜈) : ℎµρ𝜕ν𝐾

ρ + ℎνρ𝜕µ𝐾
ρ +𝐾ρ𝜕ρℎµν = 0. (4.31)

Теорема 4.5.2. В условиях теоремы 4.5.1 метрика (4.28) имеет вид

𝑑𝑠2 = 𝑑𝑡2 + 𝑎2 ◦𝑔µν𝑑𝑥
µ𝑑𝑥ν , (4.32)

где 𝑎(𝑡) > 0 – произвольная достаточно гладкая функция (масштабный множи-
тель) и

◦
𝑔µν(𝑥) – метрика пространства постоянной кривизны, зависящая только

от 𝑥 ∈ S.

Доказательство. Поскольку ℎµν(𝑡, 𝑥) – метрика пространства постоянной кривизны
на S для всех 𝑡 ∈ R, то уравнения Киллинга (4.31) выполнены. Из теоремы 4.5.1
следует, что векторные поля Киллинга не зависят от времени. Поэтому дифферен-
цирование уравнения (4.31) по времени приводит к равенству

ℎ̇µρ𝜕ν𝐾
ρ + ℎ̇νρ𝜕µ𝐾

ρ +𝐾ρ𝜕ρℎ̇µν = 0.

Это значит, что производная метрики по времени ℎ̇µν является однородным и изо-
тропным тензором второго ранга. Тогда из примера 4.4.3 вытекает, что производная
метрики по времени пропорциональна самой метрике:

ℎ̇µν = 𝑓ℎµν , (4.33)

где 𝑓(𝑡) – произвольная достаточно гладкая функция времени.
Если 𝑓 = 0, то доказывать нечего, и метрика имеет вид (4.32) с 𝑎 = const.
Пусть 𝑓 ̸= 0. Тогда введем новую временну́ю координату 𝑡 ↦→ 𝑡′, определяемую

дифференциальным уравнением

𝑑𝑡′ = 𝑓(𝑡)𝑑𝑡.

Тогда уравнение (4.33) упростится

𝑑ℎµν
𝑑𝑡′

= ℎµν .

Его общее решение имеет вид

ℎµν(𝑡
′, 𝑥) = 𝐶 et

′ ◦
𝑔µν(𝑥), 𝐶 = const ̸= 0,

где ◦𝑔µν(𝑥) – метрика на пространстве постоянной кривизны S, которая не зависит от
времени. Отсюда вытекает представление (4.32).



Глава 5

Принцип наименьшего действия

Можно с уверенностью сказать, что в основе построения моделей современной ма-
тематической физики лежит принцип наименьшего действия. Этот принцип требует
стационарности некоторого функционала – действия – относительно вариаций по-
лей, описывающих данную модель. В результате мы получаем систему уравнений
Эйлера–Лагранжа, которая принимается в качестве уравнений движения, уравне-
ний равновесия и т.д. для данной модели. При этом инвариантность действия отно-
сительно некоторой группы преобразований приводит к ковариантным уравнениям
движения и к законам сохранения, которые играют важнейшую роль в физике.

5.1 Постановка вариационных задач
Начнем с постановки вариационной задачи в евклидовом пространстве. Предполо-
жим, для простоты, что M ⊂ Rn – ограниченная область евклидова пространства
с достаточно гладкой границей 𝜕M. Пусть в этой области задан некоторый набор
достаточно гладких функций 𝜙 = (𝜙a), 𝑎 = 1, . . . ,n. Если 𝑥α, 𝛼 = 1, . . . , 𝑛, – система
координат на M, то обозначим, для краткости, все первые производные полей через
𝜕𝜙 = {𝜕α𝜙a}. Предположим, что на M определен функционал действия или, просто,
действие

𝑆[𝜙] =

∫
M
𝑑𝑥𝐿(𝑥, 𝜙, 𝜕𝜙), (5.1)

где 𝐿 – некоторая функция от 𝑛 переменных 𝑥α, n переменных 𝜙a и 𝑛n переменных
𝜕α𝜙

a. Она предполагается дважды непрерывно дифференцируемой функцией пере-
менных 𝑥 ∈ M и всех остальных переменных для всех конечных значений 𝜙 и 𝜕𝜙.
Назовем функцию 𝐿(𝑥, 𝜙, 𝜕𝜙) лагранжевой плотностью или лагранжианом данной
модели, которая описывается набором полей 𝜙.

Назовем вариацией функции 𝜙a разность двух представителей из класса рассмат-
риваемых функций: 𝛿𝜙a := 𝜙′a − 𝜙a. Для малых вариаций функций 𝜖𝛿𝜙a, где 𝜖 > 0
– малая величина, вариация (главная линейная часть) функционала действия, если
она существует, равна

𝛿𝑆 = 𝑆[𝜙+ 𝜖𝛿𝜙]− 𝑆[𝜙] =

=

∫
M
𝑑𝑥

[
𝜕𝐿

𝜕𝜙a
− 𝜕α

(
𝜕𝐿

𝜕(𝜕α𝜙a)

)]
𝜖𝛿𝜙a +

∫
∂M
𝑑𝑠α

𝜕𝐿

𝜕(𝜕α𝜙a)
𝜖𝛿𝜙a + o(𝜖),

(5.2)

где второе слагаемое возникло при интегрировании по частям, и 𝑑𝑠α обозначает ори-
ентированный элемент объема края 𝜕M. Отметим, что при вычислении вариации
действия (5.1) область интегрирования M считалась неизменной.

81
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Назовем набор функций 𝜙 стационарной, или критической точкой, или экстре-
малью функционала 𝑆[𝜙], если в этой точке линейная часть вариации действия равна
нулю, 𝛿𝑆 = o(𝜖). Такие точки соответствуют либо локальному минимуму, либо ло-
кальному максимуму, либо седловой точке функционала 𝑆, если матрица вторых
производных от лагранжиан (гессиан) невырождена. Это можно проверить после
нахождения экстремали функционала, рассмотрев малые отклонения полей от ста-
ционарной точки.

Для действия (5.1) можно поставить различные вариационные задачи. Рассмот-
рим задачи, которые наиболее часто встречаются в физике.

5.1.1 Задача с заданными граничными условиями

Вариационная задача с заданными граничными условиями является наиболее рас-
пространенной и самой простой с точки зрения постановки. Рассмотрим класс функ-
ций с заданными граничными условиями

𝜙
∣∣
∂M = 𝜙0. (5.3)

Поскольку граничные условия для всех функций при фиксированном индексе 𝑎 одни
и те же, то вариации полей обращаются в нуль на границе:

𝛿𝜙
∣∣
∂M = 0. (5.4)

Тогда интеграл по границе области в вариации действия (5.2) обращается в нуль в
силу граничных условий (5.4). В рассматриваемом случае существует предел

lim
ε→0

𝑆[𝜙+ 𝜖𝛿𝜙]− 𝑆[𝜙]

𝜖
=:

∫
M
𝑑𝑥

𝛿𝑆

𝛿𝜙a
𝛿𝜙a. (5.5)

Функция 𝛿𝑆/𝛿𝜙a, стоящая под знаком интеграла, называется вариационной произ-
водной функционала 𝑆 по полю 𝜙a и обозначается также запятой:

𝑆, a :=
𝛿𝑆

𝛿𝜙a
. (5.6)

Из вида вариации (5.2) получаем явное выражение для вариационной производной

𝑆, a =
𝜕𝐿

𝜕𝜙a
− 𝜕α

𝜕𝐿

𝜕(𝜕α𝜙a)
. (5.7)

Из условия стационарности действия 𝛿𝑆 = o(𝜖) в силу произвольности вариации
𝛿𝜙a и основной леммы вариационного исчисления следует

Теорема 5.1.1. Набор функций 𝜙 при заданных граничных условиях является ста-
ционарной точкой действия 𝑆[𝜙] тогда и только тогда, когда он удовлетворяет
системе уравнений Эйлера–Лагранжа

𝑆, a =
𝜕𝐿

𝜕𝜙a
− 𝜕α

𝜕𝐿

𝜕(𝜕α𝜙a)
= 0. (5.8)

В общем случае уравнения Эйлера–Лагранжа представляют собой систему нели-
нейных дифференциальных уравнений в частных производных второго порядка, чис-
ло которых n равно числу функций, от которых зависит функционал действия. Их
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надо решать при заданных граничных условиях (5.3). Решение поставленной вари-
ационной задачи может не существовать, а если оно существует, то может быть не
единственно. Это зависит от вида лагранжиана и области M.

Действие (5.1) для заданных уравнений Эйлера–Лагранжа при постановке задачи
с фиксированными граничными условиями определено неоднозначно. Действитель-
но, рассмотрим новый лагранжиан, 𝐿̃α = 𝐿+ 𝜕α𝐹 , который отличается от исходного
на частную производную от некоторой достаточно гладкой функции 𝐹 (𝑥, 𝜙, 𝜕𝜙). То-
гда действие получит дополнительный вклад, сводящийся к интегралу по границе.
Вариация дополнительного слагаемого равна нулю, т.к. вариации всех полей на гра-
нице равны нулю. Отсюда следует, что уравнения Эйлера–Лагранжа не изменятся
при добавлении к лагранжиану частных производных 𝜕α𝐹 от произвольной функ-
ции.

Рассмотренная вариационная задача наиболее часто рассматривается в моделях
математической физики. При этом уравнения Эйлера–Лагранжа приводят к урав-
нениям движения, равновесия и т.д.

5.1.2 Задача на условную стационарную точку

В настоящем разделе мы ограничимся рассмотрением вариационных задач на конеч-
ном отрезке [𝑥1, 𝑥2] ⊂ R с заданными граничными условиями. Пусть требуется найти
стационарную точку действия (5.1) в классе функций 𝜙a ∈ 𝒞2

(
[𝑥1, 𝑥2]

)
, 𝑎 = 1, . . . ,n

при наличии m < n независимых дополнительных условий, которые называются
связями

𝐺a(𝑥, 𝜙, 𝜕𝜙) = 0, a = 1, . . . ,m < n, (5.9)

где 𝐺a – достаточно гладкие функции своих аргументов. Мы предполагаем, что связи
𝐺a не противоречат граничным условиям и функционально независимы. В частно-
сти, ни одна из связей не выполняется тождественно для всех функций 𝜙 и ни одна
из связей не является следствием остальных. Функциональная независимость связей
означает, что матрица производных

𝜕𝐺a

𝜕
(
𝜙a, 𝜕x𝜙b

)
имеет постоянный ранг m для всех 𝑥. Отсюда следует, что локально связи мож-
но разрешить относительно m функций или их первых производных, рассматривая
остальные 2(n − m) функции и их производные как независимые.

В общем случае связи являются дифференциальными уравнениями, и их решения
содержат произвольные постоянные. Мы предполагаем, что этот произвол устранен,
например, наложением граничных условий, либо каким-то иным образом.

В частном случае связи могут быть алгебраическими уравнениями на неизвест-
ные функции 𝐺a(𝑥, 𝜙) = 0. В этом случае они называются голономными. В против-
ном случае связи (5.9) называются неголономными.

При наличии связей вариации функций не являются независимыми, и выполнение
уравнений Эйлера–Лагранжа для исходного действия (5.1) не является необходимым
условием. Прямым способом решения задачи на условный экстремум является явное
разрешение связей относительно m функций, подстановка полученного решения в
исходное действие и исследование нового действия от n−m функций на безусловный
экстремум.
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Задачи на условную стационарную точку часто встречаются в математической
физике. В частности, к ним приводят все калибровочные модели, инвариантные от-
носительно локальных преобразований полей. В связи с этим введем удобную терми-
нологию, которая часто используется в физике. А именно, назовем поля нефизически-
ми, если связи разрешаются относительно этих полей. Остальные поля, относитель-
но которых после исключения нефизических полей возникает задача на безуслов-
ную стационарную точку, называются физическими. Деление полей на физические
и нефизические условно, т.к. связи можно разрешать относительно различных пе-
ременных. В то же время число физических (n − m) и нефизических (m) полей, по
предположению, постоянно.

Прямой способ исключения нефизических полей неприменим, если связи не реша-
ются явно. Кроме этого исключение части полей может нарушить симметрию задачи,
например, лоренц-инвариантность, что часто приводит к существенному усложнению
вычислений. Поэтому используют метод неопределенных множителей Лагранжа. А
именно, строят полное (total) действие

𝑆t :=

∫ x2

x1

𝑑𝑥(𝐿− 𝜆a𝐺a), (5.10)

где 𝜆(𝑥) ∈ 𝒞1
(
[𝑥1, 𝑥2]

)
– новые функции, которые называются множителями Лагран-

жа. Это действие исследуется на безусловный экстремум. Вариация действия (5.10)
по полям 𝜙a и множителям Лагранжа 𝜆a приводит к n + m уравнениям Эйлера–
Лагранжа, m из которых, возникших при вариации по множителям Лагранжа, сов-
падают с уравнениями связей (5.9). При этом вариации множителей Лагранжа на
границе не обязаны быть равными нулю, т.к. они входят в действие без производных
и никаких дополнительных граничных условий не возникает. Решение новой задачи
на безусловный экстремум дает решение исходной задачи на условный экстремум,
что является содержанием следующего утверждения.

Теорема 5.1.2. Для функций 𝜙, на которых функционал (5.1) имеет стационарное
значение при выполнении уравнений связей (5.9), существует такой набор множи-
телей Лагранжа, что они вместе с полями 𝜙 удовлетворяют уравнениям Эйлера–
Лагранжа для действия (5.10):

𝛿𝑆t

𝛿𝜙a
= 0,

𝛿𝑆t

𝛿𝜆a = 𝐺a = 0.

Доказательство. См., например, [?], глава 9, §1.

Сформулированная теорема позволяет свести вариационную задачу на условный
экстремум к вариационной задаче на безусловный экстремум, но для действия, зави-
сящего от большего числа функций. В теории поля вариационные задачи рассматри-
ваются не на прямой R, а в евклидовом пространстве Rn. Тогда связи представляют
собой в общем случае дифференциальные уравнения в частных производных. Для
того чтобы доказать аналог теоремы о множителях Лагранжа необходимо зафикси-
ровать каким-либо образом класс рассматриваемых связей, что является сложной за-
дачей. На практике метод неопределенных множителей Лагранжа часто используют,
не заботясь о его применимости. В таком случае применимость метода необходимо
доказывать в каждом конкретном случае.
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5.2 Первая теорема Нетер
В наиболее содержательных моделях математической физики функционал действия
инвариантен относительно глобальных или локальных преобразований симметрии.
С каждым преобразованием симметрии связан закон сохранения, что было установ-
лено Эмми Нетер [?] в первой и второй теореме, соответственно, для глобальных и
локальных преобразований.

Пусть функционал действия (5.1) инвариантен относительно бесконечно малых
преобразований

𝑥α ↦→ 𝑥′α = 𝑥α + 𝛿𝑥α, (5.11)
𝜙a(𝑥) ↦→ 𝜙′a(𝑥′) = 𝜙a(𝑥) + 𝛿𝜙a(𝑥). (5.12)

Рассмотрим независимые вариации координат и полей:

𝛿𝑥α = 𝜖a𝑅a
α(𝑥, 𝜙, 𝜕𝜙), (5.13)

𝛿𝜙a = 𝜙′a(𝑥′)− 𝜙a(𝑥) = 𝜖a𝑅a
a(𝑥, 𝜙, 𝜕𝜙), (5.14)

где 𝑅a
α(𝑥, 𝜙, 𝜕𝜙) и 𝑅a

a(𝑥, 𝜙, 𝜕𝜙) – некоторые достаточно гладкие и функционально
независимые функции своих аргументов, которые называются генераторами пре-
образований симметрии, а 𝜖a(𝑥), a = 1, 2, . . . ,k, – постоянные или локальные па-
раметры преобразований, число которых зависит от рассматриваемой модели. Мы
говорим, что каждому значению индекса a соответствует одно преобразование сим-
метрии.

Начнем с доказательства первой теоремы Нетер, т.е. будем считать параметры
преобразований постоянными, 𝜖a = const. Под инвариантностью функционала дей-
ствия мы понимаем следующее равенство

𝑆 =

∫
M
𝑑𝑥𝐿(𝑥, 𝜙, 𝜕𝜙) =

∫
M′
𝑑𝑥′ 𝐿(𝑥′, 𝜙′, 𝜕′𝜙′), (5.15)

где интегрирование производится по ограниченной области M ⊂ Rn, которая отоб-
ражается в M′ при преобразовании (5.11).

Преобразования (5.13), (5.14) нетривиально действуют как на поля, так и на ко-
ординаты. В дальнейшем нам понадобится вариация формы функции в данной точке
𝑥 ∈ M (см., раздел 2.11):

𝛿𝜙a(𝑥) := 𝜙′a(𝑥)− 𝜙a(𝑥),

которая определяется разностью значений полей после и до преобразования в точке
𝑥. Она связана с вариацией (5.12) следующим соотношением

𝛿𝜙a(𝑥) = 𝛿𝜙a − 𝛿𝑥α𝜕α𝜙
a = 𝜖a(𝑅a

a −𝑅a
α𝜕α𝜙

a). (5.16)

По построению, для постоянных параметров преобразований вариация формы функ-
ции 𝛿 перестановочна с операцией частного дифференцирования 𝜕α. Вариация дей-
ствия относительно преобразований (5.11), (5.12) имеет вид

𝛿𝑆 =

∫
M
𝑑𝑥

(
𝜕𝐿

𝜕𝜙a
− 𝜕α

𝜕𝐿

𝜕(𝜕α𝜙a)

)
𝛿𝜙a +

∫
∂M
𝑑𝑠α

(
𝜕𝐿

𝜕(𝜕α𝜙a)
𝛿𝜙a + 𝐿𝛿𝑥α

)
. (5.17)

Если выполнены уравнения Эйлера–Лагранжа, то первое слагаемое исчезает, и ва-
риация действия определяется только поверхностным интегралом. При постоянных
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параметрах преобразований симметрии запишем вариацию действия в виде объем-
ного интеграла, использовав формулу Стокса,

𝛿𝑆 = −
∫
M
𝑑𝑥 𝜖a𝜕α𝐽a

α, (5.18)

где

𝐽a
α := − 𝜕𝐿

𝜕(𝜕α𝜙a)
(𝑅a

a −𝑅a
β𝜕β𝜙

a)− 𝐿𝑅a
α. (5.19)

Совокупность величин 𝐽a
α, 𝛼 = 1, . . . , 𝑛 можно рассматривать, как компоненты неко-

торого вектора (точнее, векторной плотности) 𝐽a, который называется сохраняющим-
ся током для каждого преобразования симметрии с параметром 𝜖a. Из полученного
выражения следует

Теорема 5.2.1 (Первая теорема Нетер). Если действие (5.1) инвариантно от-
носительно преобразований (5.11)–(5.14) с постоянными параметрами 𝜖a, то для
каждого преобразования симметрии и любого решения уравнений Эйлера–Лагранжа
токи сохраняются:

𝜕α𝐽a
α = 0, a = 1, . . . ,k. (5.20)

Заметим, что для сохранения тока достаточно глобальной инвариантности, когда
параметр преобразования не зависит от точек пространства-времени.

Поскольку лагранжиан не содержит производных выше первого порядка, то ком-
поненты токов в общем случае зависят только от координат, полей и их первых
производных.

Закон сохранения (5.20) не нарушится, если к току (5.19) добавить слагаемое

𝐽 ′a
α = 𝐽a

α + 𝜕β𝑓a
βα, (5.21)

где 𝑓a
βα = −𝑓aαβ – произвольная антисимметричная по индексам 𝛼, 𝛽 функция.

Чтобы не менять структуры тока (5.19), будем считать, что она зависит только от
координат 𝑥α, полей 𝜙 и их первых производных 𝜕𝜙. Это преобразование часто ис-
пользуется, чтобы упростить выражения для токов.

Перепишем закон сохранения (5.20) в интегральной форме и используем формулу
Стокса ∫

M
𝑑𝑥 𝜕α𝐽a

α =

∫
∂M
𝑑𝑠α 𝐽a

α = 0,

где интегрирование ведется по многообразию M и его краю 𝜕M.
Пусть на M задана (псевдо)риманова геометрия, т.е. метрика 𝑔αβ и связность

Леви–Чивиты Γ̃αβ
γ. Тогда, если индекс a не преобразуется при преобразовании ко-

ординат, то интеграл по (псевдо)риманову многообразию, можно переписать в кова-
риантной форме: ∫

M
𝑑𝑥 𝜕α𝐽a

α =

∫
M
𝑑𝑥

√
|𝑔|∇̃α

(
1

√
|𝑔|
𝐽a

α

)
,

где

∇̃α

(
1

√
|𝑔|
𝐽a

α

)
= 𝜕α

(
1

√
|𝑔|
𝐽a

α

)
+ Γ̃αβ

α 1
√
|𝑔|
𝐽a

β

– ковариантная производная от вектора тока, и мы воспользовались формулой для
дивергенции (2.114).
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Рассмотрим действие (5.1) в пространстве Минковского R1,n−1. Пусть (𝑥α) =
(𝑥0,𝑥) – декартова система координат, и все поля достаточно быстро убывают на
пространственной бесконечности:

lim
|𝑥|→∞

𝜙a = 0

для всех моментов времени. Тогда, интегрируя уравнение (5.20) по области простран-
ства Минковского, которая ограничена двумя пространственноподобными сечениями
𝑥0

1 = const и 𝑥0
2 = const, получим закон сохранения

𝑄a =

∫
S
𝑑𝑥 𝐽a

0 = const, (5.22)

где S – произвольное сечение 𝑥0 = const. Это означает, что каждому преобразованию
симметрии соответствует закон сохранения: для любого решения уравнений движе-
ния, достаточно быстро убывающего на пространственной бесконечности, интеграл
(5.22) не зависит от времени. Интеграл (5.22) называется сохраняющимся зарядом,
соответствующим току 𝐽a

α. Если для уравнений движения поставлена задача Коши,
то значение заряда 𝑄a однозначно определяется начальными условиями.

5.2.1 Тензор энергии-импульса

Предположим, что некоторая модель описывается набором полей 𝜙a в простран-
стве Минковского R1,n−1 с декартовыми координатами 𝑥α. При этом метрика 𝜂αβ :=
diag (+ − . . .−) является заданной функцией в действии, по которой варьирование
не проводится. Пусть действие инвариантно относительно трансляций

𝛿𝑥α = 𝜖α = const, (5.23)
𝛿𝜙a = 0. (5.24)

Для этого достаточно, чтобы лагранжиан модели 𝐿(𝜙, 𝜕𝜙) не зависел явно от коорди-
нат. Для трансляций индекс a в (5.13) пробегает те же значения, что и 𝛼, генератор
трансляций совпадает с символом Кронекера, 𝑅a

α ↦→ 𝛿αβ , и 𝑅a
a = 0. В этом случае

выражение для тока (5.19) имеет вид

𝑇α
β = 𝜕α𝜙

a 𝜕𝐿

𝜕(𝜕β𝜙a)
− 𝛿βα𝐿. (5.25)

Полученное выражение называется тензором энергии-импульса полей 𝜙a. В силу
первой теоремы Нетер он сохраняется:

𝜕β𝑇α
β = 0. (5.26)

Тензор энергии-импульса (5.25) будем называть каноническим.
Если лагранжиан модели является скалярным полем (функцией) относительно

глобальных преобразований Лоренца O(1, 𝑛− 1), то выражение (5.25) представляет
собой тензор второго ранга типа (1, 1). Ясно, что выражение для 𝑇0

0 всегда совпадает
с плотностью гамильтониана для полей 𝜙a, и это оправдывает название “канониче-
ский”.
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Замечание. В общей теории относительности, основанной на псевдоримановой гео-
метрии, постулируется, что тензор Эйнштейна пропорционален тензору энергии-
импульса материи. При этом тензор энергии-импульса материи (6.10) определяется,
как вариационная производная действия для полей материи по метрике. При таком
определении тензор энергии-импульса всегда симметричен. Для скалярного поля ва-
риационная производная действия по метрике является ковариантным обобщением
тензора (5.25). В других случаях связь двух определений сложнее и будет обсуж-
даться в каждом конкретном случае.

Вообще говоря, тензор энергии-импульса с опущенным верхним индексом 𝑇αβ не
является симметричным. Если это так, то в ряде случаев можно провести симметри-
зацию, добавив соответствующую дивергенцию (5.21). Однако это не всегда возмож-
но. Действительно, после добавления дивергенции получим новый тензор энергии-
импульса

𝑇 ′αβ = 𝑇αβ + 𝜕γ𝑓αγβ.

Из условия симметрии 𝑇 ′αβ − 𝑇 ′βα = 0 следуют уравнения на неизвестную функцию
𝑓[αγβ] = 0, в которые входят только полностью антисимметричные компоненты:

𝜕γ𝑓[αγβ] = −1

2
(𝑇αβ − 𝑇βα).

Таким образом, мы имеем 𝑛(𝑛− 1)/2 дифференциальных уравнений на 𝑛(𝑛− 1)(𝑛−
2)/3! неизвестных компонент. При 𝑛 = 4 возникает 6 уравнений на 4 неизвестные
функции, которые не всегда имеют решения.

Введем стандартные 3-формы на координатных трехмерных гиперповерхностях
в четырехмерном пространстве-времени R1,3:

𝑑𝑠α =
1

6
𝜀αβγδ𝑑𝑥

β ∧ 𝑑𝑥γ ∧ 𝑑𝑥δ. (5.27)

Определим сохраняющийся во времени ковектор энергии-импульса с помощью ин-
теграла

𝑃α :=

∫
x0= const

𝑑𝑠β 𝑇α
β, (5.28)

где по индексу 𝛽 производится суммирование. Полученное выражение (5.28), по по-
строению, является ковектором относительно глобальных лоренцевых вращений. В
предположении, что все поля достаточно быстро убывают на пространственной бес-
конечности ковектор энергии-импульса определяется одним интегралом по простран-
ству,

𝑃α =

∫
x0= const

𝑑𝑥𝑇α
0. (5.29)

Выражение для нулевой компоненты 𝑃0 совпадает с гамильтонианом системы полей
𝜙a, т.е. равно сохраняющейся полной энергии. Это оправдывает название ковектора
энергии-импульса. Пространственные компоненты тензора энергии-импульса

𝑇i
0 =

𝜕𝐿

𝜕(𝜕0𝜙a)
𝜕i𝜙

a, 𝑖 = 1, . . . , 𝑛− 1, (5.30)

определяют сохраняющийся полный импульс системы полей 𝜙a:

𝑃i =

∫
x0= const

𝑑𝑥𝑇i
0. (5.31)
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Полная энергия системы 𝑃0 и каждая компонента полного импульса 𝑃i относительно
данной декартовой системы сохраняются во времени. В другой декартовой системе
координат они тоже сохраняются, но имеют другие численные значения.

5.2.2 Тензор момента количества движения

Пусть действие 𝑆[𝜙] в пространстве Минковского R1,n−1 инвариантно относитель-
но лоренцевых вращений. Мы предполагаем, что набор полей 𝜙a преобразуется по
некоторому, возможно, приводимому представлению группы Лоренца SO0(1, 𝑛 − 1).
Обозначим представление генераторов группы для полей через 𝐿γδba = −𝐿δγba. Тогда
в инфинитезимальной форме лоренцевы вращения примут вид

𝛿𝑥α = −𝑥β𝜔βα =
∑
γ<δ

𝜔γδ(𝑥δ𝛿
α
γ − 𝑥γ𝛿

α
δ ), (5.32)

𝛿𝜙a =
∑
γ<δ

𝜔γδ𝐿γδb
a𝜙b, (5.33)

где 𝜔γδ = −𝜔δγ – параметры преобразований, которые предполагаются постоянными.
Для инвариантности действия достаточно, чтобы лагранжиан был скалярным полем
(функцией) от координат, полей и их производных. Для лоренцевых вращений индекс
a ↦→ (𝛼𝛽) = −(𝛽𝛼) представляет собой пару антисимметричных векторных индексов.

Выражение для тока (5.19) приводит к следующему тензору момента количества
движения, который мы представим в виде суммы двух слагаемых:

𝐽γδ
α :=− 𝜕𝐿

𝜕(𝜕α𝜙a)

(
𝐿γδb

a𝜙b − (𝑥δ𝛿
β
γ − 𝑥γ𝛿

β
δ )𝜕β𝜙

a
)
− 𝐿(𝑥δ𝛿

α
γ − 𝑥γ𝛿

α
δ ) = (5.34)

=𝑀γδ
α + 𝑆γδ

α,

где введен орбитальный и спиновый моменты, соответственно,

𝑀αβ
γ := 𝑥β𝑇α

γ − 𝑥α𝑇β
γ, (5.35)

𝑆αβ
γ := − 𝜕𝐿

𝜕(𝜕γ𝜙a)
𝐿αβb

a𝜙b. (5.36)

Здесь 𝑇α
β – канонический тензор энергии-импульса (5.25). Оба объекта являются

тензорами третьего ранга относительно преобразований Лоренца. Обратим внима-
ние, что орбитальный момент (5.35) не инвариантен относительно трансляций, т.к.
явно зависит от координат. В противоположность этому спиновый момент инвари-
антен относительно трансляций.

Если все поля 𝜙a являются скалярами относительно лоренцевых вращений, то
𝐿αβb

a = 0 и спиновый момент равен нулю, 𝑆αβγ = 0.
Допустим, что действие для некоторой системы полей инвариантно относительно

трансляций и лоренцевых вращений (группы Пуанкаре), и спиновый момент равен
нулю 𝑆αβ

γ = 0, как для скалярных полей. Тогда закон сохранения момента количе-
ства движения принимает вид

𝜕γ𝑀αβ
γ = 𝑇αβ − 𝑇βα + 𝑥β𝜕γ𝑇α

γ − 𝑥α𝜕γ𝑇β
γ.

С учетом закона сохранения тензора энергии-импульса (5.26) отсюда вытекает, что
для такой системы ковариантный тензор энергии-импульса симметричен:

𝑇αβ = 𝑇βα. (5.37)
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Так же, как и для канонического тензора энергии-импульса, для тензора момента
количества движения можно ввести полный момент системы. Для полей, достаточ-
но быстро убывающих на пространственной бесконечности, он равен интегралу по
пространству:

𝐽αβ :=

∫
x0= const

𝑑𝑥 𝐽αβ
0. (5.38)

Полный момент количества движения является антисимметричным тензором второ-
го ранга относительно преобразований Лоренца.

Замечание. Требование инвариантности моделей математической физики относи-
тельно преобразований группы Пуанкаре имеет глубокий физический смысл и со-
ставляет основное содержание специальной теории относительности. Инвариантность
действия относительно трансляций означает однородность пространства-времени. То
есть все точки пространства-времени равноправны, и законы природы имеют одина-
ковый вид в декартовых координатах с произвольно выбранным началом. Инвари-
антность относительно преобразований Лоренца означает изотропность пространства-
времени. То есть равноправие всех направлений и одинаковый вид законов природы
в декартовых координатах с произвольной ориентацией осей. Законы сохранения
энергии-импульса и момента количества движения к настоящему времени нашли
многочисленные экспериментальные подтверждения в различных областях физики.
Поэтому инвариантность фундаментальных моделей математической физики отно-
сительно действия группы Пуанкаре следует считать экспериментально установлен-
ным фактом.

Помимо этого требование инвариантности функционала действия относительно
преобразований группы Пуанкаре в квантовой теории поля означает, что все элемен-
тарные частицы должны описываться полями, принадлежащими одному из неприво-
димых представлений группы Пуанкаре, которые характеризуются массой и спином.
Использование этих понятий в экспериментальной физике элементарных частиц так-
же чрезвычайно плодотворно. Это также можно рассматривать, как эксперименталь-
ное подтверждение инвариантности законов природы относительно преобразований
группы Пуанкаре.

5.3 Вторая теорема Нетер
Рассмотрим действие (5.1), которое инвариантно относительно преобразований (5.11)–
(5.14) с локальными параметрами 𝜖a(𝑥), зависящим от точек пространства-времени.
Мы допускаем, что эти преобразования могут зависеть от частных производных 𝜕α𝜖a
первого и более высокого порядка. Чтобы упростить формулы будем использовать
обозначения Девитта [?], т.е. суммирование по индексу a в формулах (5.11), (5.12)
подразумевает интегрирование, а генераторы локальных преобразований 𝑅a

α и 𝑅a
a

рассматриваются, как двухточечные функции, содержащие 𝛿-функции и (или) их
производные.

Пример 5.3.1. Калибровочное преобразование в электродинамике с параметром
𝜖(𝑥)

𝛿𝐴α = 𝜕α𝜖

будем записывать в виде

𝛿𝐴α = 𝜖𝑅α = 𝜕α

∫
𝑑𝑥′ 𝜖(𝑥′)𝛿(𝑥′ − 𝑥), (5.39)
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где

𝑅α(𝑥
′, 𝑥) :=

𝜕

𝜕𝑥α
𝛿(𝑥′ − 𝑥). (5.40)

Пример 5.3.2. Бесконечно малые общие преобразования координат для электро-
магнитного поля (2.156) можно записать в виде

𝛿𝑥α = 𝜖α = 𝜖β𝑅β
α, (5.41)

𝛿𝐴α = −𝜕α𝜖β𝐴β − 𝜖β𝜕β𝐴α = 𝜖β𝑁βα, (5.42)

где

𝑅β
α := 𝛿αβ 𝛿(𝑥

′ − 𝑥), (5.43)

𝑁βα := 𝐹αβ(𝑥
′)𝛿(𝑥′ − 𝑥)− 𝐴β(𝑥

′)
𝜕

𝜕𝑥α
𝛿(𝑥′ − 𝑥). (5.44)

Определение. Преобразования полей (5.14) с локальными параметрами 𝜖a(𝑥) на-
зываются калибровочными.

Рассмотрим одну из вариационных задач. Будем считать, что параметры 𝜖a и
их производные равны нулю на границе области. Тогда инвариантность действия
относительно калибровочных преобразований можно записать в виде

𝛿𝑆 =

∫
𝑑𝑥 𝛿𝜙a𝑆, a =

∫
𝑑𝑥 𝜖a(𝑅a

a −𝑅a
α𝜕α𝜙

a)𝑆, a = 0. (5.45)

При этом были отброшены все граничные слагаемые. Отсюда следует

Теорема 5.3.1 (Вторая теорема Нетер). Если функционал действия (5.1) инва-
риантен относительно калибровочных преобразований, которые параметризуются
k произвольными функциями 𝜖a(𝑥), a = 1, . . . ,k, то уравнения Эйлера–Лагранжа
удовлетворяют k тождествам:

(𝑅a
a −𝑅a

α𝜕α𝜙
a)𝑆, a = 0, (5.46)

которые линейны по 𝑆, a.

Замечание. В формулировке теоремы мы отбросили предположение о том, что па-
раметры преобразований и их производные равны нулю на границе. Если это не так,
то зависимость уравнений Эйлера–Лагранжа все равно сохранится. В этом случае
из требования инвариантности действия появятся дополнительные следствия для
граничных условий, которые мы не рассматриваем.

Напомним, что в линейном соотношении между уравнениями движения (5.46)
суммирование по индексу 𝑎 предполагает интегрирование. Отсюда следует, что ес-
ли калибровочные преобразования зависят от частных производных 𝑙-того порядка
от параметра преобразования, то соотношения (5.46) представляют собой систему
𝐾 линейных дифференциальных уравнений в частных производных 𝑙-того порядка
относительно вариационных производных 𝑆, a.

Вторая теорема Нетер утверждает, что в калибровочных моделях, а также моде-
лях, инвариантных относительно общих преобразований координат, не все уравнения
движения являются линейно независимыми. Это указывает на то, что в решениях за-
дачи Коши будет содержаться функциональный произвол, т.к. количества уравнений
недостаточно для однозначного определения решений по начальным данным.
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Для доказательства теоремы существенно, что параметры преобразований 𝜖a(𝑥)
является произвольными функциями, т.к. только в этом случае подынтегральное
выражение в (5.45) согласно основной лемме вариационного исчисления должно об-
ращаться в нуль.

Пример 5.3.3. Проведем аналогию с теорией функций многих переменных. Пусть
𝑓 = 𝑓(𝑥) – функция 𝑛 переменных 𝑥 = (𝑥α). Аналогом вариационной производной
действия в таком случае является обычная частная производная 𝜕α𝑓 . Допустим, что
𝑓 инвариантна относительно калибровочных преобразований 𝛿𝑥α = 𝜖𝑋α, где 𝜖 = 𝜖(𝑥)
– параметр преобразования и 𝑋α – векторное поле (генератор калибровочного преоб-
разования), которое предполагается отличным от нуля. Тогда “зависимость уравне-
ний движения” сводится к линейной зависимости частных производных 𝑋α𝜕α𝑓 = 0.
Поэтому функция 𝑓 постоянна вдоль интегральной кривой 𝑥(𝑡) векторного поля 𝑋α:

𝑓
(
𝑥(𝑡)

)
= const, 𝑥̇α = 𝑋α.

Это значит, что локальный экстремум 𝜕α𝑓 = 0 достигается не в точке, а на инте-
гральной кривой 𝑥(𝑡).

Из второй теоремы Нетер следует, что функционал действия для калибровочных
моделей достигает экстремального значения не на отдельных функциях, а на классах
функций, связанных между собой калибровочными преобразованиями.

Если некоторая модель инвариантна относительно локальных преобразований,
то она, в частности, инвариантна относительно тех же преобразований с постоянны-
ми параметрами. Это значит, что токи (5.19) приводят к законам сохранения (5.22)
и для локальных преобразований. Поэтому в моделях, инвариантных относительно
локальных преобразований можно применить обе теоремы Нетер. При этом первая
теорема дает выражения для сохраняющихся токов, а вторая – зависимость уравне-
ний движения. В общем случае это не одно и то же.

Пример 5.3.4. Рассмотрим модели математической физики, инвариантные относи-
тельно общих преобразований координат. Пусть действие 𝑆 = 𝑆(𝑔) зависит только от
метрики 𝑔αβ. Обозначим вариационную производную действия следующим образом:

√
|𝑔|𝑆, αβ :=

𝛿𝑆

𝛿𝑔αβ
. (5.47)

Здесь мы явно ввели в качестве множителя определитель репера
√
|𝑔| = det 𝑒α

a, по-
скольку вариационная производная так же, как и лагранжиан, является тензорной
плотностью степени −1. Инвариантность действия относительно общих преобразо-
ваний координат означает равенство нулю вариации:

𝛿𝑆 =

∫
𝑑𝑥

√
|𝑔|𝑆, αβ𝛿𝑔αβ = 0.

Подставляя сюда вариации метрики (2.159) и интегрируя по частям, получим тож-
дества

∇̃α𝑆,
α
β = 0. (5.48)

где ∇̃α – ковариантная производная со связностью Леви–Чивиты Γ̃αβ
γ, а подъем и

опускание индексов производится с помощью метрики 𝑔αβ. Таким образом, в моделях,
инвариантных относительно общих преобразований координат, уравнения движения
удовлетворяют 𝑛 = dimM линейным дифференциальным тождествам.
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В общей теории относительности для действия Гильберта–Эйнштейна справед-
ливо равенство

∇̃α

(
𝑅̃α

β −
1

2
𝛿αβ 𝑅̃

)
= 0. (5.49)

Это тождество совпадает со свернутыми тождествами Бианки (2.150).

5.4 Эффективное действие
При исследовании моделей математической физики, действие которых зависит от
нескольких полей, иногда удается решить часть уравнений Эйлера–Лагранжа явно,
выразив одни переменные через другие в общем виде. В этом случае вариационную
задачу можно свести к новому эффективному действию, зависящему от меньшего
числа переменных. В настоящем разделе мы докажем простую теорему, позволяю-
щую строить эффективное действие в случае вариационной задачи с фиксированны-
ми граничными условиями. То есть будем пренебрегать всеми граничными слагаемы-
ми. Обобщение на более сложные случаи будет ясно из дальнейшего рассмотрения.

Начнем с простейшего случая. Пусть на ограниченной области M ⊂ Rn заданы
два скалярных поля 𝜙 и 𝜓. Предположим, что функция 𝜓 = 𝜓(𝑥, 𝜙, 𝜕𝜙, 𝜕2𝜙) в каждой
точке 𝑥 ∈ M задана как функция 𝜙, ее первых и вторых частных производных: 𝜕α𝜙 и
𝜕α𝜕β𝜙. Представим значение функции 𝜓(𝑥) := 𝜓

[
𝑥, 𝜙(𝑥), 𝜕𝜙(𝑥), 𝜕2𝜙(𝑥)

]
в точке 𝑥 ∈ M

в виде функционала, использую 𝛿-функцию,

𝜓(𝑥) =

∫
M
𝑑𝑦 𝜓(𝑦)𝛿(𝑦 − 𝑥).

Вариация функционала 𝜓(𝑥), вызванная вариацией 𝛿𝜙, имеет вид

𝛿𝜓(𝑥) =

∫
M
𝑑𝑦

(
𝜕𝜓

𝜕𝜙
𝛿𝜙+

𝜕𝜓

𝜕(𝜕α𝜙)
𝛿(𝜕α𝜙) +

𝜕𝜓

𝜕(𝜕α𝜕β𝜙)
𝛿(𝜕α𝜕β𝜙)

)
𝛿(𝑦 − 𝑥).

Проинтегрировав второе и третье слагаемые по частям, получим выражение для
вариационной производной

𝛿𝜓(𝑥)

𝛿𝜙(𝑦)
=
𝜕𝜓

𝜕𝜙
𝛿(𝑦 − 𝑥)− 𝜕

𝜕𝑦α

(
𝜕𝜓

𝜕(𝜕α𝜙)
𝛿(𝑦 − 𝑥)

)
+ 𝜕α𝜕β

(
𝜕𝜓

𝜕(𝜕α𝜕β𝜓)
𝛿(𝑦 − 𝑥)

)
, (5.50)

где в правой части 𝜓 = 𝜓(𝑦) и 𝜙 = 𝜙(𝑦).
Теперь обсудим вариационную задачу. Пусть действие 𝑆[𝜙, 𝜓] зависит от двух

функций 𝜙 и 𝜓. Тогда из принципа наименьшего действия следуют два уравнения
Эйлера–Лагранжа:

𝛿𝑆

𝛿𝜙
= 0, (5.51)

𝛿𝑆

𝛿𝜓
= 0. (5.52)

Допустим, что второе уравнение Эйлера–Лагранжа допускает общее решение для 𝜓,
как функции от 𝜙 и ее производных:

𝜓 = 𝜓(𝑥, 𝜙, 𝜕𝜙, 𝜕2𝜙). (5.53)
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При этом мы предполагаем, что общее решение не имеет особенностей. Если дей-
ствие зависит только от самих функций и их первых производных, то в общее ре-
шение будут входить производные от 𝜙 не выше второго порядка. Поскольку урав-
нение Эйлера–Лагранжа (5.52) является дифференциальным уравнением в частных
производных, то общее решение зависит также от некоторого набора произвольных
функций и постоянных. Часть этих произвольных функций и постоянных фиксиру-
ется, если это возможно, граничными условиями 𝜓|∂M = 𝜓0 и 𝜙|∂M = 𝜙0. Используем
полученное решение для построения нового эффективного действия

𝑆eff[𝜙] := 𝑆
[
𝜙, 𝜓(𝜙)

]
, (5.54)

которое зависит только от одной функции 𝜙. Тогда уравнение Эйлера–Лагранжа для
𝜙 связано со старыми уравнениями (5.51), (5.52) простым соотношением

𝛿𝑆eff

𝛿𝜙(𝑥)
=

𝛿𝑆

𝛿𝜙(𝑥)
+

𝛿𝑆

𝛿𝜓(𝑦)

𝛿𝜓(𝑦)

𝛿𝜙(𝑥)

∣∣∣∣
ψ=ψ(ϕ)

= 0, (5.55)

где во втором слагаемом подразумевается интегрирование по аргументу поля 𝜓(𝑦),
которое снимается 𝛿-функцией в вариационной производной. Ясно, что второе сла-
гаемое равно нулю, если выполнено уравнение Эйлера–Лагранжа для 𝜓 (5.52).

Проведенные вычисления остаются в силе и в том случае, когда мы рассматри-
ваем наборы полей 𝜙 = {𝜙a}, 𝑎 = 1, . . . ,n и 𝜓a, a = 1, . . . ,𝑚. Отсюда следует

Теорема 5.4.1. Пусть дано действие 𝑆[𝜙, 𝜓], зависящее от двух наборов полей 𝜙
и 𝜓. Тогда множество решений уравнений Эйлера–Лагранжа для вариационной за-
дачи с заданными граничными условиями совпадает с множеством решений урав-
нений Эйлера–Лагранжа для эффективного действия (5.54), дополненным выраже-
нием 𝜓 через 𝜙 (5.53).

Эта теорема важна, поскольку позволяет строить эффективное действие, которое
зависит от меньшего числа полей, подставляя общее решение части системы урав-
нений Эйлера–Лагранжа непосредственно в исходное действие. Частные решения
подставлять в действие, как правило, нельзя, т.к. часть уравнений при этом может
быть потеряна.



Глава 6

Основы общей теории
относительности

В настоящей главе мы приступим к изложению основ общей теории относительности,
которая в настоящее время рассматривается в качестве основной модели гравитаци-
онных взаимодействий. После вступительного раздела, будут написаны уравнения
движения и поставлена одна из основных задач, которая решается в теории грави-
тации.

6.1 Пространство-время, метрика и гравитация
В основе общей теории относительности лежит ряд постулатов. Выделим среди них
пять, на наш взгляд, основных.

1. Пространство-время M, в котором мы живем, является четырехмерным много-
образием.

2. Гравитационное взаимодействие между материальными телами описывается
метрикой 𝑔 лоренцевой сигнатуры, sign 𝑔 = (+−−−), заданной на M.

3. Метрика пространства-времени удовлетворяет уравнениям Эйнштейна.

4. Пробная точечная частица, собственным гравитационным полем которой в дан-
ной задаче можно пренебречь, под действием только гравитационного поля дви-
жется по экстремалям (геодезическим) пространства-времени (M, 𝑔).

5. Пространство-время (M, 𝑔) должно быть максимально продолжено вдоль экс-
тремалей (геодезических).

Первые два постулата являются “кинематическими”. Из них следует, что в об-
щей теории относительности все законы природы формулируются на четырехмерном
псевдоримановом многообразии (пространстве-времени) (M, 𝑔). Если выбрана неко-
торая система координат 𝑥α, 𝛼 = 0, 1, 2, 3, то метрика имеет вид 𝑔 = 𝑑𝑥α ⊗ 𝑑𝑥β𝑔αβ,
sign 𝑔αβ = (+−−−). В общем случае, если пространство-время топологически нетри-
виально, система координат может быть выбрана только локально.

Первые две аксиомы важны, поскольку позволяют описывать окружающий нас
мир с помощью некоторого набора полей и формулировать законы природы в виде
системы дифференциальных уравнений на M. Этот подход оказался самым плодо-
творным в последние три столетия.
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Третья и четвертая аксиома являются “динамическими”. В общей теории отно-
сительности постулируется, что метрика на M должна удовлетворять уравнениям
Эйнштейна (6.1). Тем самым компоненты метрики пространства-времени удовлетво-
ряют некоторой системе уравнений движения, так же как и все другие поля. Это –
очень важное отличие общей теории относительности от специальной, где метрика
Лоренца 𝜂αβ := diag (+−−−) в пространстве Минковского R1,3 постулирована.

Как мы увидим в дальнейшем, в правой части уравнений Эйнштейна стоит тензор
энергии-импульса полей материи. Выбор полей материи зависит от рассматриваемой
модели. Это может быть, например, сплошная среда, точечные массивные частицы,
электромагнитное поле или что то еще. Возможны также произвольные комбинации
полей материи.

Сама по себе система уравнений Эйнштейна не полна. Если мы выбрали какой-
либо набор полей материи, то уравнения Эйнштейна необходимо дополнить урав-
нениями движения полей материи. Вид дополнительных уравнений зависит от рас-
сматриваемой задачи.

Четвертый постулат говорит о следующем. Предположим, что мы выбрали неко-
торый набор полей материи, записали и решили полную систему уравнений для
метрики и полей материи. В результате мы получим псевдориманово многообразие
(M, 𝑔), на котором заданы также поля материи. Теперь допустим, что к нашей систе-
ме добавлена точечная массивная частица, масса которой настолько мала, что она
не влияет на решение уравнений Эйнштейна. То есть мы пренебрегаем собственным
гравитационным полем частицы. Такую частицу назовем пробной. Тогда возникает
вопрос, по какой траектории будет двигаться пробная частица под действием только
гравитационных сил? Ответ на этот вопрос дает четвертый постулат: пробная части-
ца будет двигаться по M вдоль экстремалей (геодезических), определяемых метри-
кой 𝑔. Мы также предполагаем, что безмассовые частицы (например, фотоны) также
распространяются вдоль светоподобных (нулевых) экстремалей (геодезических).

На четвертой аксиоме основано экспериментальное подтверждение общей теории
относительности. Два классических теста: смещение перигелия Меркурия и откло-
нение лучей света в поле тяготения основаны на анализе геодезических для решения
Шварцшильда, о котором речь пойдет позже. Третий классический тест – красное
смещение частоты электромагнитного излучения – это следствие второй аксиомы.

Обсудим пятую аксиому. В общем случае глобальная структура (топология) прос-
транства-времени M может быть нетривиальной и отличаться от тривиальной топо-
логии пространства Минковского. Поскольку глобально структура M не фиксиро-
вана, то в моделях гравитации вводится новое требование. Пространство-время, по
определению, должно быть максимально продолжено вдоль геодезических (экстре-
малей). Это значит, что любая геодезическая в пространстве-времени может быть
либо продолжена до бесконечного значения канонического параметра в обе стороны,
либо при конечном значении канонического параметра она попадет в сингулярную
точку, где какой-либо из геометрических инвариантов обращается в бесконечность.
Поскольку канонический параметр вдоль экстремалей определен с точностью до ли-
нейных преобразований (см., главу 3), то данное требование инвариантно, т.е. не
зависит от выбора системы координат.

Замечание. Требование максимального продолжения пространства-времени вдоль
геодезических нельзя заменить на более жесткое требование геодезической полноты,
т.к. многие важные точные решения уравнений Эйнштейна не являются геодезиче-
ски полными. Например, для решений, описывающих черные дыры, времениподоб-
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ные геодезические линии достигают сингулярного края (черной дыры), на котором
квадрат тензора кривизны обращается в бесконечность при конечном значении ка-
нонического параметра (собственного времени).

Приведенные аксиомы выделены, потому что лежат в основе любой модели, по-
строенной в рамках общей теории относительности. Их недостаточно для построения
конкретной модели гравитации, т.к. необходимо выбрать поля материи и дополнить
уравнения Эйнштейна. При этом используются дополнительные аксиомы, которые
мы не выделяем, поскольку их столько же, сколько и моделей.

Теперь скажем несколько слов о гравитационном взаимодействии. Для описания
движения планет в солнечной системе с хорошей точностью используется механика
Ньютона и закон всемирного тяготения. Мы говорим, что между планетами действу-
ют гравитационные силы, которые определяют их движение. При этом движение
происходит в плоском трехмерном евклидовом пространстве R3, а время играет роль
параметра. Основное свойство гравитационного взаимодействия заключается в том,
что движение пробной частицы, при заданных начальных условиях, не зависит от ее
массы.

Пример 6.1.1. Ускорение свободного падения на Земле не зависит от массы па-
дающего тела. Это утверждение в настоящее время экспериментально проверено с
высокой степенью точности.

Независимость ускорения от массы частицы означает, что при одних и тех же
начальных условиях траектории и мировые линии пробных частиц разной массы
совпадают.

Замечание. Для сравнения, в электродинамике траектория заряженной частицы
зависит от ее заряда. Если электромагнитное поле задано, то траектория частицы
однозначно определяется массой, зарядом и начальными условиями.

Рассмотрим движение пробной частицы в специальной теории относительности
в инерциальной системе отсчета. По определению, если гравитационное поле отсут-
ствует и на частицу не действуют никакие другие силы, то она движется равно-
мерно и прямолинейно (первый закон Ньютона). Теперь рассмотрим движение той
же частицы, но в неинерциальной системе отсчета, которая движется с постоянным
ускорением относительно инерциальной системы отсчета. В этой системе координат
свободная частица движется с ускорением и наблюдатель может сказать (если не
наблюдает за другими телами), что его система инерциальна, а частица движется в
постоянном и однородном гравитационном поле, которое и вызывает ускорение. При
этом ускорение не зависит от массы частицы и определяется только неинерциальной
системой координат. Поэтому часто формулируют
Принцип эквивалентности. Все физические процессы неразличимы в равноуско-
ренной системе отсчета и в системе координат, находящейся в однородном гравита-
ционном поле.

Для однородного гравитационного поля это так, поскольку можно перейти в по-
коящуюся систему координат. Однако, если гравитационное поле не однородно и
тензор кривизны отличен от нуля, то не существует такой системы координат, где
гравитационное поле отсутствует.

В инерциальной (декартовой) системе координат в пространстве Минковского
метрика диагональна и имеет постоянные компоненты, 𝜂αβ := diag (+ − −−). В та-
кой системе координат все экстремали и только они являются прямыми линиями.
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Поэтому можно сказать, что свободная пробная частица движется вдоль одной из
экстремалей пространства Минковского. Если перейти в неинерциальную (криволи-
нейную) систему координат, то в общем случае метрика перестанет быть диагональ-
ной, и ее компоненты станут зависеть от координат точки пространства-времени. В
этой системе координат траектория свободной частицы уже не будет выглядеть пря-
молинейной, а движение – равномерным. Тем не менее траектория, конечно, будет
оставаться экстремалью пространства Минковского, т.к. понятие экстремали инва-
риантно и не зависит от выбора системы координат.

Таким образом, утверждение о том, что свободная пробная частица движется в
пространстве Минковского вдоль одной из экстремалей инвариантно относительно
выбора системы координат и лежит в основе перехода от механики Ньютона к общей
теории относительности. Как уже было сказано, в общей теории относительности мы
предполагаем, что пространство-время представляет собой четырехмерное многооб-
разие M, на котором задана метрика лоренцевой сигнатуры. Мы постулируем, что
любая пробная частица движется вдоль одной из экстремалей пространства-времени.
Этот постулат согласуется с упомянутыми выше свойствами гравитационного взаи-
модействия: мировая линия пробной частицы не зависит от ее массы. При этом прин-
цип эквивалентности является лишь наводящим соображением о том, что метрика с
нетривиальными компонентами описывает гравитационное взаимодействие.

Тем самым метрика пространства-времени в общей теории относительности игра-
ет выделенную роль. Мы считаем, что метрика описывает гравитационные взаимо-
действия материальных тел и излучения. А именно, если частица движется в плос-
ком пространстве-времени, которое изометрично пространству Минковского R1,3 с
метрикой Лоренца, то на нее не действуют гравитационные силы. В этом случае
частица в инерциальной системе координат движется равномерно и прямолинейно.
Если гравитационное поле нетривиально, то частицы (массовые и безмассовые) дви-
жутся по экстремалям в искривленном пространстве-времени, т.е. по многообразию
M с метрикой 𝑔 и связностью Леви–Чивиты Γ̃, для которой тензор кривизны отли-
чен от нуля. В этом случае отсутствует понятие инерциальной системы отсчета, а
экстремали отличаются от прямых линий.

Поскольку в пространстве-времени M задана метрика, то она однозначно опреде-
ляет связность Леви–Чивиты или символы Кристоффеля. Это позволяет использо-
вать аппарат ковариантного дифференцирования для построения инвариантов и за-
писи ковариантных уравнений движения. Введение связности Леви–Чивиты на мно-
гообразии M является постулатом общей теории относительности. То есть в теории
тяготения Эйнштейна мы постулируем, что кручение и неметричность аффинной
связности тождественно равны нулю.

В настоящее время теория тяготения Эйнштейна имеет много обобщений. Боль-
шой класс таких обобщений представляют собой модели, в которых на многообразии
M помимо метрики задается также независимая аффинная связность Γ с нетриви-
альным кручением 𝑇 и неметричностью 𝑄. Эти обобщения естественны с геомет-
рической точки зрения, т.к. метрика и аффинная связность являются совершенно
независимыми геометрическими объектами. В общем случае, даже если ограничить-
ся инвариантными лагранжианами, приводящими к уравнениям движения второго
порядка, существует очень много возможностей для построения соответствующих
моделей гравитации, которые в настоящее время не исследованы в полной мере.

Считается, что общая теория относительности согласуется со всеми наблюдатель-
ными данными. Однако, поскольку мы не знаем экспериментальных следствий упо-
мянутых выше геометрических обобщений теории тяготения, говорить о том, что



6.2. О ПОСТАНОВКЕ ЗАДАЧ В ТЕОРИИ ГРАВИТАЦИИ 99

они противоречат экспериментальным данным нельзя. Различные геометрические
обобщения теории тяготения Эйнштейна представляют самостоятельный математи-
ческий интерес и могут быть полезны при построении квантовой теории гравитации
и единых моделей. В современной математической физике такие модели привлекают
исследователей постоянно со времен создания общей теории относительности. Доста-
точно отметить, что геометрическими обобщениями общей теории относительности
занимались А. Эйнштейн, Г. Вейль, Э. Шредингер и многие другие выдающиеся
физики.

6.2 О постановке задач в теории гравитации

Отметим специфику задач, возникающих при рассмотрении произвольного функци-
онала действия, инвариантного относительно общих преобразований координат и со-
держащего метрику. Уравнения Эйлера–Лагранжа записываются и решаются в про-
извольной, но фиксированной системе координат, т.е. локальны. Допустим, что мы
поставили краевую задачу и нашли какое-то решение уравнений Эйлера–Лагранжа
во всем Rn с заданными граничными условиями. Это решение может оказаться геоде-
зически неполным. Поскольку исходное действие инвариантно относительно общих
преобразований координат, то без потери общности можно отобразить все Rn, и тем
самым найденное решение, на ограниченную область, например, в открытый шар
конечного радиуса. В связи с этим возникает вопрос нельзя ли найденное решение
продолжить, т.е. существует ли решение в большей области, сужение которого сов-
падает с уже найденным решением в шаре? Для ответа на этот вопрос необходимо
инвариантное определение глобальности решения, которое дается через полноту гео-
дезических и экстремалей.

Определение. Назовем многообразие M с заданной аффинной геометрией, т.е. трой-
ку (M, 𝑔,Γ), полным, если любую геодезическую и экстремаль в M можно продол-
жить до бесконечного значения канонического параметра в обе стороны. На практике
часто локальное решение уравнений движения нельзя продолжить до полного реше-
ния, поскольку возможно появление сингулярностей. Назовем точку многообразия
M сингулярной, если в этой точке по крайней мере одно скалярное поле, построен-
ное из метрики и (или) аффинной связности, включая их производные обращается
в бесконечность.

В этом определении важно, чтобы в сингулярной точке именно скалярная ком-
бинация геометрических объектов обращалась в бесконечность, поскольку наряду с
истинными сингулярностями могут существовать координатные сингулярности, свя-
занные с неудачным выбором системы координат. Например, хорошо известна ко-
ординатная особенность метрики на горизонте событий для решения Шварцшильда
в координатах Шварцшильда, от которой можно избавиться, перейдя, например, к
системе координат Эддингтона–Финкельстейна или Крускала–Секереша (см. главу
8). Простейшими функциями, определяющими положение сингулярностей являются
скалярная кривизна и квадрат тензора кручения, имеющие одинаковую размерность.
Примером истинной сингулярности может служить черная дыра в решении Шварц-
шильда, в которой квадрат тензора кривизны обращается в бесконечность.

В связи с возможным существованием сингулярностей оказывается полезным по-
нятие максимально продолженного многообразия.



100 ГЛАВА 6. ОСНОВЫ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Определение. Многообразие с заданной аффинной геометрией назовем максималь-
но продолженным, если любую геодезическую и экстремаль можно либо продолжить
до бесконечного значения канонического параметра, либо они продолжаются до син-
гулярной точки при конечном значении канонического параметра. Соответствующую
тройку (M, 𝑔,Γ) назовем глобальным решением в теории гравитации.

С физической точки зрения требование полноты или максимального продолже-
ния пространства-времени M является естественным. Действительно, если рассмот-
реть движение точечной частицы в сопутствующей системе отсчета, в которой вре-
мя является каноническим параметром, то естественно предположить, что эволюция
продолжается-либо бесконечно долго, либо обрывается в сингулярной точке.

Отметим, что полное многообразие не может иметь края. При этом существуют
две возможности: либо пространство-время M некомпактно, либо компактно и без
края. В первом случае геометрические инварианты в бесконечности могут стремить-
ся как к конечным, так и бесконечным значениям. В космологии принята следующая
терминология. Если все пространственные сечения пространства-времени M неком-
пактны, то вселенная бесконечна. Если все пространственные сечения компактны
и без края, то говорят, что вселенная замкнута. При наличии сингулярностей, со-
ответствующих конечному значению канонического параметра, сингулярные точки
образуют край пространства-времени, находящийся на конечном расстоянии (при
конечных значениях канонического параметра).

Чтобы найти максимально продолженное решение в общей теории относитель-
ности, необходимо пройти несколько этапов: 1) решить уравнения Эйнштейна для
метрики в некоторой области; 2) найти и проанализировать полноту всех геодези-
ческих; 3) если область, где найдено решение, оказалась неполной, то продолжить
решение. Первые два этапа очень сложны, поскольку предполагают решение нели-
нейных систем дифференциальных уравнений. Последний этап также сложен. Его
можно осуществить по крайней мере двумя способами. Либо перейти в новую си-
стему координат, охватывающую бо́льшую область, либо найти решение в соседней
области, а затем доказать гладкость склейки. Однако общего конструктивного ме-
тода продолжения решений в настоящее время не существует. В разделе ?? описан
метод конформных блоков построения лоренцевых поверхностей в целом, если мет-
рика допускает один вектор Киллинга.

В общей теории относительности существуют только отдельные примеры мак-
симально продолженных многообразий. Например, расширение Крускала–Секереша
решения Шварцшильда, которое будет обсуждаться в главе 8.

6.3 Действие Гильберта–Эйнштейна
В общей теории относительности постулируется, что пространство-время является
псевдоримановым многообразием M, dimM = 4, с метрикой лоренцевой сигнату-
ры 𝑔αβ. При этом считается, что метрика описывает гравитационные взаимодей-
ствия. Мы рассмотрим более общий случай произвольной размерности пространства-
времени 𝑛, потому что модели гравитации в большем и меньшем числе измерений
также важны для приложений.

Мы рассматриваем метрику пространства-времени в качестве одной из полевых
переменных и постулируем для нее уравнения Эйнштейна:

𝜅

(
𝑅̃αβ −

1

2
𝑔αβ𝑅̃

)
+ 𝑔αβ

𝑛− 2

2
Λ = −1

2
𝑇mαβ. (6.1)
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В левой части этой системы уравнений для метрики стоит тензор Эйнштейна

𝐺αβ := 𝑅̃αβ −
1

2
𝑔αβ𝑅̃, (6.2)

умноженный на гравитационную постоянную 𝜅, и космологическая постоянная Λ ∈
R. В правой части уравнений Эйнштейна стоит тензор энергии-импульса материи
𝑇mαβ. Эти уравнения при Λ = 0 и 𝑛 = 4 были впервые предложены А. Эйнштейном
в статье [?].

В дальнейшем, для краткости, мы часто будем говорить “тензор энергии-импульса
материи”, подразумевая под этим также возможное излучение.

Тензор энергии-импульса материи зависит от рассматриваемой модели, и в об-
щем случае уравнения Эйнштейна необходимо дополнить уравнениями для полей
материи. То есть сама по себе система уравнений Эйнштейна (6.1) не полна.

Замечание. В уравнении (6.1) мы оставили знак тильды, чтобы подчеркнуть, что
тензор кривизны строится только по метрике при нулевом кручении и неметрично-
сти. То есть метрика 𝑔 на M определяет связность Леви–Чивиты (символы Кристоф-
феля), которые в свою очередь задают тензор кривизны.

Вклад космологической постоянной в уравнения Эйнштейна (6.1) можно перене-
сти в правую часть

𝜅

(
𝑅̃αβ −

1

2
𝑔αβ𝑅̃

)
= −1

2

(
𝑇mαβ + 𝑇Λαβ

)
,

где
𝑇Λαβ := (𝑛− 2)Λ𝑔αβ

и рассматривать его как дополнение к тензору энергии-импульса материи 𝑇mαβ. Срав-
нивая это выражение с тензором энергии-импульса непрерывной среды (6.68), кото-
рый будет рассмотрен позже, его можно интерпретировать, как вклад среды с посто-
янными давлением 𝒫 = −(𝑛 − 2)Λ и плотностью энергии противоположного знака
ℰ = −𝒫 = (𝑛− 2)Λ. Разность знаков давления и плотности энергии не позволяет ин-
терпретировать космологическую постоянную, как распределение некоторой обыч-
ной материи. В космологических моделях вселенной ее часто связывают с наличием
темной энергии (см. раздел 9.1.3).

Обсудим некоторые общие свойства уравнений Эйнштейна и введем терминоло-
гию.

Уравнения Эйнштейна при заданном тензоре энергии-импульса представляют со-
бой систему из 𝑛(𝑛 + 1)/2, где 𝑛 – размерность пространства-времени, нелинейных
уравнений в частных производных второго порядка для метрики. В частности, в
четырехмерном пространстве-времени мы имеем десять уравнений. Уравнения Эйн-
штейна чрезвычайно сложны, и в настоящее время известны лишь отдельные классы
решений, часть из которых будет обсуждаться в дальнейшем.

Уравнения Эйнштейна можно переписать в другом виде. След равенства (6.1)
эквивалентен уравнению

𝜅𝑅̃ = 𝑛Λ +
1

𝑛− 2
𝑇m,

где 𝑇m := 𝑇mα
α – след тензора энергии-импульса материи. Исключив скалярную кри-

визну из (6.1) с помощью этого равенства, получим эквивалентную систему уравне-
ний

𝜅𝑅̃αβ − Λ𝑔αβ = −1

2
𝜌αβ. (6.3)
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где
𝜌αβ := 𝑇mαβ −

1

𝑛− 2
𝑔αβ𝑇m.

Пространство-время называется пустым, если тензор энергии-импульса материи
всюду равен нулю. В этом случае уравнения Эйнштейна (6.3) принимают вид

𝜅𝑅̃αβ = Λ𝑔αβ. (6.4)

Это – вакуумные уравнения Эйнштейна с космологической постоянной. Отсюда сле-
дует, что скалярная кривизна пустого пространства постоянна:

𝑅̃ =
𝑛Λ

𝜅
.

Замечание. Коэффициент перед космологической постоянной в уравнениях Эйн-
штейна (6.1) подобран таким образом, чтобы вакуумные уравнения Эйнштейна име-
ли вид (6.4) и не зависели от размерности пространства-времени.

Определение. Метрика 𝑔 на многообразии M называется эйнштейновской, если ее
компоненты удовлетворяют системе уравнений (6.4). В математической литературе
уравнения (6.4) обычно рассматривают при 𝜅 = 1.

При ненулевой космологической постоянной уравнения (6.4) означают, что тензор
Риччи пропорционален метрике. Частным случаем таких пространств являются про-
странства постоянной кривизны. При нулевой космологической постоянной, Λ = 0,
пустое пространство является Риччи плоским:

𝑅̃αβ = 0. (6.5)

Следовательно, в этом случае скалярная кривизна также равна нулю, 𝑅̃ = 0.

Пример 6.3.1. Для метрики Лоренца тензор кривизны равен нулю. Следовательно,
пространство Минковского является пространством постоянной – нулевой – кривиз-
ны. В частности, оно является Риччи плоским. Ясно, что метрика Лоренца удо-
влетворяет вакуумным уравнениям Эйнштейна с нулевой космологической постоян-
ной.

Пример 6.3.2. В дальнейшем мы увидим, что вакуумные уравнения Эйнштейна
допускают решения в виде плоских волн (см. раздел 6.8). Для таких решений тензор
Риччи равен нулю, но полный тензор кривизны отличен от нуля.

В двумерном пространстве-времени полный тензор кривизны однозначно восста-
навливается по скалярной кривизне, а в трехмерном – по тензору Риччи и скалярной
кривизне. Следовательно, полный тензор кривизны в низших измерениях равен ну-
лю, если выполнено условие (6.5). Это значит, что двумерное и трехмерное Риччи
плоское пространство локально является пространством Минковского. То есть мо-
жет быть либо пространством Минковского, либо цилиндром или тором. В четырех
измерениях и выше равенства нулю тензора Риччи недостаточно для обращения в
нуль полного тензора кривизны.

Физическая интерпретация уравнений Эйнштейна при нулевой космологической
постоянной следующая. В общей теории относительности постулируется, что метри-
ка пространства-времени не является метрикой Лоренца, а находится как решение
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уравнений Эйнштейна. Таким образом, пространство-время представляет собой псев-
дориманово многообразие с метрикой специального вида, удовлетворяющей уравне-
ниям (6.1). Эти пространства называются пространствами Эйнштейна. Следую-
щий постулат состоит в том, что пробные частицы под действием гравитационных
сил двигаются по экстремалям в пространстве Эйнштейна. При этом в правой ча-
сти уравнений Эйнштейна подразумевается тензор энергии-импульса всей остальной
материи. При этом мы говорим следующее. Пустое пространство при нулевой космо-
логической постоянной и отсутствии гравитационных волн является пространством
Минковского, и точечные частицы двигаются по прямым линиям. Это соответствует
отсутствию сил тяготения. При наличии полей материи в уравнениях Эйнштейна по-
является нетривиальная правая часть, что приводит к тому, что пространство-время
становится нетривиальным псевдоримановым многообразием. В этом пространстве-
времени экстремали уже не являются прямыми линиями, что интерпретируется, как
наличие сил тяготения. Мы говорим, что пробная частица движется в поле тяготе-
ния, созданном остальной материей. При этом закон всемирного тяготения является
следствием уравнений Эйнштейна в определенном приближении, которое рассмот-
рено в разделе 6.7.

Теперь обсудим принцип наименьшего действия для уравнений Эйнштейна. Ле-
вую часть уравнений (6.1) можно получить из действия Гильберта–Эйнштейна
[?, ?]:

𝑆he =

∫
M
𝑑𝑥

√
|𝑔|
(
𝜅𝑅̃− (𝑛− 2)Λ

)
, (6.6)

где интегрирование ведется по всему пространству-времени M и варьирование прово-
дится по компонентам метрики. Конечно, мы предполагаем, что интеграл сходится.
Это действие было впервые предложено Д. Гильбертом в 1915 году в четырехмерном
пространстве-времени. Он предложил действие в более общем виде, включающем
также электромагнитное поле [?]. Несколько позже А. Эйнштейн тоже рассмотрел
это действие для вывода уравнений общей теории относительности в такой системе
координат, где det 𝑔αβ = 1 [?].

В следующем разделе мы покажем, что вариационная производная действия Гиль-
берта–Эйнштейна по метрике имеет вид

𝛿𝑆he

𝛿𝑔αβ
= −

√
|𝑔|𝜅

(
𝑅̃αβ − 1

2
𝑔αβ𝑅̃

)
−
√
|𝑔|
𝑛− 2

2
Λ𝑔αβ. (6.7)

При доказательстве этого равенства были отброшены все граничные вклады, возни-
кающие при интегрировании по частям.

При наличии полей материи чаще удобнее варьировать по обратной метрике, что
приводит к изменению знака вариационной производной:

𝛿𝑆he

𝛿𝑔αβ
=

√
|𝑔|𝜅

(
𝑅̃αβ −

1

2
𝑔αβ𝑅̃

)
+
√
|𝑔|
𝑛− 2

2
Λ𝑔αβ. (6.8)

Полное действие для гравитационного поля и полей материи имеет вид суммы

𝑆 = 𝑆he + 𝑆m, (6.9)

где 𝑆m – действие для полей материи. Обычно действие для полей материи в теории
гравитации получают путем минимальной подстановки: выбирают лоренц-инвари-
антное действие в пространстве Минковского, заменяют лоренцеву метрику на псев-
дориманову 𝜂αβ ↦→ 𝑔αβ(𝑥), обычные производные – на ковариантные 𝜕α ↦→ ∇̃α, и
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умножают лагранжиан на определитель репера
√
|𝑔|, чтобы получить инвариантную

меру интегрирования. В результате получим действие для полей материи, инвариант-
ное относительно общих преобразований координат. Сравнивая правую часть урав-
нений Эйнштейна (6.1) с вариационной производной (6.8), получаем выражение для
тензора энергии-импульса материи

𝑇mαβ :=
2

√
|𝑔|

𝛿𝑆m

𝛿𝑔αβ
. (6.10)

Эту вариационную производную часто принимают за определение тензора энергии-
импульса полей материи в общей теории относительности. При таком определении
тензор энергии-импульса всегда симметричен. В ряде случаев, например, для скаляр-
ного и калибровочного полей, это определение совпадает с ковариантным обобщени-
ем канонического тензора энергии-импульса, т.е. получается из выражения (5.25)
путем минимальной подстановки. Однако в общем случае это не так, потому что
действие для полей материи (например, спинорных полей) не всегда может быть
выражено через метрику.

6.4 Вариация действия Гильберта–Эйнштейна

Докажем равенство (6.7) в более общем виде, который полезен при рассмотрении
моделей, основанных на геометрии Римана–Картана или аффинной геометрии. А
именно, рассмотрим инвариантное действие

𝑆 =

∫
M
𝑑𝑥𝐿 =

∫
M
𝑑𝑥

√
|𝑔|𝜙𝑅, (6.11)

зависящее от скалярного поля 𝜙(𝑥) ∈ 𝒞2(M) и скалярной кривизны 𝑅(𝑔,Γ), постро-
енной по метрике 𝑔αβ и аффинной связности общего вида Γαβ

γ. Мы предполагаем,
что компоненты метрики и связности являются достаточно гладкими функциями, и
интеграл (6.11) сходится. Кроме этого предположим, что всеми граничными слагае-
мыми, возникающими при интегрировании по частям, можно пренебречь.

Подстановка в действие (6.11) римановой кривизны 𝑅̃, зависящей только от мет-
рики, приводит к чрезвычайно трудоемкой вариационной задаче. Это связано с тем,
что при дифференцировании по частям необходимо дифференцировать также и ска-
лярное поле. Поскольку скалярная кривизна 𝑅̃ содержит вторые производные от мет-
рики, то интегрировать по частям необходимо два раза, и это приводит к большому
числу слагаемых. Значительное упрощение вносят последовательные действия. Сна-
чала варьируем по метрике 𝑔αβ и связности Γαβ

γ, рассматривая их, как независимые
переменные, а затем подставляем вариацию связности, выраженную через вариацию
метрики. В общей теории относительности такой подход называется формализмом
первого порядка.

Начнем с нескольких вспомогательных формул, необходимых в дальнейшем. Ва-
рьируя определение обратной метрики,

𝑔αβ𝑔βγ = 𝛿αγ ,

получаем тождество
𝛿𝑔αβ𝑔βγ + 𝑔αβ𝛿𝑔βγ = 0.
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Отсюда следует связь между вариацией самой метрики и ее обратной:

𝛿𝑔αβ = −𝑔αγ𝑔βδ𝛿𝑔γδ. (6.12)

Из теории матриц известно, что для произвольной квадратной обратимой матрицы
𝐴 = (𝐴αβ) справедливо тождество

𝛿 det𝐴 = det𝐴 𝐴−1αβ𝛿𝐴αβ.

Отсюда следует, что вариация определителя метрики 𝑔 := det 𝑔αβ равна

𝛿𝑔 = 𝑔𝑔αβ𝛿𝑔αβ = −𝑔𝑔αβ𝛿𝑔αβ. (6.13)

Эту вариацию мы записали в двух видах, т.к. в приложениях часто бывает удобнее
варьировать действие не по самой метрики, а по ее обратной. Наличие квадратно-
го корня в мере объема

√
|𝑔| :=

√
| det 𝑔αβ| приводит к появлению множителя 1/2.

Поэтому для ее вариации справедливы равенства

𝛿
√
|𝑔| =

1

2

√
|𝑔|𝑔αβ𝛿𝑔αβ = −1

2

√
|𝑔|𝛿𝑔αβ𝑔αβ. (6.14)

Приступим к вариации действия (6.11). Вариационная производная по скалярно-
му полю 𝜙 очевидна

𝑆,ϕ :=
𝛿𝑆

𝛿𝜙
=

√
|𝑔|𝑅. (6.15)

Метрика входит в действие (6.11) дважды: в форму объема и в определение скаляр-
ной кривизны (2.130), причем без производных. Поэтому нетрудно проверить, что

𝑆,αβ :=
𝛿𝑆

𝛿𝑔αβ
= −

√
|𝑔|𝜙

(
𝑅αβ − 1

2
𝑔αβ𝑅

)
. (6.16)

Вариация действия по аффинной связности Γαβ
γ, все компоненты которой рассмат-

риваются, как независимые переменные, более трудоемка. Это связано с тем, что
приходится интегрировать по частям, т.к. тензор кривизны (2.119) зависит от про-
изводных аффинной связности. Прямые вычисления приводят к следующему выра-
жению для вариации лагранжиана после интегрирования по частям

𝛿𝐿 =−
√
|𝑔|𝜕α𝜙𝑔

αγ𝛿Γβγ
β +

√
|𝑔|𝜕γ𝜙𝑔

αβ𝛿Γαβ
γ −

√
|𝑔|𝜙

(
𝑄α

αγ − 1

2
𝑄γ

)
𝛿Γβγ

β+

+
√
|𝑔|𝜙

[
−
(
𝑇δγ

δ +
1

2
𝑄γ

)
𝑔αβ − 𝑇γ

βα − 𝑇γ
αβ +𝑄γ

αβ

]
𝛿Γαβ

γ,

(6.17)

где 𝑇αβγ и 𝑄αβγ – тензоры кручения и неметричности. Для облегчения вычислений
следует помнить, что выражение, стоящее перед вариацией связности, должно быть
тензорным полем. Это поможет правильно сгруппировать слагаемые. Заметим так-
же, что выражение, стоящее в квадратных скобках, симметрично по индексам 𝛼 и
𝛽.

Теперь вычислим очень важную для приложений вариационную производную
действия (6.11) по метрике 𝑔αβ в (псевдо)римановой геометрии. Обозначим соответ-
ствующее действие, зависящее только от скалярного поля и метрики, через

𝑆 =

∫
M
𝑑𝑥 𝐿̃ =

∫
M
𝑑𝑥

√
|𝑔|𝜙𝑅̃. (6.18)
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Поскольку кручение и неметричность в (псевдо)римановой геометрии равны нулю,
то из (6.16) и (6.17) следует, что вариация подынтегрального выражения в действии
по метрике равна

𝛿𝐿̃ = −
√
|𝑔|𝜙

(
𝑅̃αβ − 1

2
𝑔αβ𝑅̃

)
𝛿𝑔αβ −

√
|𝑔|𝜕γ𝜙𝑔

γβ𝛿Γ̃αβ
α +

√
|𝑔|𝜕γ𝜙𝑔

αβ𝛿Γ̃αβ
γ.

Выразив вариацию связности 𝛿Γ̃αβ
γ через вариацию метрики, проинтегрировав по

частям и приведя подобные члены, получим окончательное выражение для вариа-
ционной производной

𝑆,αβ :=
𝛿𝑆

𝛿𝑔αβ
= −

√
|𝑔|𝜙

(
𝑅̃αβ − 1

2
𝑔αβ𝑅̃

)
+
√
|𝑔|
(
�̃𝜙𝑔αβ − ∇̃α∇̃β𝜙

)
. (6.19)

Напомним, что в римановой геометрии ввиду симметрии символов Кристоффеля по
нижним индексам вторая ковариантная производная от скалярного поля симметрич-
на: ∇̃α∇̃β𝜙 = ∇̃β∇̃α𝜙 (сравните с равенством (2.134)).

Если скалярное поле равно единице, 𝜙 = 1, то действие (6.18) совпадает с дей-
ствием Гильберта–Эйнштейна (6.6) без космологической постоянной, и мы получаем
выражение для вариационной производной (6.7).

6.5 Зависимость уравнений Эйнштейна

В настоящем разделе мы считаем, что кручение и неметричность равны нулю, а
связностью является связность Леви–Чивиты, построенная по заданной метрике.

Важным обстоятельством в общей теории относительности является линейная
зависимость уравнений Эйнштейна (6.1). Предположим, что эти уравнения получе-
ны вариацией по метрике действия (6.9), которое инвариантно относительно общих
преобразований координат. Если действие инвариантно относительно локальных пре-
образований, то согласно второй теореме Нетер между уравнениями движения су-
ществует линейная зависимость (5.46). Рассмотрим эту зависимость в случае общих
преобразований координат. Для простоты предположим, что действие полей материи
зависит только от некоторого конечного набора скалярных полей 𝜙a(𝑥), 𝑎 = 1, . . . , 𝑁 .
При бесконечно малых преобразованиях координат 𝑥α ↦→ 𝑥α+ 𝜖α с параметром 𝜖α(𝑥)
метрика и скалярные поля преобразуются по правилам (2.159) и (2.153):

𝛿𝑔αβ = −∇̃α𝜖β − ∇̃β𝜖α,

𝛿𝜙a = −𝜖α𝜕α𝜙a,

где 𝜖α := 𝑔αβ𝜖
β. Следовательно, инвариантность действия записывается в виде

𝛿𝑆 =

∫
𝑑𝑥

(
𝛿𝑆

𝛿𝑔αβ
(−2∇̃β𝜖α

)
+

𝛿𝑆

𝛿𝜙a
(−𝜖α𝜕α𝜙a)

)
= 0.

После интегрирования по частям первого слагаемого получаем искомую зависимость
уравнений движения

2
√
|𝑔|∇̃β

(
𝛿(𝑆he + 𝑆m)√

|𝑔|𝛿𝑔αβ

)
− 𝜕α𝜙

a 𝛿𝑆m

𝛿𝜙a
= 0,
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т.к. действие Гильберта–Эйнштейна не зависит от полей материи. Это – тождества,
которые выполняются независимо от того удовлетворяют поля уравнениям движе-
ния или нет. Поскольку каждое слагаемое в действии инвариантно само по себе, то
выполняются два тождества:

∇̃β𝐺
βα = 0, (6.20)

√
|𝑔|∇̃β𝑇

β
mα −

𝛿𝑆m

𝛿𝜙a
𝜕α𝜙

a = 0, (6.21)

где мы воспользовались определением тензора энергии-импульса материи (6.10) в
общей теории относительности. Первое из этих уравнений представляет собой свер-
нутые тождества Бианки (2.150), а второе – ковариантный “закон сохранения” тензо-
ра энергии-импульса материи. Действительно, если выполнены уравнения для полей
материи,

𝛿𝑆m

𝛿𝜙a
= 0,

то ковариантная дивергенция тензора энергии-импульса материи обращается в нуль

∇̃β𝑇
β
mα = 0. (6.22)

Нетрудно видеть, что аналогичные выкладки можно проделать для любого на-
бора полей материи. При этом второе слагаемое в (6.21) может усложниться, но оно
всегда будет пропорционально уравнениям движения для полей материи. Единствен-
ное условие – это инвариантность действия. Таким образом, получаем следующее

Предложение 6.5.1. Если действие полей материи инвариантно относительно
общих преобразований координат и поля материи удовлетворяют своим уравне-
ниям Эйлера–Лагранжа, то ковариантная дивергенция тензора энергии-импульса
(6.22) равна нулю.

На формулу (6.22) можно взглянуть с другой точки зрения. Допустим, что нам
заданы уравнения Эйнштейна (6.1), а про инвариантное действие, приводящее к этим
уравнениям, ничего не известно. Уравнения Эйнштейна – это система дифференци-
альных уравнений на метрику, и у них есть условия интегрируемости. Чтобы их по-
лучить возьмем ковариантную производную от обеих частей уравнений Эйнштейна.
Дивергенция тензора Эйнштейна равна нулю (6.20) как следствие тождеств Бианки
(2.150). Дивергенция метрики тоже равна нулю, т.к. связность Леви–Чивиты являет-
ся метрической. Следовательно, ковариантный “закон сохранения” тензора энергии-
импульса материи (6.22) является условием интегрируемости системы дифференци-
альных уравнений Эйнштейна для метрики (6.1). Это важно учитывать в тех слу-
чаях, когда тензор энергии-импульса материи получен не из принципа наименьшего
действия, а из каких-либо других соображений.

Пример 6.5.1. Если в качестве материи рассматривать жидкость или газ (см. раз-
дел 6.9), для которой уравнения движения не следуют из принципа наименьшего дей-
ствия, то условие (6.22) является независимым уравнением (см. далее раздел 6.9).

6.6 Точечные частицы в теории гравитации
Пусть задано пространство-время, т.е. многообразие M с метрикой 𝑔 лоренцевой
сигнатуры. Будем считать, что кручение и неметричность на M равны нулю, и,
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для простоты, не будем помечать это обстоятельство знаком тильды. Размерность
пространства-времени пока не фиксируем, dimM = 𝑛 ≥ 2. Точечная частица дви-
жется в пространстве-времени M по некоторой дифференцируемой времениподоб-
ной кривой

(
𝑞α(𝜏)

)
∈ M, где 𝜏 ∈ R – произвольный параметр вдоль этой кривой.

Напомним, что кривая называется времениподобной, если вектор скорости кривой,
𝑢α := 𝑞α := 𝑑𝑞α/𝑑𝜏 , времениподобен: 𝑢2 := 𝑢α𝑢β𝑔αβ > 0. Мы считаем, что части-
ца движется в будущее, т.е. 𝑢0 > 0. Форма кривой определяется рассматриваемой
задачей и силами, которые действуют на частицу. В общем случае параметр вдоль
кривой произволен, и его выбирают из соображений удобства. Наиболее часто в ка-
честве параметра вдоль траектории частицы выбирают ее длину 𝑠, которая является
каноническим параметром. Это всегда возможно, т.к. обыкновенное дифференциаль-
ное уравнение 𝑑𝑠 =

√
𝑞α𝑞β𝑔αβ 𝑑𝜏 разрешимо относительно 𝑠 = 𝑠(𝜏). В дальнейшем

точка, как правило, будет обозначать дифференцирование по параметру 𝑠.

Определение. Времениподобная дифференцируемая кривая
(
𝑞α(𝜏)

)
∈ M, вдоль

которой движется точечная частица, называется траекторией или мировой линией
частицы. Если параметр вдоль траектории частицы совпадает с ее длиной, 𝜏 = 𝑠, то
он называется собственным временем. Векторное поле

𝑢α :=
𝑑𝑞α

𝑑𝑠
, (6.23)

определенное на траектории частицы, называется собственной скоростью частицы.
Ковариантная производная от скорости частицы вдоль ее траектории

𝑤α :=
𝑑𝑞β

𝑑𝑠
∇β𝑢

α = 𝑢β∇β𝑢
α (6.24)

называется ускорением частицы. Частица называется свободной, если ее ускорение
равно нулю. Производная вдоль траектории частицы

𝑣α :=
𝑑𝑞α

𝑑𝑞0
=
𝑞α

𝑞0
(6.25)

называется наблюдаемой скоростью частицы в системе координат 𝑥α.

Собственная скорость и ускорение частицы являются 𝑛-мерными векторами, опре-
деленным вдоль траектории частицы. Собственное время – это то время, которое
показывают часы наблюдателя, движущегося вместе с частицей. Когда наблюдатель
движется вместе с частицей, то он может измерить свою скорость относительно си-
стемы координат 𝑥α, это и будут компоненты собственной скорости. Наблюдаемая
скорость, как следует из определения, не является векторным полем и зависит от вы-
бора системы координат. Это та скорость, которую измеряет внешний наблюдатель
в выбранной системе отсчета.

Равенство нулю ускорения частицы

𝑢β∇β𝑢
α = 0,

определяет экстремали (??). Это значит, что свободные частицы в теории тяготе-
ния движутся вдоль экстремалей пространства-времени. Если на частицу действу-
ют негравитационные силы, например, электромагнитные, то в уравнении движения
𝑚𝑤α = 𝑓α, где 𝑚 = const > 0 – масса частицы, появится внешняя сила с компонен-
тами 𝑓α. В этом случае ее траектория будет отличаться от экстремали.
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Предложение 6.6.1. Если параметр вдоль мировой линии частицы канонический,
то квадрат собственной скорости равен единице,

𝑢2 := 𝑢α𝑢β𝑔αβ = 1. (6.26)

При этом ускорение всегда ортогонально скорости

𝑢α𝑤α = 0.

Доказательство. Первое утверждение следует из определения:

𝑢2 =
𝑑𝑥α

𝑑𝑠

𝑑𝑥β

𝑑𝑠
𝑔αβ =

𝑑𝑠2

𝑑𝑠2
= 1.

Продифференцируем это равенство вдоль траектории

𝑢β∇β(𝑢
2) = 2𝑢β𝑢α∇β𝑢α = 2𝑢α𝑤α = 0,

где мы воспользовались тем, что ковариантная производная от метрики для связ-
ности Леви–Чивиты равна нулю. Отсюда вытекает второе утверждение предложе-
ния.

Наблюдаемая скорость является нековариантным объектом. Из определения сле-
дует соотношение между компонентами собственной и наблюдаемой скоростями

𝑣α =
𝑢α

𝑞0
. (6.27)

Более подробно,

𝑣0 = 1, 𝑣µ =
𝑑𝑞µ

𝑑𝑞0
, 𝜇 = 1, . . . , 𝑛− 1.

Возведем равенство 𝑣α𝑞0 = 𝑢α в квадрат и учтем, что 𝑢2 = 1. Тогда получим, что
компоненты собственной скорости частицы можно записать в виде

𝑢0 := 𝑞0 =
1√
𝑣2
, 𝑢µ := 𝑞µ =

𝑣µ√
𝑣2
, (6.28)

где 𝑣2 = 𝑣α𝑣β𝑔αβ – квадрат наблюдаемой скорости. Из равенства (6.27) также следует,
что 𝑣2 > 0. Понятие наблюдаемой скорости частицы будет использовано в дальней-
шем при определении ультрарелятивистского предела для точечной частицы.

В общем случае, когда на частицу действуют произвольные силы, она может дви-
гаться по любой времениподобной кривой. В моделях гравитации мы предполагаем,
что точечная частица, на которую действуют только гравитационные силы, описы-
вается инвариантным действием

𝑆m = −𝑚𝑐
∫ q

p

𝑑𝑠 = −𝑚𝑐
∫ τ2

τ1

𝑑𝜏
√
𝑞α𝑞β𝑔αβ, (6.29)

где 𝑚 = const > 0 – масса частицы, 𝑐 – скорость света и интегрирование проводится
вдоль времениподобной кривой 𝑞(𝜏), 𝜏 ∈ R, соединяющей точки 𝑝 := 𝑞(𝜏1) и 𝑞 :=
𝑞(𝜏2). Действие (6.29) отличается от длины мировой линии частицы (3.9) постоянным
множителем −𝑚𝑐 и, если метрика задана, варьируется только по траектории частицы
𝛿𝑞α(𝜏). В дальнейшем положим 𝑐 = 1.
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Предположим, что в пространстве-времени находится n частиц с массами 𝑚i, i =
1, . . . ,n, которые взаимодействуют между собой только посредством гравитационных
сил. В общей теории относительности суммарное действие гравитационного поля и
совокупности точечных частиц равно сумме действия Гильберта–Эйнштейна (6.6) и
действий для каждой частицы:

𝑆 = 𝑆he +
n∑

i=1

𝑆i = 𝜅

∫
M
𝑑𝑥

√
|𝑔|𝑅−

∑
i

𝑚i

∫ τi2

τi1

𝑑𝜏i

√
𝑞αi 𝑞

β
i 𝑔αβ, (6.30)

где мы, для простоты, опустили космологическую постоянную и знак тильды у ска-
лярной кривизны. Во втором слагаемом метрика рассматривается как сложная функ-
ция 𝑔αβ(𝜏i) = 𝑔αβ

(
𝑞(𝜏i)

)
, и параметры 𝜏i могут быть выбраны произвольно для каждой

частицы. Первый интеграл берется по всему пространству-времени, а последующие
– в пределах 𝜏i1,2 (возможно, бесконечных), которые соответствуют пересечению ми-
ровых линий частиц с краем пространства-времени 𝜕M, если таковой имеется. Для
простоты, предположим, что мировые линии частиц нигде не пересекаются, т.е. ча-
стицы не сталкиваются между собой.

В настоящем разделе нас не будут интересовать граничные эффекты. Поэтому
пределы интегрирования, для простоты, мы в дальнейшем опустим.

Действие (6.30) инвариантно относительно общих преобразований координат и
независимой перепараметризации параметров 𝜏i вдоль каждой траектории. Мы пред-
полагаем, что вдоль каждой траектории параметр совпадает с собственным време-
нем. Более того, поскольку в действие входит сумма интегралов вдоль траекторий,
то индекс i у параметров 𝜏i можно опустить,

𝑆 =

∫
𝑑𝑥

√
|𝑔|𝜅𝑅−

∫
𝑑𝜏
∑

i

𝑚i

√
𝑞αi 𝑞

β
i 𝑔αβ. (6.31)

В общем случае пределы интегрирования для различных частиц могут отличаться.
Однако, поскольку нас не интересуют граничные эффекты, мы этого указывать не
будем.

В разделе 3.2 действие для экстремалей было проварьировано в предположении,
что вдоль нее выбран канонический параметр. Сейчас мы получим уравнения без
этого предположения, т.к. в ряде случаев удобнее выбирать параметр вдоль экстре-
малей, исходя из других соображений. Рассмотрим одну точечную частицу с мировой
линией 𝑞α(𝜏) в произвольной параметризации. Простые вычисления приводят к сле-
дующим уравнениям движения

𝑆m,α :=
𝛿𝑆m

𝛿𝑞α
= 𝑚

𝑔αβ
𝑢2

(
𝑞β + Γγδ

β𝑞γ𝑞δ − 𝑞β

2𝑢2

𝑑(𝑢2)

𝑑𝜏

)
= 0. (6.32)

Поскольку исходное действие инвариантно относительно произвольной замены пара-
метра вдоль мировой линии, то согласно второй теореме Нетер между уравнениями
движения существует линейная зависимость. Чтобы ее найти, рассмотрим бесконеч-
но малое изменение параметра

𝜏 ↦→ 𝜏 + 𝜖(𝜏).

Соответствующая вариация формы функций 𝑞α(𝜏) (см. раздел 2.11) имеет вид

𝛿𝑞α = −𝜖𝑞α.
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Следовательно, вариация действия равна

𝛿𝑆m = −
∫
𝑑𝜏𝑆m,α𝜖𝑞

α.

Поскольку функция 𝜖(𝜏) произвольна, то из инвариантности действия, 𝛿𝑆m = 0,
вытекает зависимость уравнений движения:

𝑆m,α𝑞
α = 0. (6.33)

В этом тождестве можно убедиться прямой проверкой.
При произвольной параметризации мировой линии частицы квадрат вектора ско-

рости не является постоянным, 𝑢2 ̸= const. Если выбран канонический параметр
вдоль экстремали, то 𝑑(𝑢2)/𝑑𝜏 = 0, и последнее слагаемое в уравнении (6.32) обра-
щается в нуль.

Для вывода полной системы уравнений движения, действие (6.31) необходимо
проварьировать по метрике 𝑔αβ(𝑥) и траекториям частиц 𝑞αi (𝜏). Вариация действия
для частиц по компонентам метрики 𝛿𝑔αβ(𝑥) не определена, т.к. оно записано только
вдоль траекторий. Поэтому мы преобразуем интегралы вдоль траекторий в интегра-
лы по всему пространству-времени. Для этого вставим в подынтегральное выражение
единицу,

1 =

∫
𝑑𝑥𝛿(𝑥− 𝑞i) :=

∫
𝑑𝑥𝛿(𝑥0 − 𝑞0

i )𝛿(𝑥
1 − 𝑞1

i ) . . . 𝛿(𝑥
n−1 − 𝑞n−1

i ),

и изменим порядок интегрирования, предположив, что это возможно. Тогда действие
примет вид

𝑆 =

∫
𝑑𝑥

[
𝜅
√
|𝑔|𝑅−

∫
𝑑𝜏
∑

i

𝑚i

√
𝑞αi 𝑞

β
i 𝑔αβ 𝛿(𝑥− 𝑞i)

]
. (6.34)

Теперь метрику во втором слагаемом можно рассматривать, как функцию от точки
пространства-времени, 𝑔αβ = 𝑔αβ(𝑥). Вариационные производные этого действия по
траекториям частиц и метрике при канонической параметризации равны

𝛿𝑆

𝛿𝑞αi
= 𝑚i

(
𝑞βi + Γγδ

β𝑞γi 𝑞
δ
i

)
𝑔βα, (6.35)

𝛿𝑆

𝛿𝑔αβ
= −

√
|𝑔|𝜅

(
𝑅αβ − 1

2
𝑔αβ𝑅

)
−
∫
𝑑𝜏
∑

i

𝑚i

2
√
𝑞γi 𝑞δi 𝑔γδ

𝑞αi 𝑞
β
i 𝛿(𝑥− 𝑞i). (6.36)

Для любого решения уравнения (6.35) канонический параметр 𝜏 можно выбрать так,
что

√
𝑞γi 𝑞δi 𝑔γδ = 1 для каждой частицы. Поэтому, не ограничивая общности, знаме-

натель во втором слагаемом (6.36) можно упростить, отбросив квадратный корень.
Таким образом, связанная система уравнений движения гравитационного поля и си-
стемы точечных частиц примет вид

𝜅
√
|𝑔|

(
𝑅αβ − 1

2
𝑔αβ𝑅

)
= −1

2

√
|𝑔|𝑇m

αβ, (6.37)

𝑔αβ
(
𝑞βi + Γγδ

β𝑞γi 𝑞
δ
i

)
= 0, (6.38)

где

𝑇m
αβ :=

1
√
|𝑔|

∫
𝑑𝜏
∑

i

𝑚i𝑞
α
i 𝑞

β
i 𝛿(𝑥− 𝑞i) (6.39)
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– тензор энергии-импульса точечных частиц и 𝑞iα := 𝑞βi 𝑔βα. Интегрирование по ка-
ноническим параметру 𝜏 в тензоре энергии-импульса можно снять, использовав од-
ну 𝛿-функцию, а именно 𝛿

(
𝑥0 − 𝑞0

i (𝜏)
)
. Поскольку 𝑞0

i > 0 (все частицы движутся в
будущее), то для тензора энергии-импульса точечных частиц получаем следующее
выражение

𝑇m
αβ =

1
√
|𝑔|

∑
i

𝑚i𝑞
α
i 𝑞i

β

𝑞0
i

𝛿(𝑥− 𝑞i), (6.40)

где
𝛿(𝑥− 𝑞i) := 𝛿(𝑥1 − 𝑞1

i ) . . . 𝛿(𝑥
n−1 − 𝑞n−1

i )

– пространственная 𝛿-функция и параметр 𝜏 является неявной функцией 𝑥0, задан-
ной уравнением 𝑥0 = 𝑞0(𝜏).

Замечание. Появление множителя 1/
√
|𝑔| в выражении для тензора энергии-им-

пульса точечных частиц не случайно. Напомним, что 𝛿-функция является не функ-
цией на многообразии, а скалярной плотностью степени −1, как и элемент объема√
|𝑔|. Если параметризация мировой линии противоположна, 𝑞0

i < 0, что соответ-
ствует античастице, то в знаменателе тензора энергии-импульса (6.40) необходимо
поставить знак модуля: |𝑞0

i |, в соответствии с правилом замены переменных интегри-
рования.

Таким образом, для точечных частиц, на которые действуют только гравитаци-
онные силы, мы имеем связанную систему уравнений (6.37), (6.38). Каждая частица
движется по экстремали пространства-времени в соответствии с уравнением (6.38),
где метрика определяется уравнениями Эйнштейна (6.37). В свою очередь, метрика
зависит от распределения частиц, т.к. в правой части уравнений Эйнштейна стоит
нетривиальный тензор энергии-импульса.

6.6.1 Нерелятивистский предел для точечной частицы

В настоящем разделе будет показана связь между уравнениями движения для точеч-
ных частиц (6.38) и хорошо знакомыми уравнениями движения частиц под действием
гравитационного поля в механике Ньютона.

Для простоты рассмотрим движение одной частицы. В пространстве-времени M
с нетривиальной метрикой 𝑔αβ(𝑥) функции

(
𝑞α(𝜏)

)
задают мировую линию точеч-

ной частицы. Пусть 𝜏 = 𝑡 – канонический параметр (собственное время). Предполо-
жим, что координата 𝑥0 на M выбрана таким образом, что на траектории частицы
𝑐𝜏 = 𝑐𝑡 = 𝑥0. Здесь мы ввели явно скорость света 𝑐 для того, чтобы в дальнейшем
строить разложение по малому параметру 𝑢2/𝑐2 ≪ 1, где 𝑢 – пространственная часть
собственной скорости частицы. Условимся нумеровать, как обычно, пространствен-
ные координаты буквами из середины греческого алфавита:

(𝑥α) = (𝑥0, 𝑥µ), 𝜇 = 1, . . . , 𝑛− 1.

Поскольку исходное действие (6.29) инвариантно относительно общих преобразова-
ний координат, то у нас имеется возможность дополнительно фиксировать 𝑛 − 1
компонент метрики. Положим 𝑔0µ = 0. Тогда метрика примет блочно диагональный
вид

𝑔αβ =

(
𝑔00 0
0 𝑔µν

)
(6.41)
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Другими словами, система координат выбрана таким образом, чтобы времениподоб-
ный вектор 𝜕0 был ортогонален всем касательным векторам к пространственным
сечениям 𝑥0 = const.

Введем два параметра разложения. Во-первых, слабому гравитационному полю
соответствует метрика, которая мало отличается от метрики Минковского:

𝑔00 = 1 + ℎ00, 𝑔µν = 𝜂µν + ℎµν , ℎ00, ℎµν ∼ 𝜖≪ 1.

Во-вторых, нерелятивистский предел соответствует скоростям, малым по сравнению
со скоростью света,

𝑢2

𝑐2
∼ 𝜖≪ 1, 𝑢2 := −𝜂µν𝑞µ𝑞ν = 𝛿µν𝑢

µ𝑢ν ≥ 0.

Если гравитационное поле мало, 𝑔αβ → 𝜂αβ, то в нерелятивистском пределе 𝑢2 →
0 временна́я компонента собственной скорости стремится к скорости света, 𝑞0 → 𝑐,
т.к. выполнено соотношение (6.26). Если гравитационное поле не очень велико, 0 <
𝑔00 < const, то в нерелятивистском пределе 𝑔00(𝑞

0)2 → 𝑐2 и производная 𝑞0 ограниче-
на снизу некоторой положительной постоянной. Поскольку пространственные ком-
поненты собственной 𝑢µ и наблюдаемой 𝑣µ скорости частицы отличаются на строго
положительный множитель 𝑞0, то пределы 𝑢2 → 0 и 𝑣2 → 0, где 𝑣2 := −𝜂µν𝑣µ𝑣ν → 0,
эквивалентны.

Нерелятивистской частице в слабом гравитационном поле соответствует интервал

𝑑𝑠2 = (𝑐2 + 𝑐2ℎ00 + 𝜂µν𝑢
µ𝑢ν + ℎµν𝑢

µ𝑢ν)𝑑𝑡2.

В силу сделанных предположений о малости гравитационного поля и скоростей по-
следним слагаемым в этом представлении можно пренебречь. Тогда в нерелятивист-
ском пределе с учетом первой поправки интервал для точечной частицы примет вид

𝑑𝑠2 ≈
(
𝑐2 +

2𝑈

𝑚
− 𝑢2

)
𝑑𝑡2, (6.42)

где введено обозначение

ℎ00(𝑥) =:
2𝑈(𝑥)

𝑚𝑐2
. (6.43)

Подставим приближенное выражение для интервала (6.42) в действие для точечной
частицы (6.29), умноженное на скорость света, и разложим по степеням 𝜖. Тогда в
первом порядке по 𝜖 получим приближенное выражение

𝑆m ≈ −𝑚𝑐
∫
𝑑𝑡

√
𝑐2 +

2𝑈

𝑚
− 𝑢2 ≈

∫
𝑑𝑡

(
−𝑚𝑐2 +

𝑚𝑢2

2
− 𝑈

)
. (6.44)

С точностью до энергии покоя точечной частицы с обратным знаком −𝑚𝑐2 подынте-
гральное выражение совпадает с хорошо известным выражением для лагранжиана
точечной частицы в нерелятивистской механике. Тем самым мы показали, что в нере-
лятивистском пределе поправку к временно́й компоненте метрики (6.43), умножен-
ной на 𝑚𝑐2, следует интерпретировать, как потенциальную энергию 𝑈 := 𝑚𝑐2ℎ00/2
точечной частицы, находящейся во внешнем гравитационном поле.

Отметим, что разумный нерелятивистский предел обусловливает выбор общего
знака минус в исходном действии для точечной частицы (6.29).
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Выше мы определили нерелятивистский предел (6.44) для действия. При этом
вместо 𝑛 исходных уравнений в (6.35) у нас осталось только 𝑛 − 1 уравнение, т.к.
переменная 𝑞0(𝜏) не вошла в действие (6.44). Можно доказать, что потерянное урав-
нение движения удовлетворяется с точностью 𝜖2.

В общей теории относительности (𝑛 = 4) метрика вдали от тела массы 𝑀 дается
решением Шварцшильда (8.1)

𝑑𝑠2 =

(
1− 2𝐺𝑀

𝑟𝑐2

)
𝑑𝑡2 − 𝑑𝑟2

1− 2GM
rc2

− 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2),

где 𝐺 – гравитационная постоянная. Соответствующее нерелятивистское выражение
для потенциальной энергии пробной частицы имеет вид

𝑈 = −𝐺𝑚𝑀
𝑟

, (6.45)

что совпадает с законом всемирного тяготения. Таким образом, мы показали, что
закон всемирного тяготения вытекает из общей теории относительности в нереляти-
вистском пределе.

Аналогия с тензором энергии-импульса сплошной среды

Введем новую временну́ю координату 𝜏 = 𝜏(𝑥0, 𝑥µ) в пространстве-времени M таким
образом, чтобы вдоль каждой мировой линии частицы она совпадала с собственным
временем 𝜏(𝑥α = 𝑞αi ) = 𝜏 . Это всегда можно сделать, причем не единственным обра-
зом, т.к. траектории всех частиц не пересекаются, времениподобны, а канонический
параметр определен с точностью до сдвигов. Продолжим векторные поля скоростей
𝑞αi , определенных вдоль мировых линий частиц, на все пространство-время гладким
образом. Тогда в новой системе координат 𝜏, 𝑥µ производные 𝑞αi в выражении (6.39)
можно заменить на частные производные 𝑥̇α = 𝜕𝑥α/𝜕𝜏 ввиду наличия 𝛿-функций, и
вынести за знак интегрирования:

𝑇m
αβ =

𝑥̇α𝑥̇β
√
|𝑔|

∫
𝑑𝜏
∑

i

𝑚i𝛿(𝑥− 𝑞i) =
𝑥̇α𝑥̇β
√
|𝑔|

∑
i

𝑚i

𝑞0
i
𝛿(𝑥− 𝑞i), (6.46)

где мы проинтегрировали одну 𝛿-функцию: 𝛿(𝑥 − 𝑞0
i ). Полученное выражение для

тензора энергии-импульса точечных частиц имеет такой же вид, как и для сплошной
среды (6.68). Для точечных частиц давление равно нулю, 𝒫 = 0, а плотность энергии
принимает вид

ℰ =
1

√
|𝑔|

∑
i

𝑚i

𝑞0
i
𝛿(𝑥− 𝑞i).

Поскольку, по построению, временна́я координата 𝑥0 на траекториях частиц сов-
падает с собственным временем 𝜏 , то 𝑞0

i = 1 и выражение для плотности энергии
приобретает интуитивно ясную форму,

ℰ =
1

√
|𝑔|

∑
i

𝑚i𝛿(𝑥− 𝑞i).

То есть энергия сосредоточена в точках расположения частиц, и каждая частица
несет энергию, которая равна ее массе. Тензор энергии-импульса точечных частиц
соответствует пылевидной материи, поскольку давление равно нулю.
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След тензора энергии-импульса

Вернемся в произвольную систему координат. Из формулы (6.40) следует выражение
для следа тензора энергии-импульса произвольного распределения точечных частиц

𝑇m
α
α =

1
√
|𝑔|

∑
i

𝑚i

𝑞0
i
𝛿(𝑥− 𝑞i), (6.47)

где использовано равенство 𝑞2
i = 1 для канонического параметра. Поскольку 𝑚i > 0 и

𝑞0
i > 0, то след тензора энергии-импульса положителен (при этом мы рассматриваем
𝛿-функцию, как положительную).

Поскольку след тензора энергии-импульса положителен для произвольного рас-
пределения точечных частиц, то в моделях математической физики делается пред-
положение о том, что след тензора энергии-импульса для любой обычной (наблю-
даемой) материи всегда неотрицателен, 𝑇αα ≥ 0. При этом равенство следа тензора
энергии-импульса нулю, как будет показано ниже, достигается только для частиц,
движущихся со скоростью света, или излучения.

След тензора энергии-импульса электромагнитного поля (6.93), который соответ-
ствует электромагнитному излучению, также равен нулю. Это согласуется с утвер-
ждением о том, что след тензора энергии-импульса произвольного распределения
ультрарелятивистских частиц равен нулю. Напомним, что в квантовой электроди-
намике электромагнитное поле описывает безмассовые частицы – фотоны, которые
распространяются со скоростью света.

Мы выделили рассмотрение следа тензора энергии-импульса точечных частиц в
отдельный пункт именно в свете последнего замечания, т.к. положительность следа
тензора энергии-импульса для произвольной материи ниоткуда больше не следует, и
в то же время ведет к важным следствиям.

6.7 Ньютонов предел
Для того, чтобы сказать, что общая теория относительности не противоречит экс-
периментальным данным, желательно показать, что теория тяготения Ньютона в
каком то смысле (приближении) следует из уравнений Эйнштейна. Поскольку гра-
витация Ньютона находится в хорошем согласии с экспериментом, то в этом случае
можно утверждать, что общая теория относительности описывает гравитационные
взаимодействия по крайней мере не хуже, чем законы Ньютона. Такое приближение
существует, и будет описано в настоящем разделе.

В разделе 6.6.1 было показано, что закон всемирного тяготения следует из урав-
нений Эйнштейна в частном случае, а именно, для решения Шварцшильда. Ниже
мы рассмотрим общий случай.

Сначала сделаем общее замечание. Уравнения Эйнштейна существенно нелиней-
ны, в то время как гравитация Ньютона линейна: гравитационные потенциалы раз-
личных массивных тел просто складываются. Поэтому естественно ожидать, что
закон всемирного тяготения вытекает из уравнений Эйнштейна в линейном прибли-
жении.

Рассмотрим вакуумные уравнения Эйнштейна без космологической постоянной в
четырехмерном пространстве-времени

𝜅

(
𝑅αβ −

1

2
𝑔αβ𝑅

)
= −1

2
𝑇mαβ. (6.48)
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Будем считать, что пространство-время топологически тривиально, и существует
глобальная система координат, в которой метрика, удовлетворяющая уравнениям
(6.48), мало отличается от метрики Лоренца в пространстве Минковского R1,3:

𝑔αβ = 𝜂αβ + 𝜖ℎαβ, 𝜖≪ 1. (6.49)

При этом мы считаем малыми также все частные производные: 𝜕α𝑔βγ ∼ 𝜖. Символы
Кристоффеля пропорциональны производным 𝜕α𝑔βγ, и поэтому их квадраты дают
вклад в тензор кривизны порядка 𝜖2. Тем самым вкладом квадратичных слагаемых
по символам Кристоффеля в тензор кривизны (2.128) можно пренебречь по сравне-
нию со вторыми производными от компонент метрики, которые дают вклад прядка
𝜖. Таким образом, в линейном приближении по 𝜖 тензор Риччи имеет вид

1

𝜖
𝑅αβ =

1

2
𝜂γδ(𝜕2

αβℎγδ − 𝜕2
αγℎβδ − 𝜕2

βγℎαδ + 𝜕2
γδℎαβ).

В правой части равенства свертка проводится с помощью метрики Лоренца, т.к.
выражение в скобках имеет первый порядок. Соответствующая скалярная кривизна
имеет вид

1

𝜖
𝑅 = 𝜂αβ𝜂γδ(𝜕2

αβℎγδ − 𝜕2
αγℎβδ).

Введем новые переменные

ℎ̄αβ := ℎαβ −
1

2
𝜂αβℎ, (6.50)

где ℎ := 𝜂αβℎαβ – след возмущения метрики. Тогда тензор Эйнштейна в линейном
приближении равен следующему выражению

1

𝜖

(
𝑅αβ −

1

2
𝑔αβ𝑅

)
=

1

2
𝜂γδ
(
𝜕2
γδℎ̄αβ − 𝜕2

αγℎ̄βδ − 𝜕2
βγℎ̄αδ + 𝜂αβ𝜂

εζ𝜕2
γεℎ̄δζ

)
.

Теперь воспользуемся инвариантностью действия Гильберта–Эйнштейна относи-
тельно общих преобразований координат. Рассмотрим бесконечно малые преобразо-
вания координат, которые генерируются некоторым векторным полем (2.151):

𝑥α ↦→ 𝑥α + 𝜖𝑢α(𝑥). (6.51)

При этом компоненты метрики в линейном приближении по 𝜖 получат приращение
(2.159)

ℎαβ ↦→ ℎαβ + 𝜖(𝜕α𝑢β + 𝜕β𝑢α). (6.52)

Возьмем в качестве компонент векторного поля 𝑢α произвольные решения уравнения

�𝑢α = −𝜕βℎ̄αβ,

где � := 𝜂αβ𝜕α𝜕β – оператор Даламбера. Тогда в новой системе координат возмуще-
ние компонент метрики будет удовлетворять уравнению

𝜕βℎ̄α
β = 0. (6.53)

С учетом условия гармоничности уравнения Эйнштейна (6.48) принимают вид

𝜖�ℎ̄αβ = −1

𝜅
𝑇mαβ. (6.54)



6.7. НЬЮТОНОВ ПРЕДЕЛ 117

Замечание. Если поля материи отсутствуют, 𝑇mαβ = 0, то система уравнений
(6.53), (6.54) совпадает с уравнениями для безмассового поля со спином 2 в плоском
пространстве-времени Минковского [?]. Поэтому общую теорию относительности в
целом можно рассматривать как теорию безмассового поля со спином 2 и с некото-
рым самодействием, которое соответствует отброшенным нелинейным членам. Сле-
дует однако заметить, что понятие массы и спина требует наличия метрики Лоренца,
которая является фоновой метрикой для линейного приближения. В общем случае,
без обращения к линейному приближению, утверждению о том, что метрика описы-
вает безмассовое поле спина 2 придать точный смысл весьма затруднительно.

Рассмотрим в качестве источника в уравнениях Эйнштейна одну частицу массы
𝑀 . Поскольку мы рассматриваем слабые гравитационные поля, то будем считать,
что 𝑀 ∼ 𝜖. Этой частице соответствует тензор энергии-импульса (6.40)

𝑇mαβ =
1

√
|𝑔|
𝑀
𝑞α𝑞β
𝑞0

𝛿(𝑥− 𝑞).

В линейном приближении по 𝜖 можно сделать замену
√
|𝑔| ↦→ 1.

Предположим, что частица покоится в начале координат, т.е. (𝑞α) = (1, 0, 0, 0)
и (𝑞α) = (𝜏, 0, 0, 0). Предположим также, что компоненты метрики не зависят от
времени (статическое решение). Тогда полная система уравнений Эйнштейна примет
вид

𝜅𝜖△ℎ̄00 =𝑀𝛿(𝑥), (6.55)
△ℎ̄0µ = △ℎ̄µν = 0, (6.56)

где △ := 𝜕2
1 + 𝜕2

2 + 𝜕2
3 – лапласиан в трехмерном евклидовом пространстве. Если

предположить, что компоненты возмущений метрики ℎ̄αβ стремятся к нулю на бес-
конечности, то уравнения (6.56) имеют единственное решение

ℎ̄0µ = 0, ℎ̄µν = 0.

Для сравнения уравнения (6.55) с законом всемирного тяготения, необходимо вос-
становить размерные постоянные. Во-первых, положим

𝜖ℎ̄00 =:
4𝜙

𝑐2
,

где 𝜙 – потенциал гравитационного поля. Это следует из нерелятивистского преде-
ла для точечной частицы (6.43). Кроме того, в правую часть уравнения (6.55) надо
вставить множитель 𝑐2: один множитель 𝑐 следует из опущенного множителя в дей-
ствии для точечной частицы (6.29), а второй – из равенства 𝑞0 = 𝑐. Если после этого
положить

𝜅 :=
𝑐4

16𝜋𝐺
, (6.57)

где 𝐺 – гравитационная постоянная в законе тяготения Ньютона, то уравнение (6.55)
совпадет с уравнением Пуассона для гравитационного поля. В этом случае решение
уравнения Пуассона (6.55) примет вид

𝜙 = −𝐺𝑀
𝑟
,

где 𝑟 = |𝑥|.
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Ясно, что для найденных компонент метрики калибровочное условие (6.53) вы-
полнено, и, следовательно, найдено самосогласованное решение задачи.

Несмотря на то, что общая теория относительности содержит в себе теорию тя-
готения Ньютона в качестве предельного случая, отметим принципиальное отли-
чие. В механике Ньютона свободная частица движется по прямой линии. Если она
находится в поле другой массивной частицы, то на нее действует сила гравитаци-
онного притяжения. Теперь она уже не является свободной и ее траектория отли-
чается от прямой линии в соответствии с законом всемирного тяготения. В общей
теории относительности ситуация совершенно иная. Массивная частица искривля-
ет пространство-время в соответствии с уравнениями Эйнштейна. Пробная частица
в гравитационном поле остается свободной и движется вдоль экстремали. Однако
теперь с точки зрения внешнего наблюдателя экстремаль не является прямой лини-
ей, поскольку пространство-время перестает быть плоским из-за наличия массивной
частицы.

6.8 Гравитационные волны

В механике Ньютона гравитационных волн нет. При этом изменение положения од-
ного из массивных тел мгновенно приводит к изменению гравитационного поля во
всем пространстве. Кроме этого, если массивные тела отсутствуют, то потенциал гра-
витационного поля равен нулю. В общей теории относительности ситуация другая.
Во-первых, гравитационные взаимодействия распространяются с конечной постоян-
ной скоростью света 𝑐 в локально инерциальной системе отсчета. Во-вторых, даже
если материальные тела отсутствуют, уравнения Эйнштейна допускают нетривиаль-
ные решения в виде гравитационных волн. То есть гравитационное поле может быть
отлично от нуля даже если материальные тела отсутствуют. В настоящем разделе
мы изучим решения уравнений Эйнштейна, описывающие гравитационные волны.

Рассмотрим вакуумные уравнения Эйнштейна без космологической постоянной

𝑅αβ = 0. (6.58)

Как и в предыдущем разделе будем считать, что пространство-время топологически
тривиально, M ≈ R4, и существует глобальная система координат, в которой метри-
ка мало отличается от метрики Лоренца (6.49). В нулевом порядке по 𝜖 вакуумные
уравнения Эйнштейна, очевидно, удовлетворяются, т.к. кривизна пространства Мин-
ковского равна нулю. Найдем решение уравнений (6.58) в первом порядке по 𝜖.

Используя инвариантность действия Гильберта–Эйнштейна относительно общих
преобразований координат, выберем систему отсчета таким образом, чтобы выпол-
нялось калибровочное условие (6.53) (гармонические координаты). Тогда все компо-
ненты метрики в первом порядке будут удовлетворять волновому уравнению

�ℎ̄αβ = 0 ⇔ �ℎαβ = 0,

где компоненты ℎ̄αβ определены уравнением (6.50) и � – оператор Даламбера в про-
странстве Минковского. Однако далеко не все компоненты метрики являются неза-
висимыми и описывают физические степени свободы, от которых нельзя избавиться
путем выбора соответствующей системы координат.

Покажем это. Во-первых, выберем гармоническую систему координат. Тогда в
линейном приближении выполнено уравнение (6.53), которое рассматривается как
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калибровочное условие. Это условие не фиксирует систему координат однозначно.
Действительно, допустим, что в некоторой системе координат это условие выполнено.
Совершим преобразование координат 𝑥α ↦→ 𝑥α+ 𝜖𝑢α, где все компоненты векторного
поля 𝑢 удовлетворяют волновому уравнению

�𝑢α = 0. (6.59)

Нетрудно проверить, что в новой системе координат калибровочное условие (6.53)
будет также выполнено. Следовательно, оставшуюся свободу в выборе системы ко-
ординат можно использовать для того, чтобы зафиксировать дополнительные ком-
поненты метрики.

Чтобы найти подходящие дополнительные калибровочные условия, необходимо
решить уравнения (6.59) c некоторыми начальными условиями. Посмотрим, как пре-
образуется след возмущений метрики ℎ := ℎα

α и компоненты ℎ0µ, 𝜇 = 1, 2.3, при
бесконечно малых преобразованиях координат (6.51):

ℎ ↦→ ℎ+ 2𝜖𝜕α𝑢
α,

ℎ0µ ↦→ ℎ0µ + 𝜖(𝜕0𝑢µ + 𝜕µ𝑢0).

Рассмотрим пространственное сечение 𝑥0 := 𝑡 = const в качестве поверхности Ко-
ши для уравнения (6.59). На этой поверхности найдем какое-либо решение системы
линейных уравнений

2 (𝑢̇0 + 𝜕µ𝑢
µ) = −ℎ/𝜖, (6.60)

2 (△𝑢0 + 𝜕µ𝑢̇
µ) = −ℎ̇/𝜖, (6.61)

𝑢̇µ + 𝜕µ𝑢0 = −ℎ0µ/𝜖, (6.62)

△𝑢µ + 𝜕µ𝑢̇0 = −ℎ̇0µ/𝜖, (6.63)

где точка обозначает дифференцирование по времени 𝑡. Из этой системы уравнений
определяем компоненты 𝑢α и их производные по времени 𝑢̇α на поверхности Коши.
После этого решаем задачу Коши для уравнений (6.59) с найденными начальны-
ми условиями в обе стороны по времени и определяем векторное поле 𝑢 во всем
пространстве-времени. Поскольку выполнены уравнения (6.60)–(6.63), то на поверх-
ности Коши справедливы равенства

ℎ = 0, ℎ̇ = 0,

ℎ0µ = 0, ℎ̇0µ = 0.
(6.64)

Это очевидно, если заметить, что уравнения (6.61) и (6.63) возникают после диф-
ференцирования уравнений (6.60) и (6.62) по времени и использования уравнений
движения. Поскольку компоненты ℎ и ℎ0µ удовлетворяют волновому уравнению, то
условия (6.64) выполнены также во всем пространстве-времени.

Определение. Система координат, в которой в линейном приближении выполнены
условия

𝜕βℎα
β = 0, ℎ = 0, ℎ0µ = 0 (6.65)

называется радиационной калибровкой.

Предложение 6.8.1. При отсутствии полей материи и космологической посто-
янной радиационная калибровка существует в линейном приближении к метрике
Лоренца.
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Доказательство. Было приведено выше.

Несмотря на то, что в четырехмерном пространстве-времени общие преобразова-
ния координат параметризуются четырьмя произвольными функциями, мы сумели
наложить восемь калибровочных условий (6.65).

Из первого условия (6.65) для 𝛼 = 0 и с учетом того, что ℎ0µ = 0, получаем
уравнение ℎ̇00 = 0, которое должно быть выполнено во всем пространстве-времени.
Тогда уравнение движения для временно́й компоненты сводится к уравнению Ла-
пласа △ℎ00 = 0. С учетом нулевых граничных условий на бесконечности получаем
дополнительное условие на компоненты метрики: ℎ00 = 0.

Рассмотрим плоскую волну, которая распространяется в направлении волнового
вектора 𝑘 = (𝑘α):

ℎαβ = 𝐻αβ e
ikγxγ , (6.66)

где 𝐻αβ – некоторая постоянная матрица и 𝑘2 := 𝑘α𝑘α = 0. Радиационная калиб-
ровка (6.65) для этого решения уравнений движения задается следующими восемью
условиями:

𝑘β𝐻αβ = 0, 𝐻α
α = 0, 𝐻0µ = 0.

Из первого и третьего условия при 𝛼 = 0 вытекает равенство 𝑘0𝐻00. Для нетривиаль-
ного решения 𝑘0 ̸= 0, и поэтому 𝐻00 = 0. Ввиду симметрии по индексам матрица 𝐻αβ

имеет 10 независимых элементов. Радиационная калибровка накладывает на них 8
независимых условий. Отсюда вытекает, что в выбранной системе координат только
2 компоненты возмущенной метрики являются независимыми.

Допустим, что гравитационная волна распространяется вдоль оси 𝑥1, т.е. нор-
мированный волновой вектор имеет только две отличные от нуля компоненты 𝑘 =
(1, 1, 0, 0). Тогда матрица 𝐻αβ в радиационной калибровке имеет вид

𝐻 =


0 0 0 0
0 0 0 0
0 0 𝐴 𝐵
0 0 𝐵 −𝐴

 ,

где 𝐻22 = −𝐻33 := 𝐴 и 𝐻23 = 𝐻32 := 𝐵 – два произвольных числа (амплитуды волн).
Введем новое понятие спиральности плоской волны. Для этого рассмотрим вра-

щение пространства R3 ⊂ R1,3 на угол 𝜙 вокруг оси 𝑥1. Ясно, что такое вращение
не меняет волнового вектора 𝑘. При преобразовании координат компоненты метрики
преобразуются по тензорному закону

𝑔αβ ↦→ 𝑔′αβ = 𝑆α
γ𝑆β

δ𝑔γδ

с соответствующей матрицей вращений 𝑆. Простые вычисления приводят к равен-
ствам для новых амплитуд:

𝐴′ = cos 2𝜙𝐴+ sin 2𝜙𝐵,

𝐵′ = − sin 2𝜙𝐴+ cos 2𝜙𝐵.

Это означает, что при повороте системы координат на угол 𝜙 амплитуда волны по-
ворачивается на удвоенный угол 2𝜙. В физике часто рассматривают комплексные
амплитуды

𝐻± := 𝐻22 ∓ 𝑖𝐻23 = 𝐴∓ 𝑖𝐵.

При вращении они преобразуются по правилу

𝐻 ′± = e±2iϕ𝐻±.
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Определение. Если амплитуда плоской поперечной волны при повороте на угол 𝜙
вокруг направления распространения волны поворачивается на угол h𝜙, то говорят,
что волна имеет спиральность h.

Таким образом, плоские гравитационные волны описывают поперечные волны
спиральности два.

Тензор Риччи и скалярная кривизна для данного решения вакуумных уравнений
Эйнштейна в линейном приближении равны, конечно, нулю. Это следует из того, что
мы решаем вакуумные уравнения Эйнштейна без космологической постоянной (6.5).
Тем не менее полный тензор кривизны отличен от нуля. В линейном приближении
тензор кривизны имеет вид (см. выражение (2.128))

1

𝜖
𝑅αβγδ =

1

2
(𝜕2
αγℎβδ − 𝜕2

αδℎβγ − 𝜕2
βγℎαδ + 𝜕2

βδℎαγ). (6.67)

Простые вычисления показывают, что среди 20 независимых компонент тензора кри-
визны только 9 отличны от нуля:

𝑅0303 = −𝑅0202 = 𝑅1313 = −𝑅1212 = 𝑅0212 = −𝑅0313 =
1

2
𝜖𝐴 ei(t−x

1),

𝑅0203 = 𝑅1213 = −𝑅0213 = −1

2
𝜖𝐵 ei(t−x

1).

При преобразовании координат компоненты тензора кривизны ведут себя ковари-
антным образом – на то он и тензор. Однако в линейном приближении они не просто
ковариантны, а инвариантны. Нетрудно проверить, что выражение (6.67) действи-
тельно инвариантно относительно преобразований (6.52) с произвольным вектором
𝑢.

Из явного выражения для нетривиальных компонент тензора кривизны выте-
кает, что амплитуды волн 𝐴 и 𝐵 нельзя обратить в нуль никаким преобразованием
координат. Следовательно, они описывают физические распространяющиеся степени
свободы.

Поскольку вакуумные уравнения Эйнштейна в линейном приближении линейны,
то им будет удовлетворять произвольная суперпозиция плоских волн. В частности,
поправки к метрике вида

ℎαβ = 𝐻αβ

[
𝑓(𝑥1 − 𝑡) + 𝑔(𝑥1 + 𝑡)

]
,

где 𝑓 и 𝑔 – произвольные функции, описывающие распространение волн вдоль оси
𝑥1 в положительную и отрицательную стороны, также удовлетворяют линеаризо-
ванным уравнениям Эйнштейна в радиационной калибровке. Отсюда, в частности,
следует, что для однозначного задания волнового решения уравнений Эйнштейна
необходимо задать четыре функции на поверхности Коши: по две для каждой волны.
При этом функции можно задать произвольным образом. Таким образом, вакуумные
уравнения Эйнштейна без космологической постоянной описывают распространение
двух физических степеней свободы, которые порождают нетривиальную кривизну
пространства-времени и не устраняются никаким преобразованием координат. Дан-
ный подсчет степеней свободы приводит к тому же результату, что и общий подход,
основанный на гамильтоновом формализме.
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6.9 Сплошная среда в общей теории относительно-
сти

В правой части уравнений Эйнштейна (6.1) находится тензор энергии-импульса ма-
терии 𝑇m

αβ. В случае скалярного, электромагнитного и других полей, уравнения
движения которых следуют из вариационного принципа, правая часть уравнений
Эйнштейна определяется вариацией соответствующего действия по метрике. В этом
случае вопросов с определением тензора энергии-импульса материи не возникает.
Некоторые из этих тензоров будут рассмотрены в дальнейшем.

В то же время в общей теории относительности существует ряд важных моделей
(особенно в космологии), для которых тензор энергии-импульса материи не следует
из вариационного принципа. В настоящем разделе мы определим тензор энергии-
импульса материи 𝑇m

αβ, которая рассматривается как сплошная среда, например,
жидкость или газ, и изучим некоторые из его свойств. При этом мы не будем опи-
раться на вариационный принцип.

Пусть пространство-время (M, 𝑔) топологически тривиально M ≈ R1,3 и покрыто
одной картой. Мы предполагаем, что координаты (𝑥α) = (𝑥0, 𝑥µ) выбраны таким
образом, что координата 𝑥0 является временем, т.е. 𝑔00 > 0. Кроме того, мы считаем,
что все сечения 𝑥0 = const – пространственноподобны.

Можно привести ряд физических аргументов [?], глава IV, §35 в пользу того, что
тензор энергии-импульса материи, которая рассматривается как сплошная среда,
имеет вид

𝑇m
αβ := (ℰ + 𝒫)𝑢α𝑢β − 𝒫𝑔αβ, (6.68)

где ℰ(𝑥) и 𝒫(𝑥) – плотность энергии и давление материи в точке 𝑥 ∈ M, и

𝑢α := 𝑑𝑥α/𝑑𝑠, 𝑑𝑠 :=
√

|𝑑𝑠2|, 𝑑𝑠2 := 𝑔αβ𝑑𝑥
α𝑑𝑥β,

– четырехмерная скорость материи в той же точке, которая удовлетворяет тожде-
ству 𝑢α𝑢α = 1. Здесь мы предполагаем, что каждая точка материи движется вдоль
времениподобной мировой линии 𝑥α(𝑠) в будущее, т.е. 𝑢0 > 0. Ясно, что мировые
линии точек материи – это интегральные кривые векторного поля скорости 𝑢.

При рассмотрении моделей сплошной среды задают, как правило, не линии тока
𝑥α(𝑠), а векторное поле скоростей 𝑢α(𝑠). Мы предполагаем, что поле скоростей яв-
ляется достаточно гладким, и через каждую точку многообразия проходит одна и
только одна линия тока. Математически это означает, что система уравнений

𝑑𝑦α

𝑑𝑠
= 𝑢α(𝑦),

с начальным условием 𝑦α(0) = 𝑥α имеет единственное решение для всех 𝑥 ∈ M,
которое определено для всех 𝑠 ∈ R.

Поскольку 𝑢α и 𝑔αβ являются, соответственно, компонентами вектора и тензора
относительно преобразований координат, то мы считаем, что плотность энергии ℰ и
давление материи 𝒫 являются достаточно гладкими скалярными полями (функция-
ми) на пространстве-времени M. В этом случае правая часть равенства (6.68) пред-
ставляет собой контравариантный симметричный тензор второго ранга. Для обычной
(наблюдаемой) материи плотность энергии предполагается положительной, ℰ > 0, а
давление – неотрицательным, 𝒫 ≥ 01.

1 Давление, в принципе, может быть отрицательным. Примером является резина. Для нее уве-
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Замечание. В нерелятивистской гидро- и газодинамике все уравнения записыва-
ются таким образом, что в них входит не сама энергия и давление, а только их
градиенты. Это означает, что энергия и давление определены с точностью до до-
бавления произвольной постоянной. В общей теории относительности ситуация от-
личается принципиально, т.к. уравнения меняются, если к ℰ или 𝒫 добавить посто-
янную. В частности, наличие космологической постоянной Λ можно интерпретиро-
вать как среду с постоянной плотностью энергии ℰ = Λ и постоянным давлением
𝒫 = −ℰ = −Λ. Если ℰ > 0, то давление отрицательно, 𝒫 < 0. Поэтому космологиче-
скую постоянную можно интерпретировать, как некоторую среду, заполняющую все
пространство-время со свойствами обыкновенной резины.

Из общих физических представлений следует, что след тензора энергии-импульса
для обычной материи должен быть неотрицательным [?], глава IV, §34:

𝑇mα
α = ℰ − 3𝒫 ≥ 0. (6.69)

Этим свойством обладает, в частности, тензор энергии-импульса для произвольного
распределения точечных частиц (6.47). Отсюда вытекает ограничение на давление

𝒫 ≤ ℰ
3
. (6.70)

Поскольку давление, по предположению, неотрицательно, то с учетом равенства
(6.70) существует два крайних случая. Если материя, которой заполнена вселенная,
настолько разрежена, что давление можно считать равным нулю, то говорят, что
материя пылевидна. Максимальное возможное давление, 𝒫 = ℰ/3, соответствует газу
ультрарелятивистских частиц, скорости которых близки к скорости света. В этом
случае говорят, что вселенная заполнена газом излучения или, просто, излучением.

𝒫 = 0 – пыль,

𝒫 =
ℰ
3

– излучение.
(6.71)

Для обычной материи 0 ≤ 𝒫 ≤ ℰ/3.

Пример 6.9.1 (Нерелятивистская гидродинамика). Рассмотрим пространство
Минковского R1,3 в декартовой системе координат с метрикой Лоренца 𝜂αβ = diag (+−
−−). Пусть пространство-время заполнено идеальной (без вязкости) жидкостью. Те-
чение жидкости описывается плотностью 𝜌, давлением 𝒫 и трехмерной скоростью
𝑢µ, 𝜇 = 1, 2, 3. Тензор энергии-импульса идеальной жидкости в общей теории отно-
сительности по определению имеет вид (6.68). Покажем, что уравнения движения
нерелятивистской идеальной жидкости (если не считать уравнения состояния) сле-
дуют из закона сохранения четырехмерного тензора энергии-импульса, 𝜕β𝑇m

αβ = 0.
В нерелятивистском приближении мы считаем, что пространственные компонен-

ты скорости малы: 𝑢0 ≈ 1, 𝑢µ ∼ 𝜖 ≪ 1, где (𝑢α) = (𝑢0, 𝑢µ), 𝛼 = 0, 1, 2, 3, и давление
мало, 𝒫 ∼ 𝜖2 ≪ ℰ . Кроме того, положим ℰ = 𝜌, где 𝜌 – плотность жидкости, имея в
виду формулу ℰ = 𝜌𝑐2 при 𝑐 = 1. Тогда в главном приближении компоненты тензора

личение объема по сравнению с состоянием равновесия приводит к увеличению давления. В со-
временных космологических моделях предполагается наличие темной энергии. Этот вид материи
имеет положительную плотность энергии, но отрицательное давление (см., раздел 9.1.3).
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энергии-импульса равны:

𝑇m
00 = (ℰ + 𝒫)𝑢0𝑢0 − 𝒫 ≈ 𝜌,

𝑇m
0µ = 𝑇m

µ0 = (ℰ + 𝒫)𝑢0𝑢µ ≈ 𝜌𝑢µ,

𝑇m
µν = (ℰ + 𝒫)𝑢µ𝑢ν − 𝒫𝜂µν ≈ 𝜌𝑢µ𝑢ν − 𝒫𝜂µν .

(6.72)

Рассмотрим закон сохранения энергии-импульса 𝜕β𝑇m
αβ = 0. Нулевая компонента

этого равенства в главном приближении имеет вид

𝜕β𝑇m
0β = 𝜕0𝑇m

00 + 𝜕µ𝑇m
0µ ≈ 𝜕0𝜌+ 𝜕µ(𝜌𝑢

µ) = 0. (6.73)

Полученное уравнение совпадает с уравнением непрерывности. Пространственные
компоненты закона сохранения энергии-импульса в главном приближении приводят
к равенству

𝜕β𝑇m
µβ = 𝜕0𝑇m

µ0 + 𝜕ν𝑇m
µν ≈ 𝜌𝜕0𝑢

µ + 𝑢µ [𝜕0𝜌+ 𝜕ν(𝜌𝑢
ν)] + 𝜌𝑢ν𝜕ν𝑢

µ − 𝜂µν𝜕ν𝒫 = 0,

что, с учетом уравнения непрерывности (6.73), дает уравнения Эйлера

𝜕0𝑢
µ + 𝑢ν𝜕ν𝑢

µ =
1

𝜌
𝜂µν𝜕ν𝒫 . (6.74)

Если дополнить уравнение непрерывности и уравнение Эйлера уравнением состоя-
ния идеальной жидкости 𝒫 = 𝒫(𝜌), связывающим давление и плотность, то получим
полную систему уравнений для идеальной жидкости (пять уравнений на пять неиз-
вестных). Таким образом уравнения движения нерелятивистской идеальной жидко-
сти следуют из закона сохранения четырехмерного тензора энергии-импульса (6.68),
дополненного уравнениям состояния.

Эта же система уравнений (6.73), (6.74) описывает движение идеального газа.
Разница заключается только в уравнении состояния. Для идеального газа уравнение
состояния имеет вид

𝒫 =
𝜌

𝜇
𝑅𝑇, (6.75)

где 𝜇,𝑅 и 𝑇 есть, соответственно, молекулярный вес, универсальная газовая посто-
янная и абсолютная температура. При постоянной температуре 𝑇 = const давление
идеального газа прямо пропорционально плотности.

Рассмотренный пример показывает, что в нерелятивистском пределе ковариант-
ное сохранение тензора энергии-импульса сплошной среды ∇β𝑇m

αβ = 0 сводится к
уравнениям нерелятивистской гидродинамики идеальной жидкости. При этом плот-
ность энергии ℰ мы отождествили с плотностью жидкости 𝜌. Напомним, что в ре-
лятивистской механике точечных частиц энергия и импульс частицы являются ком-
понентами четырехмерного вектора, причем энергия представляет собой нулевую
компоненту и не является скаляром. Для сплошной среды в общей теории относи-
тельности ℰ(𝑥) и 𝒫(𝑥) – скалярные поля.

Наличие в пространстве-времени метрики и времениподобного векторного поля
𝑢, 𝑢2 = 1, позволяет определить проекционные операторы:

Πl
α
β := 𝑢α𝑢

β, Πt
α
β := 𝛿βα − 𝑢α𝑢

β.
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В каждой точке 𝑥 ∈ M эти операторы проектируют тензорные поля, соответственно,
на направление вектора скорости 𝑢 и перпендикулярную гиперплоскость в касатель-
ном пространстве Tx(M). Например, проекция метрики имеет вид

𝑔l
αβ := Πl

α
γΠl

β
δ𝑔γδ = 𝑢α𝑢β,

𝑔t
αβ := Πt

α
γΠt

β
δ𝑔γδ = 𝑔αβ − 𝑢α𝑢β.

Ясно также, что
𝑢lα := 𝑢βΠl

β
α = 𝑢α, 𝑢t := 𝑢βΠt

β
α = 0.

Поэтому тензор энергии-импульса (6.68) можно переписать с помощью проекцион-
ных операторов:

𝑇m
αβ = ℰ𝑔lαβ − 𝒫𝑔tαβ. (6.76)

Поскольку тензор энергии-импульса сплошной среды (6.68) не был получен из
вариационного принципа, то на него необходимо наложить дополнительное условие

∇β𝑇m
βα = 0, (6.77)

которое является условием совместности уравнений Эйнштейна. Более подробно

(ℰ + 𝒫)𝑢β∇β𝑢
α + 𝑢α∇β

[
(ℰ + 𝒫)𝑢β

]
− 𝑔αβ𝜕β𝒫 = 0, (6.78)

где мы воспользовались условием метричности связности Леви-Чивиты ∇β𝑔
γα = 0.

Проекции этого уравнения на вектор 𝑢 и перпендикулярную гиперплоскость имеют
следующий вид

(ℰ + 𝒫)∇α𝑢
α + 𝑢α𝜕αℰ = 0, (6.79)

(ℰ + 𝒫)𝑢β∇β𝑢
α − (𝑔αβ − 𝑢α𝑢β)𝜕β𝒫 = 0, (6.80)

где мы воспользовались уравнением 𝑢α∇β𝑢
α = 0, которое следует из условия 𝑢2 = 0

после дифференцирования. Легко проверить, что свертка уравнений (6.80) с ковек-
тором 𝑢α тождественно обращается в нуль. Следовательно, только четыре уравнения
из (6.79), (6.80) являются независимыми, и они эквивалентны условию ковариантно-
го сохранения тензора энергии-импульса ∇β𝑇m

βα = 0.
Уравнение (6.79) является ковариантным обобщением уравнения непрерывности

для нерелятивистской жидкости (6.73), а уравнение (6.80) – ковариантным обобщени-
ем уравнения Эйлера (6.74). Эти уравнения представляют собой систему уравнений
релятивистской гидродинамики.

Система уравнений (6.79), (6.80) вместе с уравнениями Эйнштейна не образует
полной системы уравнений релятивистской гидродинамики. Ее необходимо допол-
нить уравнением состояния. Широкий класс моделей описывается уравнением со-
стояния 𝒫 = 𝒫(ℰ), связывающим давление с плотностью энергии в каждой точке
пространства-времени. Такие жидкости называются баротропными.

Второе слагаемое в уравнении Эйлера (6.80) после опускания индекса имеет вид

Πt
α
β𝜕β𝒫 = (𝛿βα − 𝑢α𝑢

β)𝜕β𝒫 .

Если оно равно нулю, т.е. градиент давления параллелен вектору скорости, то урав-
нение Эйлера упрощается 𝑢β∇β𝑢

α = 0. Это есть уравнение экстремалей. В этом и
только в этом случае точки жидкости движутся так же, как и точечные частицы под
действием одних гравитационных сил.
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Для пылевидной материи давление равно нулю и система уравнений релятивист-
ской гидродинамики существенно упрощается:

∇α(ℰ𝑢α) = 0, 𝑢β∇β𝑢
α = 0. (6.81)

Мы видим, что пылевидная материя движется вдоль экстремалей, как множество
точечных частиц.

6.10 Скалярное поле в общей теории относительно-
сти

Пусть на многообразии (пространстве-времени) M произвольной размерности 𝑛 за-
дана аффинная геометрия, т.е. задана метрика 𝑔 лоренцевой сигнатуры и связность
Γ. Лагранжиан скалярного поля, минимальным образом взаимодействующего с гра-
витацией, выбирается в виде

𝐿 =
√
|𝑔|

(
1

2
𝜕𝜙2 − 𝑉 (𝜙)

)
, (6.82)

где введено сокращенное обозначение

𝜕𝜙2 := 𝑔αβ𝜕α𝜙𝜕β𝜙,

для кинетической части лагранжиана и 𝑉 (𝜙) – потенциал скалярного поля (доста-
точно гладкая положительно определенная функция от 𝜙), включающий массовый
член. Лагранжиан (6.82) зависит только от метрики, а аффинная связность в него не
входит. Это означает, что лагранжиан скалярного поля при минимальной подстанов-
ке имеет один и тот же вид как в общей теории относительности, так и в аффинной
геометрии общего вида.

Вычислим вариационные производные действия:

𝑆, ϕ :=
𝛿𝑆

𝛿𝜙
= −

√
|𝑔|
(
�̃𝜙+ 𝑉 ′(𝜙)

)
= 0, (6.83)

𝑆, αβ :=
𝛿𝑆

𝛿𝑔αβ
=

1

2

√
|𝑔|𝑇αβ, (6.84)

где

�̃ := 𝑔αβ∇̃α∇̃β.

– инвариантный волновой оператор, построенный по псевдоримановой метрике 𝑔αβ и

𝑇αβ = 𝜕α𝜙𝜕β𝜙− 𝑔αβ

(
1

2
𝜕𝜙2 − 𝑉

)
(6.85)

– ковариантное обобщение тензора энергии-импульса для пространства Минковско-
го. Уравнение (6.83) является инвариантным уравнением движения для скалярного
поля в аффинной геометрии. Вариационная производная (6.85) определяет тензор
энергии-импульса скалярного поля, который служит источником для гравитацион-
ного поля (компонент метрики) в уравнениях Эйнштейна.
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Если действие инвариантно относительно общих преобразований координат, ко-
торые параметризуются 𝑛 функциями, то согласно второй теореме Нетер уравнения
движения удовлетворяют 𝑛 тождествам. Допустим, что действие зависит только от
метрики и скалярного поля. Тогда инвариантность действия означает равенство ну-
лю вариации

𝛿𝑆 =

∫
𝑑𝑥

√
|𝑔|(𝑆, αβ𝛿𝑔αβ + 𝑆, ϕ𝛿𝜙) = 0.

Отсюда с учетом явного вида вариации компонент метрики (2.159) и скалярного поля
(2.154) получаем, что уравнения движения (6.83) и (6.84) удовлетворяют 𝑛 тожде-
ствам:

2∇̃α𝑆,
α
β − 𝑆, ϕ𝜕β𝜙 = 0, (6.86)

где ∇̃α – ковариантная производная с символами Кристоффеля.
С формальной точки зрения сдвиги на постоянный вектор, 𝑥α ↦→ 𝑥α + 𝑎α, 𝑎α =

const, образуют подгруппу группы общих преобразований координат. Поэтому так
же, как и в пространстве Минковского, можно построить полную “энергию” и “им-
пульс” скалярного поля. Эти величины будут сохраняться на уравнениях движе-
ния, однако им не всегда можно придать физический смысл, т.к. понятие декарто-
вой системы координат в общем случае отсутствует. Это построение имеет смысл
в асимптотически плоском пространстве-времени, когда на больших расстояниях
пространство-время приближается к пространству Минковского. Это же верно и для
момента количества движения.

Рассмотрим действительное скалярное поле, которое минимальным образом взаи-
модействует с гравитацией в общей теории относительности. В этом случае действие
имеет вид

𝑆 = 𝜅𝑆he + 𝑆ϕ, (6.87)

где 𝑆he – действие Гильберта–Эйнштейна (6.6) и 𝑆ϕ – действие для скалярного поля с
лагранжианом (6.82). Добавление к действию скалярного поля действия Гильберта–
Эйнштейна дает кинетический член для метрики. Поэтому вариация этого действия
по обратной метрике приводит к уравнениям движения Эйнштейна

1
√
|𝑔|

𝛿𝑆

𝛿𝑔αβ
: 𝜅

(
𝑅̃αβ −

1

2
𝑔αβ𝑅̃

)
+ 𝑔αβΛ +

1

2
𝑇αβ = 0, (6.88)

где 𝑇αβ – тензор энергии-импульса скалярного поля (6.85). Поскольку действие Гиль-
берта–Эйнштейна не зависит от скалярного поля, то уравнение движения для ска-
лярного поля остается прежним (6.83). Таким образом, полная система уравнений
движения для скалярного поля в общей теории относительности состоит из уравне-
ний (6.83) и (6.88).

Покажем, что уравнение движения для скалярного поля (6.83) являются след-
ствием уравнений Эйнштейна (6.88).

Предложение 6.10.1. Если в некоторой области пространства-времени U ⊂ M
градиент скалярного поля отличен от нуля, (𝜕α𝜙 ̸= 0), то в этой области уравнение
для скалярного поля (6.83) является следствием уравнений Эйнштейна (6.88).

Доказательство. Подействуем оператором ковариантного дифференцирования ∇̃β

на уравнение (6.88). В силу свернутых тождеств Бианки (2.150)

∇̃β

(
𝑅̃αβ −

1

2
𝑔αβ𝑅̃

)
= 0,
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получим равенство
∇̃β𝑇αβ = 𝜕α𝜙(�̃𝜙+ 𝑉 ′) = 0.

Отсюда вытекает сделанное утверждение.

Доказанное предложение позволяет вместо решения полной системы уравнений
для скалярного поля и метрики ограничится решением только уравнений Эйнштей-
на.

6.11 Электромагнитное поле в общей теории относи-
тельности

Лагранжиан электромагнитного поля на многообразии M с заданной аффинной гео-
метрией при минимальной подстановке принимает вид

𝐿em = −1

4

√
|𝑔|𝑔αβ𝑔γδ𝐹αγ𝐹βδ := −1

4

√
|𝑔|𝐹 2, (6.89)

где 𝐹αβ := 𝜕α𝐴β−𝜕β𝐴α – напряженность электромагнитного поля. Ему соответствует
действие

𝑆em =

∫
M
𝑑𝑥𝐿em. (6.90)

Как и в случае скалярных полей, лагранжиан (6.89) не зависит от аффинной связ-
ности. Это связано с тем, что 𝐹αβ – это компоненты локальной формы кривизны для
𝑈(1) связности и являются компонентами тензора независимо от того задана или нет
на многообразии M аффинная геометрия. С геометрической точки зрения в выра-
жении для 𝐹αβ при минимальной подстановке нет никакой необходимости заменять
частные производные на ковариантные, т.к. локальная форма кривизны для 𝑈(1)
связности уже является тензором относительно общих преобразований координат.

Уравнения движения для электромагнитного поля и тензор энергии-импульса
получаются варьированием соответствующего действия

√
|𝑔|𝑆em,

α :=
𝛿𝑆em

𝛿𝐴α
= 𝜕β

(√
|𝑔|𝐹 βα

)
=

√
|𝑔|∇̃β𝐹

βα = 0, (6.91)

√
|𝑔|𝑆em, αβ :=

𝛿𝑆em

𝛿𝑔αβ
=

1

2

√
|𝑔|𝑇emαβ = −1

2

√
|𝑔|𝐹αγ𝐹β

γ +
1

8

√
|𝑔|𝑔αβ𝐹

2. (6.92)

Отсюда следует выражение для тензора энергии-импульса электромагнитного поля

𝑇emαβ := −𝐹αγ𝐹βγ +
1

4
𝑔αβ𝐹

2. (6.93)

Вариация действия по метрике (6.92) приводит к тензору энергии-импульса элек-
тромагнитного поля (6.93), стоящему в правой части уравнений Эйнштейна (6.1). Он
является ковариантным обобщением симметричного канонического тензора энергии-
импульса в пространстве Минковского. В этом отношении ситуация с электромагнит-
ным полем такая же, как и для скалярного поля.

Если присутствуют источники электромагнитного поля, то в правой части урав-
нения (6.91) появляется электрический ток:

∇̃β𝐹
βα = 𝐽α, (6.94)

где 𝐽 = (𝐽α) – вектор тока. Происхождение электрического тока в настоящий момент
не имеет значения.
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Предложение 6.11.1. Если пространство-время топологически тривиально (диф-
феоморфно Rn), то система уравнений второго порядка для потенциала 𝐴α (6.94)
эквивалентна системе уравнений первого порядка для компонент напряженности
𝐹αβ = −𝐹βα электромагнитного поля:

∇̃β𝐹
βα = 𝐽α,

𝜕α𝐹βγ + 𝜕β𝐹γα + 𝜕γ𝐹αβ = 0
(6.95)

Доказательство. Пусть 𝐹αβ = 𝜕α𝐴β−𝜕β𝐴α. Тогда из уравнения (6.94) следует систе-
ма уравнений (6.95). Обратно. В силу леммы Пуанкаре из второго уравнения (6.95)
для односвязных многообразий следует существование потенциала 𝐴α. Подстановка
соответствующего выражения в первое уравнение (6.95) приводит к (6.94).

Определение. Система уравнений первого порядка (6.95) для напряженности элек-
тромагнитного поля 𝐹αβ = −𝐹βα называется уравнениями Максвелла.

Действие для лагранжиана (6.89) инвариантно относительно общих преобразова-
ний координат. Соответствующие вариации полей имеют вид (см. раздел 2.11)

𝛿𝐴α = −𝜕α𝜖β𝐴β − 𝜖β𝜕β𝐴α,

𝛿𝑔αβ = 𝑔αγ𝜕γ𝜖
β + 𝑔βγ𝜕γ𝜖

α − 𝜖γ𝜕γ𝑔
αβ.

Отсюда, согласно второй теореме Нетер (5.46), следует зависимость уравнений дви-
жения

𝜕β𝑆,
β𝐴α + 𝑆, β𝐹βα − 𝜕β𝑆,

β
α − 𝜕β𝑆, α

β − 𝑆, βγ𝜕α𝑔
βγ = 0. (6.96)

Или, в ковариантном виде,

∇̃β𝑆,
β𝐴α + 𝑆, β𝐹βα − 2∇̃β𝑆, βα = 0. (6.97)

Если выполнены уравнения движения для электромагнитного поля (6.91), то с
учетом свернутых тождеств Бианки соотношение (6.97) принимает вид

∇̃β𝑇emα
β = 0. (6.98)

Полученное равенство, выполненное для всех решений уравнений Эйлера–Лагранжа,
можно интерпретировать, как ковариантное обобщение закона сохранения тензора
энергии-импульса.

Действие для электромагнитного поля инвариантно также относительно калиб-
ровочных преобразований

𝐴′α := 𝐴α + 𝜕α𝜑, (6.99)

где 𝜑(𝑥) – произвольная функция, при которых метрика не меняется. Нетрудно
видеть, что при калибровочном преобразовании (6.99) компоненты напряженности
электромагнитного поля инвариантны. Из калибровочной инвариантности в силу
второй теоремы Нетер следует зависимость уравнений движения:

∇̃α𝑆,
α = 0. (6.100)

С учетом уравнения Максвелла (6.94) это равенство приводит к закону сохранения
электрического тока: ∇̃α𝐽

α = 0. Если ток возникает при варьировании некоторого
калибровочно инвариантного действия для полей заряженной материи, то сохране-
ние тока будет выполняться автоматически в силу второй теоремы Нетер. Если же
электрический ток вводится в уравнения Максвелла “руками”, то условие ∇̃α𝐽

α = 0
необходимо для самосогласованности уравнений.
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Предложение 6.11.2. Действие электромагнитного поля в аффинной геометрии
(6.90) инвариантно относительно преобразований Вейля:

𝑔αβ ↦→ 𝑔αβ = e2φ𝑔αβ, 𝐴α ↦→ 𝐴α = 𝐴α, (6.101)

где 𝜑(𝑥) ∈ 𝒞2(M) – произвольная вещественнозначная функция.

Доказательство. Утверждение следует из равенства
√
|𝑔|𝑔αβ𝑔γδ =

√
|𝑔|𝑔αβ𝑔γδ.

Замечание. Вейлевская инвариантность действия электромагнитного поля являет-
ся спецификой четырехмерности пространства-времени. Если размерность простран-
ства-времени отлична от четырех, то след тензора энергии-импульса электромагнит-
ного поля отличен от нуля.

Равенство нулю следа тензора энергии-импульса электромагнитного поля связано
с наличием вейлевской калибровочной инвариантности. Этот факт является общим.

Предложение 6.11.3. Пусть действие зависит от метрики 𝑔αβ и некоторого на-
бора полей материи 𝜙a

𝑆m =

∫
𝑑𝑥𝐿m(𝑔, 𝜙).

Если действие инвариантно относительно преобразований Вейля, не затрагиваю-
щих поля материи,

𝑔αβ ↦→ 𝑔αβ = e2φ𝑔αβ, 𝜙a ↦→ 𝜙a = 𝜙a,

то след тензора энергии-импульса полей материи равен нулю, 𝑇mα
α = 0.

Доказательство. Поскольку параметр преобразования Вейля зависит от точки про-
странства-времени, то справедлива вторая теорема Нетер. В рассматриваемом случае
это означает следующее. Инвариантность действия имеет вид

𝛿𝑆m =

∫
𝑑𝑥

𝛿𝑆m

𝛿𝑔αβ
𝛿𝑔αβ = 0.

Учтем определение тензора энергии-импульса в общей теории относительности (6.10)
и выражение для бесконечно малых преобразований Вейля

𝛿𝑔αβ = −2𝜑𝑔αβ.

Тогда равенство нулю вариации действия полей материи равносильно равенству
𝑔αβ𝑇mαβ = 0.

6.12 Выбор системы координат
Уравнения общей теории относительности ковариантны относительно общих пре-
образований координат. Эту свободу можно использовать для выбора подходящей
системы отсчета, которая может упростить уравнения Эйнштейна, например, тем,
что метрика будет определяться не десятью (в четырех измерениях), а меньшим
числом компонент. Поскольку преобразования координат параметризуются четырь-
мя функциями, то в общем случае метрика будет иметь не менее шести компонент.
В настоящем разделе будут описаны несколько широко распространенных способа
фиксирования системы координат.
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6.12.1 Сопутствующая система координат

Рассмотрим уравнения Эйнштейна

𝜅

(
𝑅αβ −

1

2
𝑔αβ𝑅

)
= −1

2
𝑇mαβ (6.102)

для сплошной среды с тензором энергии-импульса (см. раздел 6.9)

𝑇m
αβ = (ℰ + 𝒫)𝑢α𝑢β − 𝒫𝑔αβ. (6.103)

Для получения замкнутой системы уравнений уравнения Эйнштейна необходимо до-
полнить законом сохранения (уравнениями релятивистской гидродинамики)

∇β𝑇m
βα = 0 (6.104)

и уравнением состояния среды
𝒫 = 𝒫(ℰ), (6.105)

предполагая среду баротропной. Если среда не является баротропной, то возникают
дополнительные уравнения. Система уравнений (6.102), (6.104) и (6.105) образуют
полную систему для неизвестных функций: 𝑔αβ, 𝑢α, 𝒫 и ℰ . Нетрудно проверить,
что число уравнений равно числу неизвестных (напомним, что на вектор скорости
𝑢 наложено условие 𝑢2 = 1 и число его независимых компонент на единицу мень-
ше размерности пространства-времени). Если 𝑛 = 4, то число уравнений и число
неизвестных равно пятнадцати.

Поскольку плотность энергии ℰ(𝑥) и давление 𝒫(𝑥) являются скалярными поля-
ми, то уравнение состояния (6.105) является корректным.

По построению, все уравнения ковариантны. Поэтому преобразования координат
можно использовать для упрощения системы уравнений. Обычно преобразования ко-
ординат используют для фиксирования части компонент метрики. Однако для систе-
мы уравнений (6.102), (6.104) и (6.105) существует другая естественная возможность.
Если размерность пространства-времени равна 𝑛, то в нашем распоряжение имеется
𝑛 функций, которых достаточно для фиксирования векторного поля скорости. Тем
самым число неизвестных функций уменьшится, и задача упростится. Такой подход
часто используется в космологии.

Опишем этот способ задания системы координат. Рассмотрим псевдориманово
многообразие M, dimM = 𝑛, с метрикой 𝑔 лоренцевой сигнатуры. Пусть на нем за-
дано произвольное достаточно гладкое времениподобное векторное поле 𝑢 = 𝑢α(𝑥)𝜕α,
всюду отличное от нуля, 𝑢2 ̸= 0. Не ограничивая общности, будем считать, что

𝑢2 := 𝑔αβ𝑢
α𝑢β = 1.

В противном случае можно просто заменить 𝑢α ↦→ 𝑢α/𝑢2.
В некоторой окрестности произвольной точки существует такая система коорди-

нат, в которой все компоненты векторного поля, кроме одной, равны нулю. Для еди-
ничного времениподобного векторного поля нетривиальная компонента равна еди-
нице:

(𝑢α) = (1, 0, . . . , 0) . (6.106)

Определение. Система координат, в которой для единичного времениподобного
векторного поля выполнено условие (6.106), называется сопутствующей векторно-
му полю 𝑢.
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С физической точки зрения сопутствующую систему координат можно предста-
вить следующим образом. Допустим, что некоторая среда заполняет все пространство-
время. Тогда с каждой точкой среды связана мировая линия 𝑥(𝑠) (линия тока). Мы
предполагаем, что касательные векторы к мировым линиям образуют достаточно
гладкое времениподобное векторное поле (вектор скорости)

𝑢 = 𝑢α𝜕α, 𝑢α :=
𝑑𝑥α

𝑑𝑠
, 𝑑𝑠 :=

√
𝑔αβ𝑑𝑥α𝑑𝑥β,

на многообразии M. Выберем произвольное сечение S, которое пересекает все линии
тока один раз, и зададим произвольную систему координат 𝑥µ, 𝜇 = 1, . . . , 𝑛 − 1, на
S. Это сечение совсем не обязано быть пространственноподобным. Тогда сопутству-
ющими координатами произвольной точки 𝑦 ∈ M является набор чисел (𝑥0 := 𝑠, 𝑥µ),
где 𝑥µ – координаты точки пересечения поверхности S с кривой 𝑥(𝑠), проходящей че-
рез точку 𝑦. Для определенности будем считать, что каждая линия тока пересекает
поверхность S при 𝑠 = 0.

Замечание. В предыдущем разделе мы установили, что пылевидная материя дви-
жется вдоль экстремалей (6.81). Это значит, что в общем случае при наличии давле-
ния или других негравитационных сил линии тока среды отличаются от экстрема-
лей.

Сопутствующая векторному полю система координат определена неоднозначно.
Действительно, совершим преобразование координат 𝑥α ↦→ 𝑥α

′
(𝑥). Тогда компоненты

скорости преобразуются по тензорному закону:

𝑢α ↦→ 𝑢α
′
:=

𝜕𝑥α
′

𝜕𝑥α
𝑢α.

Если до и после преобразования координат система координат является сопутствую-
щей, то функции преобразования координат должны удовлетворять следующей си-
стеме уравнений

1 =
𝜕𝑥0′

𝜕𝑥0
, 0 =

𝜕𝑥µ
′

𝜕𝑥0
.

Общее решение данной системы уравнений имеет вид

𝑥0 ↦→ 𝑥0′ = 𝑥0 + 𝑓(𝑥), 𝑥µ ↦→ 𝑥µ
′
= 𝑥µ + 𝑓µ(𝑥), (6.107)

где 𝑓, 𝑓µ – 𝑛 произвольных функций координат на сечении S ⊂ M и 𝑥 = (𝑥µ). Функ-
ция 𝑓 соответствует произволу в выборе сечения 𝑥0 = const, и функции 𝑓µ – свободе
в выборе координат 𝑥µ на данных сечениях.

Таким образом мы устранили 𝑛 неизвестных функций в полной системе урав-
нений (6.102), (6.104) и (6.105). В этой системе координат тензор энергии-импульса
(6.103) принимает вид

𝑇m
00 = (ℰ + 𝒫)− 𝒫𝑔00, 𝑇m

0µ = −𝒫𝑔0µ, 𝑇m
µν = −𝒫𝑔µν .

В общем случае ни он, ни тензор энергии-импульса с одним опущенным индексом
индексом 𝑇mα

β не будут диагональны.
Если задано единичное времениподобное векторное поле 𝑢, то в каждой точке

пространства-времени 𝑥 ∈ M в касательном пространстве Tx(M) его можно допол-
нить 𝑛 − 1 линейно независимыми векторами 𝑒µ, 𝜇 = 1, . . . , 𝑛 − 1, которые перпен-
дикулярны вектору 𝑢. Тогда совокупность векторов {𝑢, 𝑒µ} образует в каждой точке
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репер. Ясно, что векторы 𝑒µ пространственноподобны, и их можно выбрать достаточ-
но гладкими. Тогда они задают (𝑛−1)-мерное распределение пространственноподоб-
ных векторных полей на M. Согласно теореме Фробениуса для этого распределения
существуют интегральные подмногообразия тогда и только тогда, когда векторные
поля 𝑒µ находятся в инволюции. В общем случае это не так (это зависит от метрики).
Отсюда следует, что остаточного произвола в выборе сопутствующей системы коор-
динат (6.107) недостаточно для того, чтобы выбрать секущую поверхность S таким
образом, чтобы вектор 𝑢 был к ней всюду ортогонален.

Тем не менее мы сделаем предположение, что существует семейство простран-
ственноподобных сечений пространства-времени таких, что вектор скорости сплош-
ной среды всюду перпендикулярен этим поверхностям.

Выберем базис касательных пространств, состоящий из векторного поля скоро-
стей сплошной среды и координатного базиса на секущих пространственноподобных
поверхностях {𝑢, 𝜕µ}. Тогда, по предположению, метрика в этом базисе будет иметь
блочно диагональный вид

𝑔ab =

(
1 0
0 𝑔µν

)
. (6.108)

Это значит, что в рассматриваемом базисе материя покоится, что оправдывает на-
звание сопутствующая.

6.12.2 Временна́я калибровка

Рассмотрим многообразие M, dimM = 𝑛, на котором задана метрика лоренцевой
сигнатуры 𝑔αβ(𝑥), sign 𝑔αβ = (+− . . .−).

Определение. Система координат, в которой метрика имеет блочно диагональный
вид (6.108) где 𝑔µν – отрицательно определенная риманова метрика на пространствен-
ноподобных сечениях 𝑥0= const, называется временно́й калибровкой. Эту систему
координат называют также синхронной, гауссовой или полугеодезической.

В синхронной системе отсчета координата 𝑥0 является временем и явно выде-
лена. Напомним, что греческие буквы из начала алфавита пробегают все значе-
ния индексов: 𝛼, 𝛽, . . . = 0, 1, . . . , 𝑛 − 1, а из середины – только пространственные:
𝜇, 𝜈, . . . = 1, 2, . . . , 𝑛− 1.

При переходе в синхронную систему отсчета 𝑛 произвольных функций, парамет-
ризующих диффеоморфизмы, используются для фиксирования 𝑛 компонент метри-
ки:

𝑔00 = 1, 𝑔0µ = 0.

Замечание. Названия гауссова или полугеодезическая система координат распро-
странены в математической литературе, когда рассматриваются римановы простран-
ства с положительно определенной метрикой. В физической литературе, где преиму-
щественно рассматриваются многообразия с метрикой лоренцевой сигнатуры, чаще
употребляют термины временна́я калибровка или синхронная система координат,
потому что в этой системе отсчета координата 𝑥0 действительно играет роль наблю-
даемого времени.

Название синхронная система координат для метрики (??) оправдано следующим
обстоятельством.
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Синхронизация часов

Рассмотрим произвольную систему координат. В общем случае интервал между дву-
мя близкими событиями (𝑥α) и (𝑥α + 𝑑𝑥α) имеет вид

𝑑𝑠2 = 𝑔αβ𝑑𝑥
α𝑑𝑥β.

Предположим, что координата 𝑥0 является наблюдаемым временем, т.е. 𝑔00 > 0, и все
сечения 𝑥0 = const пространственноподобны. Если два события c и d произошли в
данной системе координат в одной и той же точке пространства, то они имеют коор-
динаты c = (𝑥0

c, 𝑥
µ) и d = (𝑥0

d, 𝑥
µ). При этом данные события разделены интервалом

собственного времени

△𝑠 =
∫ x0d

x0c

𝑑𝑥0√𝑔00. (6.109)

Этот интеграл равен длине времениподобной кривой

𝑥0 = 𝑥0
c + (𝑥0

d − 𝑥0
c)𝜏, 𝑥µ = const, 𝜏 ∈ [0, 1],

соединяющей события c и d. Конечно, в другой системе координат эти события могут
произойти не только в разное наблюдаемое время, но и в разных точках простран-
ства.

Таким образом, если два события, произошедшие в одной точке пространства в
данной системе координат, разделены наблюдаемым временем 𝑥0

d −𝑥0
c, то они разде-

лены интервалом собственного времени (6.109). При этом нулевая компонента мет-
рики 𝑔00 определяет различие собственного и наблюдаемого времени для событий,
произошедших в одной точке.

Теперь определим понятие одновременности для событий, которые произошли
в двух разных, но близких точках пространства в данной фиксированной системе
координат. Пусть событие a имеет пространственные координаты 𝑥µ, а событие b –
близкие координаты 𝑥µ + 𝑑𝑥µ. На рис.6.1 сплошными линиями показаны временны́е
оси, проходящие через точки a и b. Возникает следующий вопрос одновременности.
Допустим, что событие a имеет координаты (𝑥0, 𝑥µ). Какова временна́я координата
𝑥0+△𝑥0 события, произошедшего в точке b, которое можно назвать одновременным
с событием a?

A B

0x

0 0
1x dx

0 0
2x dx

0 0x x 

Рис. 6.1: Одновременность близких событий a и b.

Чтобы определить одновременность, испустим свет в точке b в некоторый момент
времени 𝑥0 + 𝑑𝑥0

1 (величина 𝑑𝑥0
1 отрицательна). Как только свет попадет в точку a,
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сразу отразим его. Допустим, что свет вернулся в точку b в момент времени 𝑥0+𝑑𝑥0
2.

Поскольку для света 𝑑𝑠2 = 0, то изменение наблюдаемого времени в обоих случаях
должно удовлетворять уравнению

𝑔00

(
𝑑𝑥0

1,2

)2
+ 2𝑔0µ𝑑𝑥

0
1,2𝑑𝑥

µ + 𝑔µν𝑑𝑥
µ𝑑𝑥ν = 0.

Это квадратное уравнение имеет два решения:

𝑑𝑥0
1 =

1

𝑔00

[
−𝑔0µ𝑑𝑥

µ −
√

(𝑔0µ𝑔0ν − 𝑔µν𝑔00)𝑑𝑥µ𝑑𝑥ν
]
,

𝑑𝑥0
2 =

1

𝑔00

[
−𝑔0µ𝑑𝑥

µ +
√

(𝑔0µ𝑔0ν − 𝑔µν𝑔00)𝑑𝑥µ𝑑𝑥ν
]
.

Поскольку мы предположили, что 𝑔00 > 0 и метрика 𝑔µν отрицательно определена,
то отсюда вытекает, что 𝑑𝑥0

2 > 0, а 𝑑𝑥0
1 < 0.

Определение. Назовем событие в точке b одновременным событию a = (𝑥0, 𝑥µ),
если его временная координата равна 𝑥0 +△𝑥0, где

△𝑥0 :=
𝑑𝑥0

1 + 𝑑𝑥0
2

2
= −𝑔0µ𝑑𝑥

µ

𝑔00

,

т.е. лежит посередине между 𝑥0 + 𝑑𝑥0
2 и 𝑥0 + 𝑑𝑥0

1.

Таким образом можно синхронизировать часы, расположенные в различных, но
близких точках пространства. Этот процесс можно продолжить вдоль произвольной
кривой в пространстве. Конечно, данная процедура синхронизации часов зависит
от выбора системы координат (нековариантна) и зависит также от выбора кривой,
соединяющей две точки пространства-времени.

Рассмотрим замкнутую кривую 𝛾 в пространстве-времени с началом и концом в
точке a. Произведем синхронизацию часов вдоль кривой 𝛾 описанным выше спосо-
бом. Тогда после возвращения в точку a временна́я координата получит приращение

△𝑥0 := −
∮
γ

𝑔0µ𝑑𝑥
µ

𝑔00

.

Отсюда следует, что синхронизация часов в общем случае невозможна, т.к. прира-
щение △𝑥0 в исходной точке a может быть отлично от нуля. Кроме того, если мы
хотим синхронизировать часы во всей области пространства-времени U ⊂ M, кото-
рая покрывается данной системой координат, то равенство △𝑥0 = 0 должно также
выполняться для любой замкнутой кривой 𝛾, целиком лежащей в U. Отсюда выте-
кает

Предложение 6.12.1. Для того, чтобы в выбранной системе координат 𝑥α, где
𝑥0 – время и все сечения 𝑥0 = const пространственноподобны, покрывающей неко-
торую область U ⊂ M, можно было синхронизировать часы во всей области U
необходимо и достаточно чтобы 𝑔0µ = 0.

Если в некоторой области смешанные компоненты метрики равны нулю, 𝑔0µ = 0,
то часы можно синхронизировать. В этом случае одновременными будут те события,
которые происходят при одинаковом значении наблюдаемого времени 𝑥0.

Вернемся к рассмотрению синхронной системы координат и докажем теорему
существования.
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Предложение 6.12.2. Пусть задано пространство-время M с метрикой лоренце-
вой сигнатуры. Тогда в некоторой окрестности каждой точки 𝑥 ∈ M существует
система координат, в которой метрика имеет блочно диагональный вид (??).

Доказательство. Выберем в многообразии M произвольную достаточно гладкую
пространственноподобную гиперповерхность N, содержащую точку 𝑥 ∈ N →˓ M.
Пусть 𝑦µ – некоторая система координат на гиперповерхности N в окрестности точ-
ки 𝑥. Построим на N векторное поле 𝑛, перпендикулярное к гиперповерхности. Через
каждую точку 𝑦 ∈ N в направлении 𝑛 проведем экстремаль в обоих направлениях.
Мы уже знаем, что такая экстремаль существует и единственна (см. раздел 3). По-
скольку гиперповерхность пространственноподобна, то векторное поле и экстремали
времениподобны. Выберем в качестве канонического параметра вдоль каждой экс-
тремали ее длину 𝑡 таким образом, чтобы гиперповерхность N задавалась уравнением
𝑡 = 0. Тогда в некоторой окрестности U гиперповерхности, U ⊂ M, будет определена
система координат 𝑦 = (𝑦0 := 𝑡, 𝑦µ) ∈ U. Это и есть искомая синхронная система
координат.

Покажем это. По построению, координатная кривая (𝑦0 = 𝑡, 𝑦µ = const), 𝑡 ∈ R,
является экстремалью. Ее вектор скорости в построенной системе координат имеет
одну отличную от нуля компоненту 𝑦̇α = 𝛿α0 . Поскольку экстремаль удовлетворяет
уравнению

𝑦α = −Γβγ
α𝑦̇β 𝑦̇γ,

то в построенной системе координат на метрику наложены условия Γ00
α = 0. Опустив

индекс 𝛼, получим уравнения на компоненты метрики:

𝜕0𝑔0α −
1

2
𝜕α𝑔00 = 0. (6.110)

Поскольку в качестве параметра вдоль экстремали выбрана ее длина, то касательный
вектор 𝜕0 имеет единичную длину. Следовательно, в построенной системе координат
𝑔00 = 1. Тогда уравнения (6.110) примут вид 𝜕0𝑔0α = 0, т.е. компоненты 𝑔0µ не зависят
от времени. Кроме того, вектор скорости, по построению, перпендикулярен гипер-
поверхности на N. Это значит, что в начальный момент времени 𝑡 пространственно-
временны́е компоненты метрики равны нулю, 𝑔0µ(𝑡 = 0) = 0. Поскольку они не
зависят от времени, то это равенство выполнено всюду в U. Тем самым построенная
система координат является синхронной.

Ниже мы докажем обратное утверждение: если метрика имеет блочно диагональ-
ный вид (6.108), то координатные линии, соответствующие времени, являются экс-
тремалями. Это значит, что единственный произвол при построении синхронной си-
стемы отсчета – это выбор пространственного сечения N, которое может быть про-
извольно, и выбор пространственных координат на N.

Перейдем к вычислению явного вида основных геометрических объектов в син-
хронной системе координат. Прямые вычисления приводят к следующим выражени-
ям для символов Кристоффеля (2.94):

Γ00
0 = Γ00

µ = Γ0µ
0 = Γµ0

0 = 0,

Γ0µ
ν = Γµ0

ν =
1

2
𝑔νρ𝜕0𝑔µρ,

Γµν
0 = −1

2
𝜕0𝑔µν ,

Γµν
ρ = Γ̂µν

ρ,

(6.111)
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где Γ̂µν
ρ – символы Кристоффеля на пространственноподобном сечении 𝑥0 = const,

построенные только по метрике 𝑔µν . В настоящем разделе знак тильды, который
мы используем для обозначения геометрических объектов римановой геометрии при
нулевых тензорах кручения и неметричности, для простоты, опущен.

Несложные вычисления приводят к следующим выражениям для компонент тен-
зора кривизны со всеми опущенными индексами (2.122)

𝑅0µ0ν =
1

2
𝜕2

00𝑔µν −
1

4
𝑔ρσ𝜕0𝑔µρ𝜕0𝑔νσ,

𝑅0µνρ = −𝑅µ0νρ =
1

2
(∇̂ν𝜕0𝑔µρ − ∇̂ρ𝜕0𝑔µν),

𝑅µνρσ = 𝑅̂µνρσ +
1

4
(𝜕0𝑔µρ𝜕0𝑔νσ − 𝜕0𝑔νρ𝜕0𝑔µσ),

(6.112)

где ∇̂ν обозначает ковариантную производную на пространственноподобном сечении:

∇̂ν𝜕0𝑔µρ := 𝜕ν𝜕0𝑔µρ − Γ̂νµ
σ𝜕0𝑔σρ − Γ̂νρ

σ𝜕0𝑔µσ,

и 𝑅̂µνρσ – тензор кривизны пространственноподобного сечения 𝑡 = const, постро-
енный только по метрике 𝑔µν . Свертка с обратной метрикой дает соответствующие
тензор Риччи и скалярную кривизну:

𝑅00 =
1

2
𝑔µν𝜕2

00𝑔µν −
1

4
𝑔µν𝑔ρσ𝜕0𝑔µρ𝜕0𝑔νσ,

𝑅0µ = 𝑅µ0 =
1

2
𝑔νρ(∇̂µ𝜕0𝑔νρ − ∇̂ρ𝜕0𝑔νµ),

𝑅µν = 𝑅̂µν +
1

2
𝜕2

00𝑔µν −
1

2
𝑔ρσ𝜕0𝑔µρ𝜕0𝑔νσ +

1

4
𝜕0𝑔µν𝑔

ρσ𝜕0𝑔ρσ,

𝑅 = 𝑅̂ + 𝑔µν𝜕2
00𝑔µν −

3

4
𝑔µν𝑔ρσ𝜕0𝑔µρ𝜕0𝑔νσ +

1

4
(𝑔µν𝜕0𝑔µν)

2.

(6.113)

Уравнения для экстремалей 𝑥α(𝜏) во временно́й калибровке имеют вид

𝑥̈0 =
1

2
𝜕0𝑔µν 𝑥̇

µ𝑥̇ν , (6.114)

𝑥̈µ = −𝑔µν𝜕0𝑔νρ𝑥̇
0𝑥̇ρ − Γ̂νρ

µ𝑥̇ν 𝑥̇ρ, (6.115)

где точка обозначает дифференцирование по каноническому параметру 𝜏 . Из вида
уравнений сразу следует

Предложение 6.12.3. Если выбрана синхронная система координат, то временны́е
координатные линии (𝑥0 = 𝑡, 𝑥µ = const) являются экстремалями.

Из уравнений для времениподобных экстремалей, отличных от координатных ли-
ний 𝑥0, можно исключить временну́ю компоненту скорости. Для этого воспользуемся
законом сохранения (3.14)

(𝑥̇0)2 − 𝑥̇2 = 𝐶0 = const, (6.116)

где 𝑥̇2 := −𝑔µν 𝑥̇µ𝑥̇ν > 0, и исключим производную 𝑥̇0 из уравнения (6.115). В резуль-
тате получим замкнутую систему уравнений только для пространственных коорди-
нат экстремали:

𝑥̈µ = −𝑔µν𝜕0𝑔νρ𝑥̇
ρ

√
|𝐶0 + 𝑥̇2| − Γ̂νρ

µ𝑥̇ν 𝑥̇ρ.
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Неоднозначность при извлечении корня несущественна, т.к. соответствует обраще-
нию времени 𝑥0 ↦→ −𝑥0. Отсюда следует, что во временно́й калибровке простран-
ственные компоненты экстремали

(
𝑥µ(𝑡)

)
в общем случае не являются экстремалями

для пространственной части метрики 𝑔µν . В частном случае, когда пространственная
метрика 𝑔µν не зависит от времени 𝑥0, проекция экстремали

(
𝑥α(𝜏)

)
↦→
(
𝑐0, 𝑥µ(𝜏)

)
на

пространственное сечение 𝑥0 = 𝑐0 = const является экстремалью для метрики 𝑔µν на
этом сечении.



Глава 7

Сплетенные решения в общей теории
относительности

В настоящей главе построены решения вакуумных уравнений общей теории относи-
тельности (6.4) с космологической постоянной в предположении, что четырехмерное
пространство-время является сплетенным произведением двух поверхностей. При
этом не делается никаких предположений о симметрии решений. Как следствие урав-
нений движения по крайней мере одна из двух поверхностей должна быть поверх-
ностью постоянной кривизны. Отсюда вытекает, что метрика имеет по крайней мере
три вектора Киллинга. Другими словами, свойства симметрии решений при таком
подходе являются следствием самих уравнений движения. Построенные решения
включают, в частности, сферически симметричные решения, которые соответству-
ют произведению некоторой лоренцевой поверхности на сферу. Многие глобальные
решения имеют интересную физическую интерпретацию. В частности, построены
решения, описывающие кротовые норы, доменные стенки сингулярностей кривизны,
космические струны, космические струны, окруженные доменными стенками, реше-
ния с замкнутыми времениподобными кривыми и др. [?].

7.1 Сплетенное произведение
Определение. Пусть задано два многообразия M1 и M2 с метриками 𝑔 и ℎ, соответ-
ственно. Касательное пространство в каждой точке топологического произведения
(𝑥1, 𝑥2) ∈ M1 ×M2 разлагается в прямую сумму:

T(x1,x2)(M1 ×M2) = Tx1(M1)⊕ Tx2(M2).

Сплетенным произведением (warped product) двух многообразий называется их то-
пологическое произведение M1 ×M2 с метрикой 𝑔, которая определена следующим
соотношением

𝑔(𝑋, 𝑌 ) := 𝑘(𝑥2)𝑔(𝑋1, 𝑌1) +𝑚(𝑥1)ℎ(𝑋2, 𝑌2), (7.1)

где 𝑘(𝑥2) и 𝑚(𝑥1) – достаточно гладкие отличные от нуля функции на многообразиях
M2 и M1 и

T(M1 ×M2) ∋ 𝑋 = 𝑋1 ⊕𝑋2 ∈ T(M1)⊕ T(M2),

T(M1 ×M2) ∋ 𝑌 = 𝑌1 ⊕ 𝑌2 ∈ T(M1)⊕ T(M2),

– разложение векторных полей 𝑋, 𝑌 , касательных к M1 ×M2, в прямую сумму.

139
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Предположим, что четырехмерное пространство-время является сплетенным про-
изведением двух поверхностей: M = U×V, где U – поверхность с лоренцевой метри-
кой 𝑔 и V – поверхность с римановой метрикой ℎ. Обозначим локальные координаты
на U и V, соответственно, через 𝑥α, 𝛼 = 0, 1, и 𝑦µ, 𝜇 = 2, 3. Тогда топологическому
произведению U × V соответствуют координаты (𝑥i) := (𝑥α, 𝑦µ), 𝑖 = 0, 1, 2, 3. В этой
системе координат четырехмерная метрика имеет блочно-диагональный вид:

𝑔ij =

(
𝑘(𝑦)𝑔αβ(𝑥) 0

0 𝑚(𝑥)ℎµν(𝑦)

)
, (7.2)

где 𝑘(𝑦) и 𝑚(𝑥) – достаточно гладкие отличные от нуля функции на V и U, соответ-
ственно.

В настоящей главе шляпка над символом означает, что соответствующий геомет-
рический объект относится ко всему четырехмерному пространству-времени M, а
символы без шляпки относятся к двумерным поверхностям U или V. Соответствен-
но, 𝑔αβ и ℎµν являются метриками на U и V. Греческие буквы из начала (𝛼, 𝛽, . . . )
и середины (𝜇, 𝜈, . . . ) алфавита всегда относятся к координатам на первой и второй
поверхностям, соответственно.

В физике функции 𝑘(𝑦) и 𝑚(𝑥) часто называют дилатонными полями на поверх-
ностях V и U.

Для определенности будем считать поверхность U псевдоримановым многообра-
зием с метрикой лоренцевой сигнатуры, а поверхность V – римановым многообразием
с положительно определенной метрикой. Тогда с точностью до перестановки первых
двух координат сигнатура метрики на M будет либо (+ − −−), либо (− + ++) в
зависимости от знака 𝑚. Эти метрики связаны между собой инверсией 𝑔ij ↦→ −𝑔ij,
относительно которой уравнения Эйнштейна при отсутствии полей материи и кос-
мологической постоянной инвариантны. Предположим также, что обе поверхности
являются ориентируемыми.

Отметим, что относительно вида метрики (7.2) не делается никаких дополнитель-
ных предположений, связанных с симметрией. Однако в дальнейшем мы увидим, что
уравнения Эйнштейна и требование полноты многообразий приводят к тому, что по
крайней мере одна из поверхностей U или V должна быть поверхностью постоянной
кривизны. То есть любое максимально продолженное решение уравнений Эйнштей-
на вида (7.2) допускает по крайней мере три вектора Киллинга. Следовательно, в
рассматриваемом случае симметрия решений является следствием уравнений дви-
жения. В частном случае будут получены сферически симметричные решения, когда
поверхность V является сферой S2.

7.2 Двумерная редукция

Вид метрики (7.2) позволяет решить явно четырехмерные вакуумные уравнения Эйн-
штейна с космологической постоянной Λ

𝑅̂ij = Λ𝑔ij, (7.3)

и построить глобальные (максимально продолженные) решения.
Мы увидим, что уравнения Эйнштейна существенно ограничивают дилатонные

поля: по крайней мере одно дилатонное поле должно быть постоянно. Поэтому все
решения делятся на три основных класса: оба дилатонных поля постоянны (случай
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A), только 𝑘 = const (случай B) или 𝑚 = const (случай C). В первом случае ре-
шение уравнений Эйнштейна представляет собой топологическое произведение двух
поверхностей постоянной кривизны. В случае B риманова поверхность V должна
быть поверхностью постоянной кривизны. Сюда входят сферически симметричные
решения, а также другие решения, когда поверхность V представляет собой евклидо-
ву плоскость или плоскость Лобачевского (двуполостный гиперболоид). Последние
решения соответствуют кротовым норам. В случае C поверхность U должна быть
поверхностью постоянной кривизны. Эти решения описывают космические струны и
доменные стенки сингулярности кривизны.

Приступим к решению уравнений Эйнштейна (7.3). Метрика, обратная к (7.2),
имеет вид

𝑔ij =

1

𝑘
𝑔αβ 0

0
1

𝑚
ℎµν

 , (7.4)

где 𝑔αβ и ℎµν – матрицы, обратные, соответственно, к 𝑔αβ и ℎµν . Символы Кристоф-
феля (2.94) равны

Γ̂αβ
γ = Γαβ

γ,

Γ̂αβ
µ = −1

2
𝑔αβ

ℎµν𝜕ν𝑘

𝑚
,

Γ̂αµ
γ = Γ̂µα

γ =
1

2
𝛿γα
𝜕µ𝑘

𝑘
,

Γ̂αµ
ν = Γ̂µα

ν =
1

2
𝛿νµ
𝜕α𝑚

𝑚
,

Γ̂µν
α = −1

2
ℎµν

𝑔αβ𝜕β𝑚

𝑘
,

Γ̂µν
ρ = Γµν

ρ,

(7.5)

где Γαβ
γ и Γµν

ρ – символы Кристоффеля на поверхностях U и V, соответственно.
Прямые вычисления приводят к следующим выражениям для компонент тензора

Риччи (2.129)

𝑅̂αβ = 𝑅αβ +
∇α∇β𝑚

𝑚
− ∇α𝑚∇β𝑚

2𝑚2
+
𝑔αβ∇2𝑘

2𝑚

𝑅̂αµ = 𝑅̂µα = −∇α𝑚∇µ𝑘

2𝑚𝑘

𝑅̂µν = 𝑅µν +
∇µ∇ν𝑘

𝑘
− ∇µ𝑘∇ν𝑘

2𝑘2
+
ℎµν∇2𝑚

2𝑘
,

(7.6)

где 𝑅αβ и 𝑅µν – тензоры Риччи на U и V и, для краткости, введены обозначения

∇2𝑚 := 𝑔αβ∇α∇β𝑚, ∇2𝑘 := ℎµν∇µ∇ν𝑘. (7.7)

Здесь и далее в этой главе символ ∇ обозначает ковариантную производную с со-
ответствующими символами Кристоффеля либо на U, либо на V. Четырехмерная
скалярная кривизна равна

𝑅̂ =
1

𝑘
𝑅g + 2

∇2𝑚

𝑘𝑚
− (∇𝑚)2

2𝑘𝑚2
+

1

𝑚
𝑅h + 2

∇2𝑘

𝑘𝑚
− (∇𝑘)2

2𝑘2𝑚
, (7.8)
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где введены обозначения

(∇𝑚)2 := 𝑔αβ𝜕α𝑚𝜕β𝑚, (∇𝑘)2 := ℎµν𝜕µ𝑘𝜕ν𝑘. (7.9)

Скалярные кривизны поверхностей U и V обозначены через 𝑅g и 𝑅h, соответственно.
Таким образом, уравнения Эйнштейна (7.3) для метрики (7.2) принимают вид

𝑅αβ +
∇α∇β𝑚

𝑚
− ∇α𝑚∇β𝑚

2𝑚2
+

1

2
𝑔αβ

(
∇2𝑘

𝑚
− 2𝑘Λ

)
= 0, (7.10)

𝑅µν +
∇µ∇ν𝑘

𝑘
− ∇µ𝑘∇ν𝑘

2𝑘2
+

1

2
ℎµν

(
∇2𝑚

𝑘
− 2𝑚Λ

)
= 0, (7.11)

∇α𝑚∇µ𝑘

𝑚𝑘
= 0. (7.12)

Перепишем уравнения (7.10) и (7.11) в более удобном виде, выделив из них след,
который определяет скалярные кривизны поверхностей:

𝑅g +
∇2𝑚

𝑚
− (∇𝑚)2

2𝑚2
+

∇2𝑘

𝑚
− 2𝑘Λ = 0, (7.13)

𝑅h +
∇2𝑘

𝑘
− (∇𝑘)2

2𝑘2
+

∇2𝑚

𝑘
− 2𝑚Λ = 0. (7.14)

Бесследовые части уравнений (7.10) и (7.11), умноженные на 𝑚 и 𝑘, принимают
простой вид

∇α∇β𝑚− ∇α𝑚∇β𝑚

2𝑚
− 1

2
𝑔αβ

[
∇2𝑚− (∇𝑚)2

2𝑚

]
= 0, (7.15)

∇µ∇ν𝑘 −
∇µ𝑘∇ν𝑘

2𝑘
− 1

2
ℎµν

[
∇2𝑘 − (∇𝑘)2

2𝑘

]
= 0. (7.16)

Они не содержат слагаемые с кривизной вовсе, потому что в двух измерениях тензор
Риччи полностью определяется скалярной кривизной (2.129) и не имеет бесследовой
части.

Отметим, что наличие сингулярности у двумерной скалярной кривизны на по-
верхности означает в общем случае ее наличие в полном тензоре кривизны в соот-
ветствии с формулой (7.8).

Таким образом, четырехмерные уравнения Эйнштейна (7.3) для метрики вида
(7.2) эквивалентны системе уравнений (7.12)–(7.16). Уравнения (7.15) и (7.16) содер-
жат функции, зависящие только от координат 𝑥 и 𝑦, соответственно. В то же время
координаты различных поверхностей в уравнениях (7.12), (7.13) и (7.14) перемеша-
ны.

Уравнение (7.12) накладывает жесткие ограничения. Как следствие, имеем, что
либо поле дилатона 𝑘, либо поле дилатона 𝑚, либо 𝑘 и 𝑚 одновременно должны быть
постоянны. Соответственно, возможны три случая:

A : 𝑘 = const ̸= 0, 𝑚 = const ̸= 0,
B : 𝑘 = const ̸= 0, ∇α𝑚 ̸= 0,
C : ∇µ𝑘 ̸= 0, 𝑚 = const ̸= 0.

(7.17)

Рассмотрим эти случаи подробно.
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7.3 Произведение поверхностей постоянной кривиз-
ны

Наиболее симметричные решения вакуумных уравнений Эйнштейна (7.3) в виде то-
пологического произведения двух поверхностей постоянной кривизны возникают, ко-
гда оба дилатонных поля 𝑘 и 𝑚 постоянны (случай A в (7.17)). Если 𝑘 и 𝑚 постоянны,
то уравнения (7.12), (7.15), и (7.16) удовлетворяются, и скалярные кривизны обеих
поверхностей U и V должны быть постоянны как следствие уравнений (7.13), (7.14),
которые принимают следующий вид:

𝑅g = 2𝑘Λ, 𝑅h = 2𝑚Λ. (7.18)

Если Λ = 0, то обе поверхности U и V имеют нулевую кривизну, и все пространство-
время M представляет пространство Минковского или его фактор пространство (ци-
линдр или тор) по группе преобразований, действующей свободно и собственно раз-
рывно, с метрикой Лоренца

𝑔ij = diag (+−−−) или 𝑔ij = diag (−+++). (7.19)

При ненулевой космологической постоянной Λ ̸= 0 обе поверхности U и V имеют
постоянную ненулевую кривизну. Если U является полной псевдоримановой поверх-
ностью ненулевой кривизны 𝑅g = −2𝐾g = const, то она представляет собой одно-
полостный гиперболоид L2, вложенный в трехмерное пространство Минковского, с
индуцированной метрикой или его универсальной накрывающей. Его группой сим-
метрии является группа Лоренца SO(1, 2). В стереографических координатах метри-
ка однополостного гиперболоида L2 имеет хорошо известный вид

𝑑𝑠2
L = 𝑔αβ𝑑𝑥

α𝑑𝑥β =
𝑑𝑡2 − 𝑑𝑥2[

1 + Kg

4
(𝑡2 − 𝑥2)

]2 , (7.20)

где введены обозначения 𝑡 := 𝑥0 и 𝑥 := 𝑥1. В отличие от риманова случая псевдори-
манова поверхность постоянной кривизны одна и та же как для положительной, так
и для отрицательной кривизны 𝐾g, при этом меняется только общий знак метрики
(7.20), что соответствует перестановке координат 𝑡↔ 𝑥.

При 𝐾g = 0 метрика (7.20) совпадает с обычной двумерной метрикой Минковско-
го, и соответствующая поверхность представляет собой плоскость Минковского R1,1

с группой Пуанкаре IO(1, 1) в качестве группы симметрии.
Положительно определенная метрика на двумерной римановой поверхности по-

стоянной кривизны 𝑅h = −2𝐾h ̸= 0 в стереографических координатах имеет вид

𝑑𝑠2
H = ℎµν𝑑𝑦

µ𝑑𝑦ν =
𝑑𝑦2 + 𝑑𝑧2[

1 + Kh

4
(𝑦2 + 𝑧2)

]2 , (7.21)

где 𝑦 := 𝑦1 и 𝑧 := 𝑦2. Эта метрика отличается от (7.20) только знаками.
Для положительных 𝐾h > 0 она соответствует сфере S2. При 𝐾h = 0 метрика

(7.21) соответствует евклидовой плоскости R2, или цилиндру, или тору. При отри-
цательных 𝐾h < 0 мы имеем плоскость Лобачевского (гиперболическую плоскость)
H2 или компактную риманову поверхность рода два или выше. Группами симмет-
рии сферы S2, евклидовой плоскости R2, и плоскости Лобачевского H2 являются,
соответственно, группы O(3), IO(2) и O(1, 2).
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При ненулевой постоянной кривизне всегда можно произвести растяжку коорди-
нат таким образом, чтобы 𝐾g,h = ±1.

Если скалярные кривизны постоянны (7.18), то решение для ненулевой космоло-
гической постоянной Λ ̸= 0 является топологическим произведением двух поверхно-
стей постоянной кривизны с метрикой

𝑑𝑠2 = 𝑘
𝑑𝑡2 − 𝑑𝑥2[

1− kΛ
4
(𝑡2 − 𝑥2)

]2 +𝑚
𝑑𝑦2 + 𝑑𝑧2[

1− mΛ
4
(𝑦2 + 𝑧2)

]2 . (7.22)

В данном случае можно не говорить о сплетенном произведении поверхностей, т.к.
дилатонные поля постоянны. Растягивая координаты, всегда можно добиться выпол-
нения равенств 𝑘 = ±1, 𝑚 = ±1. Выберем 𝑘 = 1 и 𝑚 = −1 с тем, чтобы метрика
имела сигнатуру (+ − −−). Тогда возможны три качественно отличных случая, со-
ответствующих положительной, нулевой и отрицательной космологической постоян-
ной:

Λ < 0 : 𝐾g = +|Λ|, 𝐾h = −|Λ|, M = L2 ×H2,
Λ = 0 : 𝐾g = 0, 𝐾h = 0, M = R1,1 × R2 = R1,3,
Λ > 0 : 𝐾g = −|Λ|, 𝐾h = +|Λ|, M = L2 × S2,

(7.23)

где 𝐾g и 𝐾h – гауссовы кривизны, соответственно, поверхностей U и V.
Напомним, что вакуумные уравнения Эйнштейна (7.3) допускают решение в ви-

де пространства-времени постоянной кривизны, которое называется пространством-
временем (анти-)де Ситтера. Это пространство-время имеет максимальное число –
десять – векторов Киллинга. Хотя полная (четырехмерная) скалярная кривизна для
решения в виде произведения двух поверхностей постоянной кривизны с метрикой
(7.22)

(
впрочем, как и для всех других решений вакуумных уравнений Эйнштейна

(7.3)
)

постоянна, 𝑅̂ = 4Λ, решения (7.23) при Λ ̸= 0 не совпадают с решением (анти-)
де Ситтера. Действительно, каждая из поверхностей L2, H2 и S2 имеет по три вектора
Киллинга, и можно показать (см. например [?]), что четырехмерное пространство-
время имеет всего шесть векторов Киллинга. Поэтому решения в виде произведения
двух поверхностей не совпадают с решением (анти-)де Ситтера.

7.4 Пространственно симметричные решения

Во втором случае B (7.17) дилатонное поле 𝑘 постоянно. Не ограничивая общности,
положим 𝑘 = 1. Тогда вся система уравнений Эйнштейна (7.12)–(7.16) сводится к
следующей системе:

∇α∇β𝑚− ∇α𝑚∇β𝑚

2𝑚
− 1

2
𝑔αβ

[
∇2𝑚− (∇𝑚)2

2𝑚

]
= 0, (7.24)

𝑅h +∇2𝑚− 2𝑚Λ = 0, (7.25)

𝑅g +
∇2𝑚

𝑚
− (∇𝑚)2

2𝑚2
− 2Λ = 0. (7.26)

Уравнение (7.25) представляет собой сумму двух слагаемых, зависящих от коор-
динат на разных поверхностях, 𝑥 ∈ U и 𝑦 ∈ V, которая должна быть равна нулю.
Это значит, что каждое слагаемое равно некоторой постоянной. Зафиксируем эту
постоянную следующим уравнением 𝑅h = −2𝐾h = const. Таким образом, в случае B
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поверхность V – это поверхность постоянной кривизны. При этом возможны три слу-
чая, когда гауссова кривизна 𝐾h римановой поверхности V положительна, V = S2,
равна нулю, V = R2, или отрицательна, V = H2. Тогда соответствующие решения
вакуумных уравнений Эйнштейна инвариантны относительно групп преобразований
O(3), IO(2) или O(1, 2), которые являются группами изометрий поверхностей S2, R2 и
H2. Соответствующее четырехмерное пространство-время представляет собой спле-
тенное произведение поверхности U с одной из поверхностей S2, R2 или H2, где U
представляется диаграммой Картера–Пенроуза. В частности, при 𝐾h = 1 возника-
ют сферически симметричные решения. Таким образом, в рассматриваемом случае
группа симметрии пространства-времени возникает как следствие уравнений движе-
ния.

При 𝐾h = const уравнение (7.25) принимает вид

∇2𝑚− 2(𝑚Λ +𝐾h) = 0. (7.27)

Исключая случай A, рассмотренный в предыдущем разделе, двинемся дальше, счи-
тая, что ∇α𝑚 ̸= 0.

Предложение 7.4.1. Уравнение (7.27) является первым интегралом уравнений
(7.24) и (7.26).

Доказательство. Продифференцируем уравнение (7.27), используем тождество

[∇α,∇β]𝐴γ = −𝑅g
αβγ

δ𝐴δ ,

где 𝐴α – компоненты произвольного ковекторного поля, для изменения порядка ко-
вариантных производных и используем уравнение (7.24) три раза для исключения
вторых производных от 𝑚. После небольших алгебраических выкладок мы получим
уравнение (7.26).

Из доказательства предложения следует, что достаточно решить только уравне-
ния (7.24) и (7.27), при этом уравнение (7.26) будет удовлетворено автоматически.

Замечание. Исходное действие Гильберта–Эйнштейна инвариантно относительно
общих преобразований координат, и, согласно второй теореме Нетер, между уравне-
ниями движения существует линейная зависимость. Поэтому зависимость уравнений
(7.24)–(7.26) не является чем то удивительным и связана с инвариантностью исход-
ного действия.

Для явного решения уравнений движения (7.24) и (7.27) зафиксируем конформ-
ную калибровку для метрики 𝑔αβ на лоренцевой поверхности U:

𝑔αβ𝑑𝑥
α𝑑𝑥β = Φ𝑑𝜉𝑑𝜂, Φ ̸= 0, (7.28)

где Φ(𝜉, 𝜂) – конформный множитель, который зависит от координат светового ко-
нуса 𝜉, 𝜂 на U. Соответствующая четырехмерная метрика примет вид

𝑑𝑠2 = Φ𝑑𝜉𝑑𝜂 +𝑚𝑑Ω, (7.29)

где 𝑑Ω – метрика на римановой поверхности постоянной кривизны V = S2, R2 или
H2. Знак конформного множителя Φ пока не фиксируем.

При Φ > 0 и 𝑚 < 0 сигнатура метрики (7.29) равна (+−−−). Если изменить знак
𝑚 > 0, то сигнатура метрики станет (+ − ++). Такое же преобразование сигнату-
ры можно получить, изменив общий знак метрики, 𝑔ij ↦→ −𝑔ij, и переставив первые
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две координаты. Вакуумные уравнения Эйнштейна (7.3) инвариантны относительно
одновременного изменения знаков метрики и космологической постоянной. Посколь-
ку в дальнейшем мы построим глобальные решения для всех возможных значений
космологической постоянной, Λ ∈ R, то, не ограничивая общности, достаточно рас-
смотреть случай 𝑚 < 0. При отрицательных 𝑚 удобно ввести параметризацию

𝑚 := −𝑞2, 𝑞(𝜉, 𝜂) > 0. (7.30)

Символы Кристоффеля для метрики (7.28) в конформной калибровке имеют
только две ненулевые компоненты:

Γξξ
ξ =

𝜕ξΦ

Φ
, Γηη

η =
𝜕ηΦ

Φ
, (7.31)

и уравнения (7.24), (7.27) принимают простой вид

−𝜕2
ξξ𝑞 +

𝜕ξΦ𝜕ξ𝑞

Φ
= 0, (7.32)

−𝜕2
ηη𝑞 +

𝜕ηΦ𝜕η𝑞

Φ
= 0, (7.33)

−2
𝜕2
ξη𝑞

2

Φ
− (𝐾 − Λ𝑞2) = 0. (7.34)

Таким образом, полная система уравнений (7.24)–(7.26) в конформной калибровке
(7.28) сводится к трем уравнениям на две неизвестные функции 𝑞 и Φ. Первые два
уравнения являются обыкновенными дифференциальными уравнениями, и опреде-
ляют функции 𝑞 и Φ с точностью до умножения на произвольную постоянную. Си-
стема уравнений (7.32)–(7.34) переопределена и может быть проинтегрирована явно.

Предложение 7.4.2. Условия 𝜕ξ𝑞 = 0 и 𝜕η𝑞 = 0 эквивалентны.

Доказательство. Если 𝜕ξ𝑞 = 0, то из уравнения (7.34) следует 𝑞2 = 𝐾/Λ = const и,
следовательно, 𝜕η𝑞 = 0. Обратное утверждение верно по той же причине.

Поскольку 𝑞 = const соответствует уже рассмотренному случаю A, то предполо-
жим, что 𝜕ξ𝑞 ̸= 0 и 𝜕η𝑞 ̸= 0. Тогда, разделив уравнения (7.32) и (7.33), соответственно,
на 𝜕ξ𝑞 и 𝜕η𝑞, они легко интегрируются:

− ln|𝜕ξ𝑞|+ ln|Φ| = 𝐺̃(𝜂), (7.35)

− ln|𝜕η𝑞|+ ln|Φ| = 𝐹 (𝜉). (7.36)

При этом возникают две произвольные функции 𝐹 (𝜉) и 𝐺̃(𝜂). Введем монотонные
функции 𝐹 (𝜂) и 𝐺(𝜉) при помощи дифференциальных уравнений

𝐹 ′ :=
𝑑𝐹

𝑑𝜉
= 𝐶 eF̃ > 0, 𝐺′ :=

𝑑𝐺

𝑑𝜂
= 𝐶 eG̃ > 0,

где 𝐶 > 0 – некоторая положительная постоянная, которую мы зафиксируем чуть
позже. Тогда разность уравнений (7.35) и (7.36) примет вид

|𝜕ξ𝑞|
𝐹 ′

=
|𝜕η𝑞|
𝐺′

. (7.37)
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Конформная калибровка для двумерной метрики (7.28) определена с точностью
до конформных преобразований. Воспользуемся этой свободой и перейдем к новым
координатам 𝜉, 𝜂 ↦→ 𝐹,𝐺. Это всегда можно сделать, т.к. якобиан преобразования
координат отличен от нуля, 𝐹 ′𝐺′ ̸= 0. При конформном преобразовании координат
конформный множитель преобразуется по правилу Φ ↦→ Φ/(𝐹 ′𝐺′), что следует из
вида метрики в конформной калибровке (7.28).

Предложение 7.4.3. Уравнения (7.32)–(7.34) ковариантны относительно конформ-
ных преобразований

𝜉, 𝜂 ↦→ 𝐹,𝐺, Φ ↦→ Φ̃ =
Φ

𝐹 ′𝐺′
. (7.38)

Доказательство. Прямая проверка.

Таким образом, произвольные функции 𝐹 (𝜉) и 𝐺̃(𝜂), возникшие в первых инте-
гралах (7.35), (7.36), соответствуют конформным преобразованиям.

Перейдем к новым координатам 𝜉, 𝜂 ↦→ 𝐹,𝐺.

Предложение 7.4.4. Если 𝜕ξ𝑞 𝜕η𝑞 > 0, то в новых координатах функция 𝑞(𝜏) зави-
сит только от временно́й координаты 𝜏 := 1

2
(𝐹 +𝐺). Если 𝜕ξ𝑞 𝜕η𝑞 < 0, то функция

𝑞(𝜎) зависит только от пространственной координаты 𝜎 := 1
2
(𝐹 −𝐺).

Доказательство. Из-за знаков модулей в уравнении (7.37), возможны два случая.
Если 𝜕ξ𝑞 𝜕η𝑞 > 0, то справедливо равенство

𝜕𝑞

𝜕(𝐹 −𝐺)
= 𝜕ξ𝑞

𝜕𝜉

𝜕(𝐹 −𝐺)
+ 𝜕η𝑞

𝜕𝜂

𝜕(𝐹 −𝐺)
=
𝜕ξ𝑞

𝐹 ′
− 𝜕η𝑞

𝐺′
= 0. (7.39)

Последнее равенство вытекает из уравнения (7.37). Поэтому, переходя к координатам
𝐹,𝐺 ↦→ 𝜏, 𝜎, получаем сделанное утверждение.

Аналогично, если 𝜕ξ𝑞 𝜕η𝑞 < 0, то выполнено равенство

𝜕𝑞

𝜕(𝐹 +𝐺)
= 𝜕ξ𝑞

𝜕𝜉

𝜕(𝐹 +𝐺)
+ 𝜕η𝑞

𝜕𝜂

𝜕(𝐹 +𝐺)
=
𝜕ξ𝑞

𝐹 ′
+
𝜕η𝑞

𝐺′
= 0. (7.40)

Теперь из каждого из двух уравнений (7.35) или (7.36) следует одно и то же
равенство

|Φ| = 1

2𝐶
𝐹 ′𝐺′|𝑞′|,

где 𝑞′ обозначает производную функции 𝑞 либо по 𝜏 := 1
2
(𝐹 + 𝐺), либо по 𝜎 :=

1
2
(𝐹 −𝐺). Постоянная 𝐶 соответствует растяжке новых координат 𝐹,𝐺, и, для упро-

щения последующих формул, положим 𝐶 = 1/2. При конформном преобразовании
конформный множитель преобразуется по правилу (7.38). Поэтому после конформ-
ного преобразования (7.38) будет выполнено равенство

|Φ̃| = |𝑞′|. (7.41)

В дальнейшем знак тильды у конформного множителя мы, для краткости, опустим.
Таким образом, координаты всегда можно выбрать таким образом, чтобы функ-

ции 𝑞 и Φ зависели одновременно только от времениподобной или пространственно-
подобной координаты

𝜁 :=
1

2
(𝐹 ±𝐺) =:

{
𝜏, 𝜕ξ𝑞 𝜕η𝑞 > 0,

𝜎, 𝜕ξ𝑞 𝜕η𝑞 < 0.
(7.42)
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Это значит, что двумерная метрика (7.28) обладает вектором Киллинга, 𝜕σ или 𝜕τ ,
как следствие уравнений (7.32) и (7.33). Назовем эти решения, соответственно, од-
нородными и статическими, хотя это и относится только к определенной системе
координат. Существование вектора Киллинга является обобщением теоремы Бирх-
гоффа [?], утверждающей, что произвольное сферически симметричное решение ва-
куумных уравнений Эйнштейна должно быть статическим. (Это утверждение было
опубликовано ранее в статье [?].) Обобщение заключается в том, что наличие векто-
ра Киллинга доказано не только для сферически симметричных решений (𝐾 = 1),
но и для решений, инвариантных относительно групп преобразований IO(2) (𝐾 = 0)
и SO(1, 2) (𝐾 = −1).

Окончательно, решением уравнений (7.32), (7.33) в фиксированной системе коор-
динат является равенство (7.41) и утверждение о том, что функции 𝑞 и Φ зависят
только от одной переменной 𝜁 (7.42). Осталось решить только одно уравнение (7.34).

В статическом, 𝑞 = 𝑞(𝜎), и однородном, 𝑞 = 𝑞(𝜏), случаях уравнение (7.34) при-
нимает вид

(𝑞2)′′ = 2(𝐾h − Λ𝑞2)Φ, 𝑞 = 𝑞(𝜎), (7.43)
(𝑞2)′′ = −2(𝐾h − Λ𝑞2)Φ, 𝑞 = 𝑞(𝜏). (7.44)

Чтобы проинтегрировать полученные уравнения, необходимо выразить Φ через 𝑞 с
помощью уравнения (7.41), а для этого необходимо раскрыть знаки модулей.

Рассмотрим подробно статический случай 𝑞 = 𝑞(𝜎), Φ > 0 и 𝑞′ > 0. Тогда уравне-
ние (7.43) с учетом (7.41) примет вид

(𝑞2)′′ = 2(𝐾h − Λ𝑞2)𝑞′.

Его легко проинтегрировать

(𝑞2)′ = 2

(
𝐾h𝑞 − Λ𝑞3

3
− 2𝑀

)
,

где 𝑀 = const – постоянная интегрирования. В дальнейшем мы увидим, что она
совпадает с массой в решении Шварцшильда. Выполнив дифференцирование в левой
части и поделив на 2𝑞 > 0, получим уравнение

𝑞′ = 𝐾h − 2𝑀

𝑞
− Λ𝑞2

3
.

Поскольку в рассматриваемом случае 𝑞′ = Φ, то отсюда следует выражение для
конформного множителя через переменную 𝑞:

Φ(𝑞) = 𝐾h − 2𝑀

𝑞
− Λ𝑞2

3
. (7.45)

Если 𝑞 = 𝑞(𝜎), Φ > 0 и 𝑞′ < 0, то аналогичное интегрирование приводит к урав-
нению

𝑞′ = −Φ(𝑞),

где в правой части стоит тот же самый конформный множитель (7.45). Этот случай
можно объединить с предыдущим, записав уравнение для 𝑞 в виде

|𝑞′| = Φ(𝑞), 𝑞 = 𝑞(𝜎), Φ > 0. (7.46)
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Аналогично интегрируется статический случай при Φ < 0:

|𝑞′| = −Φ(𝑞), 𝑞 = 𝑞(𝜎), Φ < 0. (7.47)

Если решение однородно, 𝑞 = 𝑞(𝜏) и Φ > 0, 𝑞′ > 0, то интегрирование уравнения
(7.44) приводит к равенству

𝑞′ = −
(
𝐾h − 2𝑀

𝑞
− Λ𝑞2

3

)
.

То есть в этом случае конформный множитель надо отождествить с правой частью

Φ̂ = −
(
𝐾h − 2𝑀

𝑞
− Λ𝑞2

3

)
. (7.48)

Поскольку выражение конформного множителя в однородном случае через 𝑞 отли-
чается знаком, то мы пометили его шляпкой. Таким образом, однородные решения
уравнений Эйнштейна можно записать в виде

|𝑞′| = Φ̂(𝑞), 𝑞 = 𝑞(𝜏), Φ̂ > 0. (7.49)

|𝑞′| = −Φ̂(𝑞), 𝑞 = 𝑞(𝜏), Φ̂ < 0. (7.50)

Если конформный множитель отрицателен, то сигнатура метрики равна (−+−−).
В этом случае, сделав замену 𝜏 ↔ 𝜎, мы вернемся к прежней сигнатуре метри-
ки (+−−−). Это преобразование позволяет объединить стационарные и однородные
решения, написав знак модуля у конформного множителя в выражении для метрики
(7.29). Тогда общее решение вакуумных уравнений Эйнштейна (7.3) в соответствую-
щей системе координат примет вид

𝑑𝑠2 = |Φ|(𝑑𝜏 2 − 𝑑𝜎2)− 𝑞2𝑑Ω, (7.51)

где конформный множитель Φ имеет вид (7.45). При этом переменная 𝑞 зависит либо
от 𝜎 (статическое локальное решение), либо от 𝜏 (однородное локальное решение)
через дифференциальное уравнение∣∣∣∣𝑑𝑞𝑑𝜁

∣∣∣∣ = ±Φ(𝑞), (7.52)

где выполнено правило знаков:

Φ > 0 : 𝜁 = 𝜎, знак + (статическое локальное решение),
Φ < 0 : 𝜁 = 𝜏, знак − (однородное локальное решение). (7.53)

Таким образом, из четырехмерных уравнений Эйнштейна вытекает, что на поверх-
ности U возникает метрика с одним вектором Киллинга. Теперь с помощью метода
конформных блоков [?] можно построить глобальные (максимально продолженные
вдоль экстремалей) решения вакуумных уравнений Эйнштейна. Число особенностей
и нулей конформного множителя (7.45) зависит от соотношения между постоянны-
ми 𝐾, 𝑀 и Λ. Поэтому возможно существование многих существенно различных
глобальных решений, некоторые из которых мы рассмотрим в следующих разделах.

Поскольку конформный множитель Φ(𝑞) является гладкой функцией при 𝑞 > 0,
то все возникающие лоренцевы поверхности U и метрика на них, являются гладкими.
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Используя уравнения (7.26), (7.30) и (7.43), нетрудно вычислить скалярную кри-
визну поверхности U:

𝑅g =
2

3
Λ +

4𝑀

𝑞3
. (7.54)

Она не зависит от гауссовой кривизны 𝐾h римановой поверхности V и сингулярна
при 𝑞 = 0, если 𝑀 ̸= 0. Отметим, что сингулярная часть двумерной скалярной
кривизны (7.54) пропорциональна собственному значению четырехмерного тензора
Вейля (см., например, [?]):

1

48
𝐶ijkl𝐶

ijkl =

(
−𝑀
𝑞3

)2

. (7.55)

Теперь перейдем к описанию пространственно симметричных глобальных реше-
ний вакуумных уравнений Эйнштейна.

7.4.1 Сферически симметричные решения 𝐾ℎ = 1

При 𝐾h = 1 риманова поверхность V представляет собой сферу S2, и все решения
сферически симметричны. Для сферы единичного радиуса метрику (7.21) запишем
в сферических координатах

𝑑Ω = 𝑑𝜃2 + sin 2𝜃𝑑𝜙2. (7.56)

Сферически симметричную метрику пространства-времени, которая удовлетворяет
уравнениям Эйнштейна, можно записать в виде

𝑑𝑠2 = |Φ(𝑞)|(𝑑𝜏 2 − 𝑑𝜎2)− 𝑞2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2), (7.57)

где

Φ(𝑞) = 1− 2𝑀

𝑞
− Λ𝑞2

3
. (7.58)

Переменная 𝑞 связана с 𝜎 или 𝜏 дифференциальным уравнением (7.52), где выпол-
нено правило знаков (7.53).

Определение. Координаты 𝜏, 𝜎, в которых записана сферически симметричная мет-
рика (7.57), называются черепашьими. Это название, по-видимому, произошло пото-
му что диаграммы Картера–Пенроуза чем то напоминают рисунок панциря черепа-
хи.

Обобщение решения Шварцшильда на случай ненулевой космологической посто-
янной (7.57) было получено Коттлером [?] и называется решением Коттлера.

В рассматриваемом случае все решения параметризуются двумя постоянными:
космологической постоянной Λ и массой 𝑀 . Вторую постоянную мы будем называть
массой, хотя она и не имеет физического смысла массы для большинства решений,
отличных от решения Шварцшильда.

Пространство-время Минковского Λ = 0, 𝑀 = 0

Наиболее простое сферически симметричное решение получается при Λ = 0 и 𝑀 = 0.
В этом случае Φ = 1, и метрика принимает вид

𝑑𝑠2 = 𝑑𝜏 2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2), 𝑟 ∈ (0,∞), (7.59)
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где мы переобозначили 𝜎 ↦→ 𝑟. Точка 𝑟 = 0 является координатной сингулярно-
стью. Переходя к декартовым координатам в четырехмерном пространстве-времени
и добавляя мировую линию начала сферической системы координат 𝑟 = 0, мы полу-
чим пространство-время Минковского R1,3. При этом пространственная координата
𝑟 естественным образом отождествляется с радиусом сферической системы коорди-
нат. В этом случае пространство-время нельзя представить в виде топологического
произведения U× S2.

Черная дыра Шварцшильда Λ = 0, 𝑀 > 0

Решение Шварцшильда соответствует нулевой космологической постоянной Λ = 0 и
положительной массе 𝑀 > 0. В этом случае конформный множитель (7.58) имеет
один простой нуль в точке 𝑞1 = 2𝑀 и, следовательно, один горизонт. Это решение
будет подробно рассмотрено в разделе 8.

Решение де Ситтера Λ > 0, 𝑀 = 0

Решение де Ситтера соответствует положительной космологической постоянной и
нулевой массе. При этом пространство-время представляет собой многообразие по-
стоянной (в наших обозначениях положительной) скалярной кривизны и может быть
представлено, как четырехмерный гиперболоид, вложенный в пятимерное простран-
ство Минковского R1,4, с индуцированной метрикой. Его группой симметрии являет-
ся группа Лоренца O(1, 4), а метрика имеет максимальное число – десять – векторов
Киллинга, что совпадает с размерностью группы симметрии. Конформный множи-
тель (7.58) имеет один простой положительный нуль, соответствующий горизонту.

Статические и однородные решения в координатах Шварцшильда имеют вид

𝑑𝑠2 =

(
1− Λ

3
𝑟2

)
𝑑𝜏 2 − 𝑑𝑟2

1− Λ
3
𝑟2

− 𝑟2𝑑Ω2, (7.60)

0 < 𝑟 <
√

3
Λ
, −∞ < 𝜏 <∞ ,

𝑑𝑠2 = − 𝑑𝑡2

1− Λ
3
𝑡2

+

(
1− Λ

3
𝑡2
)
𝑑𝜎2 − 𝑡2𝑑Ω2, (7.61)√

3
Λ
< 𝑡 <∞ , −∞ < 𝜎 <∞ .

Поскольку уравнение (7.52) в этом случае интегрируется явно, то двумерную часть
метрики можно записать также в конформно плоском виде

𝑑𝑠2 =
1

ch 2
(√

Λ
3
𝜎
)(𝑑𝜏 2 − 𝑑𝜎2)− 3

Λ
th 2

(√
Λ
3
𝜎
)
𝑑Ω2, (7.62)

𝑑𝑠2 =
1

sh 2
(√

Λ
3
𝜏
)(𝑑𝜏 2 − 𝑑𝜎2)− 3

Λ
cth 2

(√
Λ
3
𝜏
)
𝑑Ω2, (7.63)

соответственно, для статического и однородного случая. Область определения 𝑟 ∈(
0,
√

3/Λ
)

переходит в 𝜎 ∈ (0,∞), а 𝑡 ∈
(√

3/Λ,∞
)

– в 𝜏 ∈ (0,∞).
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Решение анти-де Ситтера Λ < 0, 𝑀 = 0

Изменение знака космологической постоянной в уравнениях Эйнштейна приводит к
качественному изменению решений. При нулевой массе мы получаем решение анти-
де Ситтера. Соответствующее пространство-время представляет собой многообра-
зие постоянной отрицательной кривизны, которое можно представить в виде че-
тырехмерного гиперболоида, вложенного в плоское пространство R2,3 с метрикой
𝜂αβ := diag (1, 1,−1,−1,−1). Метрика анти-де Ситтера симметрична относительно
действия группы вращений O(2, 3) и имеет также максимальное число – десять –
векторов Киллинга. Конформный множитель (7.58) не имеет нулей и всегда поло-
жителен. Поэтому решение статично и не имеет горизонтов. В координатах Шварц-
шильда метрика имеет тот же вид (7.60), что и для решения де Ситтера, однако из-за
отрицательного знака Λ область изменения 𝑟 совпадает со всем положительным ин-
тервалом (0,∞). Если двумерная часть метрики является конформно плоской, то
метрика анти-де Ситтера принимает вид

𝑑𝑠2 =
1

cos 2

(√
|Λ|
3
𝜎

)(𝑑𝜏 2 − 𝑑𝜎2)− 3

|Λ|
th 2

(√
|Λ|
3
𝜎

)
𝑑Ω. (7.64)

При этом координата 𝜎 меняется в конечном интервале 𝜎 ∈
(
0, π

2

√
3
|Λ|

)
. Это решение

неполно на крае 𝑟 = 0 и не может быть продолжено, что является следствием выбора
сферической системы координат. Для получения полного решения анти-де Ситтера
мировую линию 𝑟 = 0 необходимо добавить к многообразию, что можно сделать
путем перехода к другой системе координат.

7.4.2 Планарные решения 𝐾ℎ = 0

В случае 𝐾h = 0 метрика на римановой поверхности V (7.21) становится евклидовой

𝑑Ωp := 𝑑𝑦2 + 𝑑𝑧2. (7.65)

Это значит, что соответствующая максимально продолженная поверхность V явля-
ется либо евклидовой плоскостью R2 с группой симметрии Пуанкаре IO(2), либо
ее компактификацией (цилиндр, тор). Будем называть соответствующие четырех-
мерные глобальные решения вакуумных уравнений Эйнштейна планарными. Для
решений этого типа метрика в координатах Шварцшильда имеет вид

𝑑𝑠2 = Φ(𝑞)𝑑𝜁2 − 𝑑𝑞2

Φ(𝑞)
− 𝑞2Ωp, (7.66)

где

Φ(𝑞) = −2𝑀

𝑞
− Λ𝑞2

3
. (7.67)

Координаты 𝑞 и 𝜁 определены в (7.52). Множество планарных решений так же, как
и в сферически симметричном случае, параметризуется двумя постоянными: космо-
логической постоянной Λ и массой 𝑀 .

Замечание. Для планарных решений координата 𝑞 не может быть интерпретирова-
на, как радиус пространства. Поэтому мы с самого начала отказались от ее обозна-
чения через 𝑟, т.к. решение Шварцшильда является лишь частным случаем описы-
ваемого общего подхода.
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Физическая интерпретация планарных решения весьма интересна. Например, при
V = T2 трехмерное пространство представляет собой прямое произведение тора T2

и прямой R. Это пространство содержит нестягиваемые замкнутые пространствен-
ноподобные кривые, т.е. имеет нетривиальную фундаментальную группу. С физиче-
ской точки зрения такие пространства описывают кротовые норы. В этом случае все
горизонты также представляют собой торы.

7.4.3 Гиперболические глобальные решения 𝐾ℎ = −1

При 𝐾 = −1 поверхность V представляет собой двуполостный гиперболоид H2 (плос-
кость Лобачевского). Точнее, верхнюю полу двуполостного гиперболоида. После ком-
пактификации H2 в качестве поверхности V получится компактная риманова поверх-
ность рода два и выше. Отметим, что группой изометрий однополостного гиперболо-
ида H2 является группа преобразований Лоренца O(1, 2). То есть возникают решения
вакуумных уравнений Эйнштейна симметричные относительно действия группы Ло-
ренца O(1, 2) не в пространстве-времени, а на пространственных сечениях 𝑡 = const.

Метрика двуполостного гиперболоида (7.21) единичного радиуса в гиперболиче-
ской системе координат имеет вид

𝑑Ωh = 𝑑𝜃2 + sh 2𝜃𝑑𝜙2. (7.68)

Соответствующее вакуумное решение уравнений Эйнштейна можно записать в ко-
ординатах Шварцшильда

𝑑𝑠2 = Φ(𝑞)𝑑𝜁2 − 𝑑𝑞2

Φ(𝑞)
− 𝑞2𝑑Ωh, (7.69)

где конформный множитель имеет вид

Φ(𝑞) = −1− 2𝑀

𝑞
− Λ𝑞2

3
. (7.70)

Чтобы описать глобальные гиперболические решения, заметим, что конформный
множитель Φ общего вида (7.45), меняет знак на противоположный при преобразо-
вании всех постоянных:

𝐾h ↦→ −𝐾h, Λ ↦→ −Λ, 𝑀 ↦→ −𝑀.

Это означает, что все глобальные решения в случае 𝐾 = −1, можно получить из
сферически симметричных решений, если поменять пространственную и временну́ю
координату 𝜏 ↔ 𝜎 на поверхности U, а также изменить знак космологической посто-
янной и массы.

7.5 Лоренц-инвариантные решения
В настоящем разделе мы рассмотрим случай C (7.17), когда второе дилатонное поле
в сплетенном произведении (7.2) постоянно, 𝑚 = const. В этом случае, как будет
показано ниже, псевдориманова поверхность U должна быть поверхностью посто-
янной кривизны. Следовательно, она представляет собой однополостный гиперболо-
ид, U = L2 или его универсальную накрывающую. В этом случае глобальные ре-
шения вакуумных уравнений Эйнштейна имеют вид топологического произведения
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M = L2×V. Второй сомножитель V представляет собой максимально продолженную
риманову поверхность с одним вектором Киллинга. Поверхность V может иметь ко-
нические сингулярности или сингулярности кривизны вдоль края поверхности V. С
физической точки зрения этим сингулярностям соответствуют космические струны
или сингулярные доменные стенки, которые эволюционируют во времени.

Случай C похож на пространственно симметричные решения, рассмотренные в
случае B, однако имеет также несколько существенно новых черт. Во-первых, мы
не можем ограничить себя только положительно определенными метриками ℎµν на
V, потому что уравнения Эйнштейна (7.14) неинвариантны относительно преобра-
зования ℎµν ↦→ −ℎµν при заданном 𝑚. Отметим, что при 𝑘 = const преобразование
𝑔αβ ↦→ −𝑔αβ всегда можно дополнить перестановкой пространственной и временно́й
координаты на U, 𝜏 ↔ 𝜎, что вместе оставляют уравнение (7.13) инвариантным. В
случае евклидовой метрики на V это невозможно. Поэтому, не ограничивая общно-
сти, мы зафиксируем 𝑚 = 1, но допустим, что метрика ℎµν может быть как положи-
тельно, так и отрицательно определена. В обоих случаях сигнатура четырехмерной
метрики будет лоренцевой: либо (+−−−), либо (+−++).

Решение уравнений (7.13)–(7.16) проводится так же, как и для метрики лоренце-
вой сигнатуры, при этом необходимо функцию 𝑚 заменить на 𝑘 и метрику 𝑔αβ на
ℎµν . Поэтому мы только кратко обозначим основные этапы вычислений, подчеркнув
те моменты, которые специфичны для евклидовой сигнатуры.

При 𝑚 = 1 полная система вакуумных уравнений Эйнштейна (7.13)–(7.16) при-
нимает вид

∇µ∇ν𝑘 −
∇µ𝑘∇ν𝑘

2𝑘
− 1

2
ℎµν

[
∇2𝑘 − (∇𝑘)2

2𝑘

]
= 0, (7.71)

𝑅g +∇2𝑘 − 2𝑘Λ = 0, (7.72)

𝑅h +
∇2𝑘

𝑘
− (∇𝑘)2

2𝑘2
− 2Λ = 0. (7.73)

Как и в случае B, в уравнение (7.72) входит сумма функций от разных аргумен-
тов: 𝑅g = 𝑅g(𝑥) и 𝑘 = 𝑘(𝑦). Поэтому скалярная кривизна поверхности U должна
быть постоянна, 𝑅g = −2𝐾g = const. Отсюда вытекает, что поверхность U является
однополостным гиперболоидом L2 или его универсальной накрывающей.

Это – очень важное следствие вакуумных уравнений Эйнштейна, т.к. в рассмат-
риваемом случае C все решения должны быть O(1, 2) инвариантны, где группа пре-
образований Лоренца O(1, 2) действует на однополостном гиперболоиде. Поэтому
глобальные решения класса C названы лоренц-инвариантными.

Тогда уравнение (7.72) принимает вид

∇2𝑘 − 2(𝑘Λ +𝐾g) = 0. (7.74)

Как и в случае B уравнение (7.73) является следствием уравнений (7.71) и (7.74).
Поэтому для нахождения решений вакуумных уравнений Эйнштейна достаточно ре-
шить уравнения (7.71) и (7.74).

Следующий шаг состоит в фиксировании координат на поверхности V. Конформ-
но евклидова метрика на поверхности V имеет вид

ℎµν𝑑𝑦
µ𝑑𝑦ν = Φ𝑑𝑧𝑑𝑧 = Φ(𝑑𝜎2 + 𝑑𝜌2), Φ ̸= 0. (7.75)

Здесь Φ(𝑧, 𝑧) является функцией комплексных координат

𝑧 := 𝜎 + 𝑖𝜌, 𝑧 = 𝜎 − 𝑖𝜌, (7.76)
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где 𝜎 = 𝑦2, 𝜌 = 𝑦3. При этом метрика всего четырехмерного пространства-времени
равна

𝑑𝑠2 = 𝑘𝑑Ωl + Φ𝑑𝑧𝑑𝑧, (7.77)

где 𝑑Ωl – метрика постоянной кривизны на однополостном гиперболоиде L2, задан-
ная, например, уравнением (7.20).

Не ограничивая общности, рассмотрим положительные 𝑘 > 0. В противном слу-
чае можно просто переставить первые две координаты. Тогда удобно ввести пара-
метризацию

𝑘 = 𝑞2, 𝑞 > 0.

Для двух неизвестных функций 𝑞 и Φ вместо уравнений (7.32)–(7.34) возникает
следующая система уравнений

𝜕2
zz𝑞 −

𝜕zΦ𝜕z𝑞

Φ
= 0, (7.78)

𝜕2
z̄z̄𝑞 −

𝜕z̄Φ𝜕z̄𝑘

Φ
= 0, (7.79)

2
𝜕z𝜕z̄𝑞

2

Φ
− (𝐾g + Λ𝑞2) = 0. (7.80)

Аналогично случаю B, решением уравнений (7.78) и (7.79) являются функции одного
аргумента: 𝑞 = 𝑞(𝑧±𝑧) и Φ = Φ(𝑧±𝑧), при этом функция Φ определяется уравнением

|Φ| = |𝑞′|, (7.81)

где штрих обозначает дифференцирование по соответствующему аргументу. В по-
лученной формуле нижний и верхний знаки соответствуют положительно и отри-
цательно определенной римановой метрике на V. Таким образом, функции 𝑞 и Φ
зависят либо от координаты 𝜎, либо от 𝑖𝜌. Поскольку, благодаря вращательной O(2)
симметрии конформно евклидовой метрики (7.75), оба выбора равнозначны, то для
определенности мы предположим, что функции 𝑞(𝜎) и Φ(𝜎) зависят от 𝜎.

После этого уравнение (7.80) упростится:

1

2
(𝑞2)′′ = (𝐾g + Λ𝑞2)Φ, (7.82)

где штрих обозначает дифференцирование по 𝜎. Чтобы его проинтегрировать, в урав-
нении (7.81) необходимо раскрыть знаки модулей.

Рассмотрим случай Φ𝑞′ > 0. Тогда уравнение (7.82) с учетом (7.81) примет вид

1

2
(𝑞2)′′ = (𝐾g + Λ𝑞2)𝑞′,

и его легко проинтегрировать:

𝑞′ = 𝐾g − 2𝑀

𝑞
+

Λ𝑞2

3
, (7.83)

где 𝑀 – произвольная постоянная интегрирования. Хотя в рассматриваемом случае
ее нельзя интерпретировать как массу, мы будем использовать старые обозначения,
чтобы облегчить сравнение. Учитывая уравнение (7.81) получаем выражение для
конформного множителя

Φ(𝑞) = 𝐾g − 2𝑀

𝑞
+

Λ𝑞2

3
(7.84)
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Случай Φ𝑞′ < 0 интегрируется аналогично.
Окончательно, общее решение вакуумных уравнений Эйнштейна в случае C имеет

вид
𝑑𝑠2 = 𝑞2𝑑Ωl + Φ(𝑞)(𝑑𝜎2 + 𝑑𝜌2), (7.85)

где конформный множитель задан уравнением (7.84) и функция 𝑞 = 𝑞(𝜎) определя-
ется уравнением (7.81). Таким образом, метрика на поверхности V имеет один вектор
Киллинга 𝜕ρ.

Выбирая функцию 𝑞(𝜎) в качестве одной из координат, метрику (7.85) можно
записать в виде, напоминающем метрику Шварцшильда,

𝑑𝑠2 = 𝑞2𝑑Ωl +
𝑑𝑞2

Φ(𝑞)
+ Φ(𝑞)𝑑𝜎2. (7.86)

Результирующая метрика имеет три вектора Киллинга, соответствующих группе
симметрии O(1, 2) однополостного гиперболоида постоянной кривизны L2, и один
дополнительный вектор Киллинга 𝜕ρ на поверхности V.

Вычисления, аналогичные случаю 𝑘 = 1, приводят к следующему выражению
для скалярной кривизны поверхности V

𝑅h =
2

3
Λ +

4𝑀

𝑞3
.

При этом для инвариантного собственного значения четырехмерного тензора Вейля
мы получаем то же выражение (7.55), что и в случае B.

7.5.1 Лоренц-инвариантные решения 𝐾𝑔 = 1

Прежде всего отметим, что случаи 𝐾g = 1 и 𝐾g = −1 связаны между собой пе-
рестановкой первых двух координат 𝜏 ↔ 𝜎. Мы выберем значение 𝐾g = 1, чтобы
выражение для конформного множителя Φ имело, с точностью до изменения знака
космологической постоянной, тот же вид, что и для сферически симметричного слу-
чая. Поэтому четырехмерная метрика пространства-времени в координатах Шварц-
шильда запишется следующим образом

𝑑𝑠2 = 𝑞2(𝑑𝜃2 − ch 2𝜃𝑑𝜙2) +
𝑑𝑞2

Φ(𝑞)
+ Φ(𝑞)𝑑𝜌2, (7.87)

где конформный множитель,

Φ = 1− 2𝑀

𝑞
+

Λ𝑞2

3
, (7.88)

имеет тот же вид, что и в решении Коттлера [?], но в рассматриваемом случае этот
нетривиальный конформный множитель входит в евклидову часть метрики.

На поверхности V метрика может быть как отрицательно (Φ < 0), так и поло-
жительно (Φ > 0) определена. Для отрицательно определенной метрики сигнатура
метрики пространства-времени равна (+ − −−), и роль времени играет координата
𝜃. Поэтому времениподобная координата принимает значения на всей вещественной
оси 𝜃 ∈ R, и трехмерное пространство представляет собой произведение окружности
𝜙 ∈ [0, 2𝜋) и поверхности V, которая будет построена ниже. Если в качестве U вы-
брать универсальную накрывающую однополостного гиперболоида L2, то трехмерное



7.5. ЛОРЕНЦ-ИНВАРИАНТНЫЕ РЕШЕНИЯ 157

пространство будет представлять произведение R × V. Эволюция этих пространств
во времени длится вечно, и если поверхность V имеет сингулярность, то ей будет
соответствовать времениподобная кривая.

Для положительно определенной метрики на V сигнатура четырехмерной мет-
рики равна (+ − ++), и времениподобной координатой является угол 𝜙. При U =
L2 он принимает значения на окружности 𝜙 ∈ [0, 2𝜋), и трехмерное пространство
представляет собой произведение прямой 𝜃 ∈ R и поверхности V. Соответствую-
щее пространство-время содержит замкнутые времениподобные кривые (включая
экстремали), если только в качестве поверхности U не выбрано универсальное на-
крывающее пространство для L2.

Все глобальные решения для этого случая описаны в статье [?].

7.5.2 Итоги главы

Таким образом, найдены и классифицированы все глобальные вакуумные решения
уравнений Эйнштейна с космологической постоянной, которые имеют вид сплетен-
ного произведения двух поверхностей. Явное построение и классификация решений
проведена в зависимости от значений постоянной скалярной кривизны одной из по-
верхностей, значения космологической постоянной Λ и единственной постоянной ин-
тегрирования 𝑀 , которая для решения Шварцшильда имеет физический смысл мас-
сы черной дыры. Мы видим, что требование максимального продолжения решений
практически однозначно определяет глобальную структуру пространства-времени.
Важно отметить, что при решении уравнений движения мы не ставим никаких гра-
ничных условий. Подчеркнем, что решение уравнений Эйнштейна в какой то фик-
сированной системе координат само по себе дает не так уж много. Для того, чтобы
дать физическую интерпретацию решений необходимо знать глобальную структуру
пространства-времени. Эта задача сложна, но обойти ее, по-видимому, невозможно.

Предположение о том, что метрика пространства-времени имеет вид сплетенного
произведения метрик двух поверхностей влечет за собой симметрию метрики, если
потребовать выполнения вакуумных уравнений Эйнштейна. Например, для решения
Шварцшильда мы не требовали сферической симметрии метрики – она возникла в
процессе решения уравнений Эйнштейна.

Построенные решения представляют значительный физический интерес. Мы по-
казали, что вакуумные решения уравнений Эйнштейна описывают черные дыры,
космические струны, кротовые норы, доменные стенки сингулярностей кривизны и
другие. В настоящей монографии мы лишь кратко обсудили свойства построенных
глобальных решений.



Глава 8

Решение Шварцшильда

В настоящем разделе мы детально рассмотрим решение Шварцшильда, т.к. оно игра-
ет важную роль в физических приложениях. Фактически, основные наблюдательные
данные, подтверждающие общую теорию относительности, основаны на предсказа-
ниях, полученных для этого решения.

Вскоре после создания общей теории относительности К. Шварцшильд нашел
точное статическое сферически симметричное решение вакуумных уравнений Эйн-
штейна [?]. Это же решение было также независимо найдено Дж. Дросте [?, ?, ?],
который был учеником Г. Лоренца. Позже было доказано, что любое сферически
симметричное решение вакуумных уравнений Эйнштейна вне горизонта имеет допол-
нительный времениподобный вектор Киллинга, т.е. существует такая система коор-
динат, что вне горизонта решение является статическим. Это утверждение означает,
что условие статичности при получении решения Шварцшильда является излишним
и известно, как теорема Бирхгоффа [?, ?].

Решение Шварцшильда уже было найдено нами в разделе 7.4.1, где также было
построено его максимальное продолжение вдоль экстремалей. В том числе было дока-
зано существование дополнительного вектора Киллинга, который вне горизонта вре-
мениподобен, а под горизонтом пространственноподобен. Глобальное (максимально
продолженное вдоль экстремалей) решение Шварцшильда описывает черную дыру
– новый объект, предсказанный общей теорией относительности, который отсутству-
ет в теории гравитации Ньютона. В настоящее время астрономические наблюдения
говорят о возможном существовании черных дыр во вселенной, в частности, в цен-
тре нашей галактики. Метрика для решения Шварцшильда вне горизонта успешно
используется для описания гравитационного поля звезд, а также солнечной системы.

8.1 Координаты Шварцшильда
Метрика Шварцшильда в координатах Шварцшильда (𝑥α) = (𝑥0, 𝑥1, 𝑥2, 𝑥3) =
(𝑡, 𝜌, 𝜃, 𝜙), имеет хорошо известный вид

𝑑𝑠2 =

(
1− 2𝑀

𝜌

)
𝑑𝑡2 − 𝑑𝜌2

1− 2𝑀

𝜌

− 𝜌2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2), (8.1)

где 𝑀 = const – интеграл движения, который имеет физический смысл массы, со-
средоточенной в некоторой области, вне которой решаются вакуумные уравнения
Эйнштейна. Это – сферически симметричное решение вакуумных уравнений Эйн-
штейна с нулевой космологической постоянной, которое было получено в разделе

158
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7.4.1. Последнее слагаемое представляет собой метрику сферы радиуса 𝜌, которая
индуцирована вложением S2 →˓ R3 и взята с обратным знаком. Группа вращений
O(3) действует обычным образом на азимутальный и полярный углы 𝜃 и 𝜙. Метрика
(8.1) определена при

−∞ < 𝑡 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋.

При 𝜌 = 𝜌s := 2𝑀 компоненты метрики вырождаются. Радиус 𝜌s называется радиу-
сом Шварцшильда или гравитационным радиусом. Ему соответствует сфера радиуса
𝜌s, которая называется горизонтом. При этом координата 𝜌, которая предполагает-
ся положительной, меняется либо в пределах 2𝑀 < 𝜌 < ∞ (вне горизонта 𝜌s), либо
0 < 𝜌 < 2𝑀 (под горизонтом).

Метрика (8.1) вырождена при 𝜌 = 0, 2𝑀 и 𝜃 = 0, 𝜋. Вырождение метрики при
𝜃 = 0, 𝜋 связано с выбором координат на сфере S2. Это – хорошо известная особен-
ность сферической системы координат, которую мы обсуждать не будем. Особенно-
сти метрики при 𝜌 = 0, 2𝑀 мы обсудим подробно.

Несмотря на то, что компоненты метрики на сфере Шварцшильда вырождаются,
ее определитель не имеет нулей при 𝜌 > 0:

det 𝑔αβ = −𝜌4 sin 2𝜃,

за исключением особенности сферической системы координат при 𝜃 = 0, 𝜋.
Координата 𝜌 при 𝜌 > 2𝑀 является аналогом радиальной координаты в сфериче-

ской системе координат трехмерного евклидова пространства R3. Координата 𝑡 при
𝜌 > 2𝑀 играет роль времени. Вне горизонта метрика Шварцшильда в координатах
Шварцшильда является статической. При 0 < 𝜌 < 2𝑀 смысл координат 𝑡 и 𝜌 ме-
няется: 𝑡 становится пространственноподобной координатой, а 𝜌 – времениподобной.
Поэтому координата 𝜌 под горизонтом никакого отношения к радиусу не имеет.

Если на многообразии задана какая-либо метрика, то первое, что хочется сделать
– это вычислить компоненты соответствующего тензора кривизны и его инварианты.
Поскольку метрика Шварцшильда является решением вакуумных уравнений Эйн-
штейна с нулевой космологической постоянной, то тензор Риччи и скалярная кривиз-
на пространства-времени равны нулю. Однако полный тензор кривизны отличен от
нуля. Поскольку тензор Риччи и скалярная кривизна равны нулю, то тензор кривиз-
ны в рассматриваемом случае совпадает с тензором Вейля. Перейдем к вычислениям.

Метрика (8.1) задает в пространстве-времени символы Кристоффеля (2.94), из
которых выпишем только линейно независимые и нетривиальные:

Γ00
1 =

𝑀

𝜌2

(
1− 2𝑀

𝜌

)
, Γ22

1 = −𝜌
(
1− 2𝑀

𝜌

)
,

Γ01
0 =

𝑀

𝜌2
(
1− 2M

ρ

) , Γ33
1 = −𝜌

(
1− 2𝑀

𝜌

)
sin 2𝜃,

Γ11
1 = − 𝑀

𝜌2
(
1− 2M

ρ

) , Γ23
3 =

cos 𝜃

sin 𝜃
, (8.2)

Γ12
2 = Γ13

3 =
1

𝜌
, Γ33

2 = − sin 𝜃 cos 𝜃.

“Линейно независимые” означает, что мы не выписали нетривиальные компоненты,
которые получаются из приведенных выше простой перестановкой индексов. Напри-
мер, Γ10

0 = Γ01
0.
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Прямые довольно громоздкие вычисления приводят к следующим нетривиаль-
ным линейно независимым компонентам тензора кривизны (2.119) для метрики (8.1):

𝑅0101 = −2𝑀

𝜌
, 𝑅1212 = − 𝑀

𝜌
(
1− 2M

ρ

) ,
𝑅0202 =

𝑀

𝜌

(
1− 2𝑀

𝜌

)
, 𝑅1313 = − 𝑀

𝜌
(
1− 2M

ρ

) sin 2𝜃, (8.3)

𝑅0303 =
𝑀

𝜌

(
1− 2𝑀

𝜌

)
sin 2𝜃, 𝑅2323 = 2𝑀𝜌 sin 2𝜃.

Компоненты тензора кривизны можно либо вычислить в лоб, воспользовавшись фор-
мулой (2.119), либо воспользоваться формулами из раздела 7.1 для сплетенного про-
изведения двух многообразий, т.к. метрика Шварцшильда (8.1) имеет именно такой
вид. В обозначениях этого раздела следует положить

𝑘 = 1, 𝑚 = −𝜌2,

𝑔αβ =

(
1− 2M

ρ
0

0 − 1
1− 2M

ρ

)
, ℎµν =

(
1 0
0 sin 2𝜃

)
.

В таком случае вычисления несколько упрощаются.
Мы видим, что компоненты тензора кривизны вырождены в нуле 𝜌 = 0 и на

горизонте 𝜌 = 𝜌s. Само по себе это только указывает на возможные особенности гео-
метрических объектов (в рассматриваемом случае метрики), т.к. компоненты тензора
не являются геометрическими инвариантами. Чтобы прояснить ситуацию, вычислим
квадрат тензора кривизны, который инвариантен относительно преобразований ко-
ординат:

𝑅αβγδ𝑅
αβγδ = 4

[
𝑅2

0101

(
𝑔00𝑔11

)2
+𝑅2

0202

(
𝑔00𝑔22

)2
+𝑅2

0303

(
𝑔00𝑔33

)2
+

+𝑅2
1212

(
𝑔11𝑔22

)2
+𝑅2

1313

(
𝑔11𝑔33

)2
+𝑅2

2323

(
𝑔22𝑔33

)2
]
=

48𝑀2

𝜌6
. (8.4)

Хотя тензор Риччи и скалярная кривизна равны нулю, геометрия нетривиальна, т.к.
квадрат тензора кривизны, который в данном случае совпадает с квадратом тензора
Вейля, отличен от нуля. Он определен при всех 𝜌 > 0 и имеет только одну особенность
при 𝜌 = 0.

При 𝜌 → ∞ кривизна пространства-времени стремится к нулю. Это значит,
что пространство-время является асимптотически плоским на больших расстояни-
ях. Этот факт следовал также из вида метрики, поскольку метрика (8.1) стремится
к метрике Лоренца при 𝜌→ 0.

На горизонте, 𝜌 = 𝜌s, кривизна никакой особенности не имеет. Это указывает на
то обстоятельство, что особенность метрики (8.1) на горизонте может быть связана
с неудачным выбором координат, т.е. является координатной. Действительно, ниже
мы увидим, что в координатах Крускала–Секереша метрика Шварцшильда на гори-
зонте регулярна. Конечно, преобразование координат Шварцшильда к координатам
Крускала–Секереша вырождено при 𝜌 = 𝜌s.

Особенность метрики при 𝜌 = 0 является неустранимой. Подчеркнем, что значе-
ние 𝜌 = 0 не соответствует началу сферической системы координат, т.к. координата
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𝜌 под горизонтом является времениподобной. Ниже мы увидим, что пространствен-
ноподобная особенность 𝜌 = 0 соответствует черной и белой дырам.

Метрика (8.1) сферически симметрична, при этом группа вращений O(3) дей-
ствует только на угловые координаты 𝜃 и 𝜙. Сферической симметрии метрики (8.1)
соответствуют три векторных поля Киллинга, которые имеют нетривиальные компо-
ненты только относительно базисных векторных полей 𝜕θ и 𝜕ϕ. Кроме этого имеется
четвертое векторное поле Киллинга, которое в координатах Шварцшильда имеет вид
𝜕t. Оно соответствует статичности метрики Шварцшильда вне горизонта в коорди-
натах Шварцшильда.

Наличие четвертого векторного поля Киллинга для любого сферически симмет-
ричного решения вакуумных уравнений Эйнштейна известно как теорема Бирхгоф-
фа [?, ?]. В разделе 7 мы доказали аналогичное утверждение в более общем слу-
чае. А именно, четвертый вектор Киллинга появляется в любом решении вакуумных
уравнений Эйнштейна с космологической постоянной, которое имеет вид сплетенно-
го произведения двух поверхностей. При этом мы не требовали симметрии метрики
относительно какой-либо группы преобразований. Группа симметрии возникает ав-
томатически при решении уравнений Эйнштейна. Это может быть либо группа вра-
щений SO(3), либо группа Лоренца SO(1, 2), либо группа Пуанкаре IO(2), которые
действуют на сечениях 𝑡 = const. Глобальная структура всех таких решений была
найдена и классифицирована в статье [?].

Ясно, что в метрике Шварцшильда (8.1) можно произвольно менять радиальную
координату 𝜌 ↦→ 𝜌′(𝜌), при этом метрика также будет удовлетворять вакуумным урав-
нениям Эйнштейна. Обычно в пользу выбора радиальной координаты Шварцшильда
𝜌 приводят следующий “аргумент”. Площадь поверхности сферы S2, определяемой
уравнением 𝜌 = const > 2𝑀 , такая же, как и в евклидовом пространстве 4𝜋𝜌2. Соот-
ветственно, длина окружности, лежащей в экваториальной плоскости сферы, равна
2𝜋𝜌. У этого “аргумента” нет никаких математических или физических оснований.
Заметим также, что “центр” у сферы отсутствует, т.к. при 𝜌 = 0 сфера вырождает-
ся в точку, которой соответствует пространственноподобная, а не времениподобная
кривая в плоскости 𝑡, 𝜌.

Важным является то обстоятельство, что постоянная 𝑀 , входящая в решение
Шварцшильда, является постоянной интегрирования, и вообще не содержится в ва-
куумных уравнениях Эйнштейна. С математической точки зрения постоянная 𝑀
может принимать произвольные значения 𝑀 ∈ R. Однако, если предположить, что
решение Шварцшильда описывает гравитационное поле вне точечной массивной ча-
стицы или некоторого сферически симметричного распределения масс, то сравнение
с законом всемирного тяготения Ньютона на больших расстояниях, которое было
проведено в разделе 6.7, говорит о том, что постоянная интегрирования 𝑀 – это
масса частицы, которая, следовательно, должна быть положительной.

Допустим, что решение Шварцшильда описывает солнечную систему, когда в ка-
честве источника гравитационного поля рассматривается Солнце, а планеты и другие
тела – в качестве пробных частиц, движущихся по экстремалям (геодезическим) в
гравитационном поле Солнца. Тогда возникает естественный и нетривиальный во-
прос: какому значению координаты 𝜌 соответствует орбита, например, Земли? Более
общо, какое отношение имеет координата 𝜌, входящая в решение Шварцшильда, к
расстоянию до Солнца, которое мы измеряем? Как было отмечено выше, в решении
Шварцшильда мы можем произвести произвольную замену радиальной координаты
𝜌 ↦→ 𝜌′(𝜌), не меняющую асимптотики на бесконечности. Новая метрика также будет
удовлетворять вакуумным уравнениям Эйнштейна и будет асимптотически плоской.
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При этом с законом тяготения Ньютона будет все в порядке, поскольку он определя-
ется только асимптотикой при 𝜌→ ∞. Возможный ответ на этот вопрос заключает-
ся в измерении площади поверхности сферы 𝑆r достаточно большого радиуса 𝑟 или
длины окружности 𝐿r того же радиуса. Площадь поверхности и длина окружности
являются геометрическими инвариантами и, следовательно, не зависят от выбора
системы координат. После этого надо вычислить отношения 𝑆r/𝑟

2 и 𝐿r/𝑟, где 𝑟 –
измеренный радиус. Если отношения будут равны 4𝜋 и 2𝜋, соответственно, то мож-
но утверждать, что измеряемый радиус – это действительно радиальная координата
Шварцшильда, 𝑟 = 𝜌.

Другой способ. Посылаем космический корабль со скоростью света к горизонту
(Солнцу) и обратно. После возвращения, смотрим на показания часов, находящих-
ся на корабле. Это будет собственное время, которое равно удвоенному значению
канонического параметра для светоподобной экстремали от Земли до горизонта, и
которое является геометрическим инвариантом. Из этого условия можно найти зна-
чение наблюдаемого радиуса 𝑟.

В общей теории относительности мы требуем, чтобы пространство-время было
максимально продолжено вдоль экстремалей (геодезических). Это означает, что лю-
бую экстремаль на псевдоримановом многообразии (M, 𝑔) можно либо продолжить до
бесконечного значения канонического параметра в обе стороны, либо при конечном
значении канонического параметра она попадет в сингулярную точку, где какой-либо
из геометрических инвариантов обратится в бесконечность. Более подробно этот во-
прос обсуждался в разделе 6.2. Метрика Шварцшильда в координатах Шварцшиль-
да (8.1) геодезически не полна на горизонте, и многообразие (пространство-время)
можно продолжить, например, перейдя к координатам Крускала–Секереша.

В сферически симметричном случае четырехмерное пространство-время пред-
ставляет собой топологическое произведение M = U × S2 двумерной лоренцевой
поверхности U на сферу S2. Максимально продолженные вдоль геодезических по-
верхности U удобно изображать в виде диаграмм Картера–Пенроуза, которые были
описаны в главе ??. Чтобы пояснить смысл диаграмм и ввести обозначения, рассмот-
рим

Пример 8.1.1. Плоскость Минковского. Рассмотрим плоскость Минковского
R1,1 с декартовыми координатами 𝑡, 𝑥. Введем светоподобные координаты

𝑢 := 𝑡+ 𝑥, 𝑣 := 𝑡− 𝑥

и отобразим всю плоскость на квадрат вдоль светоподобных направлений, например,
положим

𝑈 := arctg 𝑢 ∈
(
−𝜋
2
,
𝜋

2

)
, 𝑉 := arctg 𝑣 ∈

(
−𝜋
2
,
𝜋

2

)
, (8.5)

который изображен на рис.8.1.
Этот квадрат представляет собой диаграмму Картера–Пенроуза для плоскости

Минковского R1,1. На диаграмме буквы 𝑖+ и 𝑖− обозначают пространственноподоб-
ные бесконечности будущего и прошлого, соответственно. Они изображены закра-
шенными кружками, что означает их геодезическую полноту. Буквы 𝐽± обознача-
ют светоподобные бесконечности будущего и прошлого. Они изображены жирными
прямыми линиями, т.к. геодезически полны. Буквы 𝑖0 обозначают левую и правую
времениподобные пространственные бесконечности. Они также геодезически полны
и поэтому изображены закрашенными кружками.

Пространство-время Минковского R1,1 является геодезически полным многооб-
разием. Геодезическими являются прямые линии и только они на плоскости 𝑡, 𝑥.
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Рис. 8.1: Диаграмма Картера–Пенроуза для плоскости Минковского R1,1

Поскольку отображение (8.5) проводится вдоль светоподобных направлений, то све-
топодобные геодезические на диаграмме Картера–Пенроуза являются прямыми от-
резками, идущими как и прежде под углами ±𝜋/4. Они начинаются и заканчива-
ются на сторонах квадрата. Это свойство позволяет легко представить причинную
структуру пространства-времени, т.к. световые конусы в каждой точке такие же,
как и на исходной плоскости Минковского. После отображения (8.5) времени- и про-
странственноподобные геодезические уже не будут прямыми линиями на диаграмме
Картера–Пенроуза за исключением осей абсцисс и ординат. Все времениподобные
геодезические начинаются в пространственноподобной бесконечности прошлого 𝑖−

и заканчиваются в пространственноподобной бесконечности будущего 𝑖+. Все про-
странственноподобные геодезические соединяют левую и правую пространственные
бесконечности 𝑖0.

Плоскость Минковского имеет три векторных поля Киллинга, соответствующих
трансляциям и вращениям. Трансляциям по времени соответствует поле Киллинга
𝜕t. Его интегральные кривые на плоскости 𝑡, 𝑥 – это прямые, параллельные оси ор-
динат 𝑡. На диаграмме Картера–Пенроуза они показаны в виде тонких сплошных
линий, соединяющих бесконечность прошлого 𝑖− и будущего 𝑖+.

Хотя бесконечности прошлого и будущего 𝑖± изображены на диаграмме Картера–
Пенроуза в виде точек (кружков), следует помнить, что в пространстве-времени R1,1

им соответствуют пространственноподобные прямые линии бесконечной длины. Это
же относится и к пространственным бесконечностям 𝑖0. Если на плоскости Минков-
ского R1,1 заданы какие-либо функции, то на диаграмме Картера–Пенроуза беско-
нечности 𝑖± и 𝑖0 будут являться существенно особыми точками для этих функций,
т.к. пределы в общем случае будут зависеть от пути, по которому мы к ним прибли-
жаемся.

Максимально продолженное пространство-время M, соответствующее метрике
Шварцшильда (8.1), представляет собой топологическое произведение некоторой ло-
ренцевой поверхности 𝑡, 𝜌 ∈ U на сферу 𝜃, 𝜙 ∈ S2: M = U×S2. Сфера является геоде-
зически полным многообразием без каких-либо особенностей. Поэтому в дальнейшем
мы сосредоточимся на исследовании лоренцевой поверхности U с координатами 𝑡, 𝜌,
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которые входят в метрику (8.1), и соответствующей двумерной частью метрики

𝑑𝑠2 =

(
1− 2𝑀

𝜌

)
𝑑𝑡2 − 𝑑𝜌2

1− 2𝑀

𝜌

. (8.6)

Эта двумерная метрика имеет один вектор Киллинга 𝜕t. Общий подход к построению
максимально продолженных лоренцевых поверхностей с одним вектором Киллинга
описан в [?].

Максимально продолженная вдоль экстремалей лоренцева поверхность U изоб-
ражается в виде диаграммы Картера–Пенроуза, показанной на рис.8.2. В квадрат-

Рис. 8.2: Диаграмма Картера–Пенроуза для решения Шварцшильда.

ных статических конформных блоках I и III координата 𝜌 меняется в пределах
2𝑀 < 𝜌 <∞, пространственноподобна и является аналогом радиальной координаты
сферической системы координат. В блоке I координата 𝜌 возрастает слева направо,
а в блоке III – справа налево. В треугольных однородных конформных блоках II и
IV координата 𝜌 меняется в пределах 0 < 𝜌 < 2𝑀 и является времениподобной. В
блоке II она возрастает сверху вниз, а в блоке IV – снизу вверх. Конформные бло-
ки на диаграмме Картера–Пенроуза склеены вдоль горизонтов, соответствующих
радиусу Шварцшильда 𝜌s = 2𝑀 , которые показаны на диаграмме пунктирными ли-
ниями. Центральная точка (место пересечения горизонтов), которая на диаграмме
Картера–Пенроуза помечена окружностью, является седловой точкой для координа-
ты 𝜌 и геодезически не полна.

На диаграмме Картера–Пенроуза пространственноподобные бесконечности буду-
щего и прошлого 𝑖+ и 𝑖−, левая и правая времениподобные пространственные беско-
нечности 𝑖0 являются геодезически полными и изображены закрашенными кружка-
ми. Светоподобные бесконечности будущего и прошлого 𝐽+ и 𝐽− геодезически полны
и показаны жирными прямыми. Горизонты обозначены пунктирными линиями внут-
ри диаграммы, поскольку не являются геодезически полными. Сингулярные края,
соответствующие 𝜌 = 0, геодезически не полны.

Пространственноподобные края конформных блоков II и IV соответствуют зна-
чению 𝜌 = 0, являются сингулярностями кривизны и геодезически не полны.

Наглядность диаграммы Картера–Пенроуза заключается в том, что световые ко-
нусы в каждой внутренней точке образованы двумя пересекающимися прямыми,
идущими под углами ±𝜋/4 так же, как и на плоскости Минковского R1,1. Отсюда
сразу следует, что никакая времениподобная или светоподобная экстремаль (геоде-
зическая), которая начинается внутри блока II, не может попасть в области I или
III, и с необходимостью попадет на сингулярность 𝜌 = 0, расположенную сверху, при
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конечном значении канонического параметра. По этой причине верхнюю сингуляр-
ность 𝜌 = 0 называют сингулярностью черной дыры, а область II под горизонтом –
внутренностью черной дыры.

Максимально продолженное решение Шварцшильда описывает две вселенные:
I и III. Мы находимся либо во вселенной I, либо в III. Эти вселенные между со-
бой не связаны причинно: никакой наблюдатель из вселенной I не может попасть
во вселенную III и наоборот, т.к. никакие их точки нельзя соединить времени- или
светоподобной кривой. При этом у наблюдателя из вселенной I есть две возмож-
ности: либо жить вечно, чему соответствуют времениподобные кривые, уходящие в
пространственноподобную бесконечность будущего 𝑖+ (она изображена закрашенным
кружком в верхнем правом углу диаграммы), либо за конечное собственное время
угодить в черную дыру 𝜌 = 0 после пересечения горизонта.

Заметим, что с точки зрения внешнего наблюдателя, который измеряет координа-
ты Шварцшильда, приближение к горизонту займет бесконечное время 𝑡. Это легко
видеть для радиальных светоподобных экстремалей, которые определяются услови-
ем 𝑑𝑠2 = 0. Действительно, для метрики (8.6) радиальные светоподобные экстремали
определяются уравнением (

1− 2𝑀

𝜌

)
𝑑𝑡2 − 𝑑𝜌2

1− 2𝑀

𝜌

= 0.

Отсюда следует равенство

𝑡 =

∫
𝜌𝑑𝜌

𝜌− 2𝑀
.

Этот интеграл логарифмически расходится на горизонте при 𝜌 = 2𝑀 . Следователь-
но, радиальные светоподобные экстремали с точки зрения внешнего наблюдателя
приближаются к горизонту бесконечно долго. Аналогичный анализ можно прове-
сти и для времениподобных экстремалей. То есть внешний наблюдатель никогда не
увидит прохождение чего-либо через горизонт. С точки зрения же падающего на-
блюдателя он благополучно пересечет горизонт при конечном значении собственно-
го времени и продолжит падение на черную дыру, пока не достигнет сингулярности
𝜌 = 0 при конечном значении канонического параметра (собственного времени).

Светоподобные экстремали из вселенной I попадают либо в правую светоподоб-
ную бесконечность будущего 𝐽+ при бесконечном значении канонического параметра,
либо достигают сингулярности черной дыры при конечном значении канонического
параметра.

Из внутренности белой дыры (область IV) времениподобные экстремали могут
попасть во все три области I, II и III. Однако никакой наблюдатель из вселенной I
или III не может попасть внутрь белой дыры.

Времениподобные пространственные бесконечности слева и справа 𝑖0 можно со-
единить с внутренней точкой диаграммы Картера–Пенроуза только пространствен-
ноподобной кривой при условии, что тип кривой не меняется от точки к точке.

С точки зрения задачи Коши, решение волнового уравнения в области I опре-
деляется начальными данными вблизи сингулярности белой дыры 𝜌 = 0, правой
пространственноподобной бесконечности прошлого 𝑖− и правой светоподобной беско-
нечности прошлого 𝐽−.

Диаграмма Картера–Пенроуза для решения Шварцшильда представляет собой
гладкую двумерную лоренцеву поверхность с гладкой метрикой. При этом лоренцева
поверхность с метрикой (8.6) при −∞ < 𝑡 <∞ и 2𝑀 < 𝜌 < ∞ изометрична области
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I и области III. Лоренцева поверхность с координатами −∞ < 𝑡 < ∞ и 0 < 𝜌 < 2𝑀
изометрична области II и области IV.

Векторное поле Киллинга 𝜕t времениподобно в блоках I и III (метрика статична)
и пространственноподобно в блоках II и IV (метрика однородна). Соответствующие
траектории Киллинга показаны на диаграмме Картера–Пенроуза тонкими сплошны-
ми линиями внутри блоков. Горизонты на поверхности U являются светоподобными
траекториями Киллинга. Это становится ясным, когда метрика Шварцшильда (8.6)
записана в координатах Эддингтона–Финкельстейна или Крускала–Секереша.

Таким образом, координаты Шварцшильда не покрывают всю лоренцеву поверх-
ность U и, следовательно, не являются глобальными.

8.2 Координаты Эддингтона–Финкельстейна
Для того, чтобы доказать дифференцируемость метрики при склейке конформных
блоков вдоль горизонтов используются координаты Эддингтона–Финкельстейна, ко-
торые первоначально были введены именно для решения Шварцшильда [?, ?]. Перей-
дем от координат Шварцшильда к координатам Эддингтона–Финкельстейна 𝑡, 𝜌 ↦→
𝜉, 𝜌, где

𝑡 := 𝜉 −
∫ ρ 𝑑𝑟

1− 2M
r

= 𝜉 − 𝜌− 2𝑀 ln|𝜌− 2𝑀 |. (8.7)

Это преобразование временно́й координаты определено при 0 < 𝜌 < 2𝑀 и 2𝑀 < 𝜌 <
∞. Постоянная интегрирования соответствует сдвигу 𝑡, и мы, для простоты, положи-
ли ее равной нулю. Для соответствующих дифференциалов справедливо равенство

𝑑𝑡 = 𝑑𝜉 − 𝑑𝜌

1− 2M
ρ

,

и метрика Шварцшильда (точнее, ее двумерная 𝑡, 𝜌 часть) в новых координатах при-
нимает вид

𝑑𝑠2 =

(
1− 2𝑀

𝜌

)
𝑑𝜉2 − 2𝑑𝜉𝑑𝜌. (8.8)

Эта метрика невырождена, det 𝑔αβ = −1, и определена при всех значениях координат

−∞ < 𝜉 <∞, 0 < 𝜌 <∞, (8.9)

т.е. на полуплоскости 𝜉, 𝜌.
Преобразование координат Шварцшильда к координатам Эддингтона–Финкель-

стейна (8.7) хорошо определено при 0 < 𝜌 < 2𝑀 и 2𝑀 < 𝜌 < ∞, однако вырождено
на горизонте 𝜌s := 2𝑀 . Таким образом внутренность конформных блоков I и II
отображается на две непересекающиеся области полуплоскости (8.9), которые гладко
склеены вдоль горизонта 𝜌s. Эта полуплоскость на диаграмме Картера–Пенроуза
(см. рис.8.3 слева) изображена в виде диагональной цепочки конформных блоков,
идущих сверху слева вниз направо. Вдоль этой цепочки координата 𝜌 увеличивается
от нуля до бесконечности, а 𝜉 меняется от −∞ до +∞. Напомним, что горизонт 𝜌s
достигается при бесконечном значении 𝑡, как было показано в предыдущем разделе.

Координаты Шварцшильда не различают конформные блоки типа I и III, а также
блоки типа II и IV. Поэтому метрике (8.8) соответствует также вторая диагональ-
ная цепочка конформных блоков, идущая снизу справа наверх налево (возрастание
координаты 𝜌).
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Рис. 8.3: Координаты Эддингтона–Финкельстейна 𝜉, 𝜌 (слева) и 𝜂, 𝜌 (справа) на диа-
грамме Картера–Пенроуза для решения Шварцшильда.

Введенные координаты Эддингтона–Финкельстейна склеивают конформные бло-
ки I–II и III–IV. Можно также ввести другие координаты Эддингтона–Финкельстейна
𝑡, 𝜌 ↦→ 𝜂, 𝜌, которые склеивают блоки I–IV и II–III. Формула соответствующего пре-
образования имеет вид

𝑡 := 𝜂 +

∫ ρ 𝑑𝑟

1− 2M
r

= 𝜂 + 𝜌+ 2𝑀 ln|𝜌− 2𝑀 |,

где, как и раньше, 0 < 𝜌 < 2𝑀 или 2𝑀 < 𝜌 < ∞. Метрика в этих координатах
примет вид

𝑑𝑠2 =

(
1− 2𝑀

𝜌

)
𝑑𝜂2 + 2𝑑𝜂𝑑𝜌.

Полученная метрика невырождена и определена на полуплоскости

−∞ < 𝜂 <∞, 0 < 𝜌 <∞.

На диаграмме Картера–Пенроуза (см. рис.8.3 справа) эта полуплоскость изобража-
ется в виде диагональных цепочек конформных блоков, которые идут либо снизу
слева вверх направо, либо сверху справа вниз налево, что соответствует возраста-
нию координаты 𝜌.

Двумерная поверхность с метрикой (8.8) не является максимально продолженной.
Можно показать, что экстремали на полуплоскости (8.9) неполны при 𝜉 → −∞ для
цепочки конформных блоков I–II и при 𝜉 → ∞ для цепочки конформных блоков
II–IV. Чтобы ввести глобальные координаты на всей диаграмме Картера–Пенроуза
введем координаты Крускала–Секереша.

8.3 Координаты Крускала–Секереша

Координаты Крускала–Секереша 𝑈, 𝑉 являются глобальными, покрывают всю ло-
ренцеву поверхность U и вводятся следующим образом. Для ясности, введем ко-
ординаты Крускала–Секереша в несколько этапов. Во-первых, запишем двумерную
часть метрики Шварцшильда (8.6) в черепашьих координатах 𝑡, 𝜌 ↦→ 𝑡, 𝑟 (для опре-
деленности мы рассмотрим область вне горизонта 𝜌 > 2𝑀),

𝑑𝑠2 =

(
1− 2𝑀

𝜌

)
(𝑑𝑡2 − 𝑑𝑟2), (8.10)
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где новая координата 𝑟 связана со старой 𝜌 дифференциальным уравнением

𝑑𝜌

𝑑𝑟
= ±

(
1− 2𝑀

𝜌

)
. (8.11)

В этом уравнении знак “+” соответствует статическому блоку I, а знак “−” – ста-
тическому блоку III. Это соответствует преобразованию 𝑟 ↦→ −𝑟. В обоих случаях
новая координата 𝑟, если ее изобразить на диаграмме Картера–Пенроуза, возрастает
слева направо. Уравнение (8.11) легко решается:

𝑟 = ± (𝜌+ 2𝑀 ln|𝜌− 2𝑀 |) , (8.12)

где мы положили несущественную постоянную интегрирования, которая соответ-
ствует сдвигу 𝑟, равной нулю.

Если радиальная координата 𝜌 ∈ (2𝑀,∞), то пространственная координата 𝑟
меняется от −∞ до ∞. Тем самым внешнее решение Шварцшильда изометрично
всей плоскости 𝑡, 𝑟 с метрикой (8.10).

Теперь на плоскости 𝑡, 𝑟 введем конусные координаты 𝑡, 𝑟 ↦→ 𝜉, 𝜂, где

𝜉 := 𝑡+ 𝑟, 𝜂 := 𝑡− 𝑟.

Тогда метрика примет вид
𝑑𝑠2 = Φ𝑑𝜉𝑑𝜂,

где

Φ := 1− 2𝑀

𝜌

– конформный множитель, в котором 𝜌 рассматривается как неявная функция от 𝜉
и 𝜂.

Область I

Введем координаты Крускала–Секереша, совершив конформное преобразование 𝜉, 𝜂 ↦→
𝑈, 𝑉 , где

𝑈 := 2 e
ξ

4M > 0, 𝑉 := −2 e−
η

4M < 0. (8.13)

Отсюда следуют связи между дифференциалами:

𝑑𝜉 = 4𝑀
𝑑𝑈

𝑈
, 𝑑𝜂 = −4𝑀

𝑑𝑉

𝑉
.

Поэтому метрика (8.10) принимает следующий вид

𝑑𝑠2 = −16𝑀2Φ
𝑑𝑈𝑑𝑉

𝑈𝑉
. (8.14)

Поскольку

𝑟 =
1

2
(𝜉 − 𝜂) = 2𝑀 ln

(
−𝑈𝑉

4

)
, (8.15)

то
−𝑈𝑉

4
= e

r
2M .
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Учитывая связь радиальных координат (8.12), где для области I выбирается знак
“+”, метрику (8.14) запишем в виде

𝑑𝑠2 =
4𝑀2

𝜌
e−

ρ
2M 𝑑𝑈𝑑𝑉, (8.16)

где радиальная координата Шварцшильда 𝜌 является неявной функцией произведе-
ния 𝑈𝑉 , которая определяется формулами (8.12) и (8.15):

− 𝑈𝑉

4
= |𝜌− 2𝑀 | e

ρ
2M . (8.17)

Простые вычисления приводят к следующему выражению для временно́й коор-
динаты Шварцшильда

− 𝑈

𝑉
= e

t
2M . (8.18)

Это значит, что постоянному времени 𝑡 = const в координатах Крускала–Секереша
соответствуют прямые линии на плоскости 𝑈, 𝑉 , проходящие через начало координат.

Поскольку координаты 𝜉, 𝜂 меняются на всей плоскости, то координаты Крускала–
Секереша (8.13) меняются в квадранте 𝑈 > 0, 𝑉 < 0. Таким образом внешнее реше-
ние Шварцшильда изометрично отображено на квадрант I, изображенный на рис.8.4.

Рис. 8.4: Координаты Крускала–Секереша 𝑈, 𝑉 для решения Шварцшильда (слева)
и диаграмма Картера–Пенроуза (справа).

Область III

Теперь на плоскости 𝜉, 𝜂 введем новые координаты

𝑈 := −2 e−
ξ

4M < 0, 𝑉 := 2 e
η

4M > 0.

Такие же вычисления, как и в области I, приводят к той же метрике (8.16). Однако
теперь, на плоскости 𝑈, 𝑉 она определена в квадранте III. Области III в уравнении
(8.12) соответствует знак “−” и поэтому связь радиальной координаты Шварцшильда
𝜌 с координатами Крускала–Секереша задается тем же уравнением (8.17). Таким
образом мы изометрично отобразили внешнее решение Шварцшильда на квадрант
III.

Простые вычисления приводят к тому же выражению (8.18) для временно́й ко-
ординаты Шварцшильда, что и в области I.
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Область II

Преобразование координаты (8.12) определено также при 0 < 𝜌 < 2𝑀 , что соответ-
ствует внутреннему решению Шварцшильда. Разница заключается в том, что теперь
координаты 𝑟, 𝑡 определены не на всей плоскости, а только на половине. Если в урав-
нении выбран знак “+”, то координата 𝑟 меняется от 𝑟 = 2𝑀 ln2𝑀 при 𝜌 = 0 до −∞
при 𝜌 = 2𝑀 . Если выбран знак “−”, то 𝜌 ∈ (−2𝑀 ln2𝑀,∞).

Выберем в уравнении (8.12) знак “+”. Поскольку под горизонтом временна́я и
пространственная координаты меняются местами, то введем конусные координаты
следующим образом:

𝜉 := 𝑟 + 𝑡, 𝜂 := 𝑟 − 𝑡. (8.19)

что соответствует повороту плоскости 𝑟, 𝑡 на 90◦ градусов. Теперь перейдем к коор-
динатам Крускала–Секереша

𝑈 := 2 e
ξ

4M > 0, 𝑉 := 2 e
η

4M > 0.

Тогда внутренняя область отобразится в квадрант II. Причем сверху образ внут-
ренней области на 𝑈, 𝑉 плоскости будет определяться уравнением 𝑈𝑉 < 8𝑀 , т.е.
будет ограничен гиперболой 𝑈𝑉 = 8𝑀 . Таким образом внутренняя область решения
Шварцшильда отображена в квадрант II. При этом метрика, как легко проверить,
будет иметь тот же вид, что и в первом квадранте (8.16). Связь радиальной коорди-
наты Шварцшильда с координатами Крускала–Секереша задается равенством

𝑈𝑉

4
= |𝜌− 2𝑀 | e

ρ
2M . (8.20)

Это уравнение отличается знаком от уравнения (8.17) для статичных областей, по-
скольку в квадранте II произведение 𝑈𝑉 > 0.

Простые вычисления приводят к следующему выражению для временно́й коор-
динаты Шварцшильда

𝑈

𝑉
= e

t
2M , (8.21)

что отличается знаком от (8.18).

Область IV

Выберем в уравнении (8.12) знак “−”. Поскольку нас интересует внутренняя область
решения Шварцшильда, то введем координаты светового конуса (8.19) и перейдем к
координатам Крускала–Секереша:

𝑈 := −2 e−
ξ

4M < 0, 𝑉 := −2 e−
η

4M < 0.

Поскольку координаты 𝑟, 𝑡 определены на полуплоскости, то внутренняя область ре-
шения Шварцшильда отображается в квадрант IV, причем на координаты Крускала–
Секереша наложено условие 𝑈𝑉 < 8𝑀 , т.е. образ внутренней области ограничен сни-
зу гиперболой 𝑈𝑉 = 8𝑀 . Метрика, как и прежде, будет иметь вид (8.16). Нетрудно
также проверить, что координата 𝜌 связана с координатами Крускала–Секереша тем
же соотношением, что и в области II (8.20).

Простые вычисления приводят к тому же выражению (8.21) для временно́й ко-
ординаты Шварцшильда, что и в области II.
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Заметим, что связь координаты 𝜌 с координатами Крускала–Секереша во всех
четырех областях можно записать в виде одного уравнения

− 𝑈𝑉

4
= (𝜌− 2𝑀) e

ρ
2M , (8.22)

опустив знак модуля.
Таким образом, мы отобразили два экземпляра внешней области решения Шварц-

шильда 𝜌 > 2𝑀 на квадранты I, III и два экземпляра внутреннего решения – в квад-
ранты II, IV, которые ограничены условием 𝑈𝑉 < 8𝑀 . Во всех четырех квадрантах
метрика имеет вид (8.16). При этом связь координаты 𝜌 с координатами Крускала–
Секереша определяется уравнением (8.22). Метрика в координатах Крускала–Секереша
(8.16) определена на части плоскости 𝑈, 𝑉 , которая ограничена сверху и снизу двумя
ветвями гиперболы 𝑈𝑉 = 8𝑀 , как показано на рис.8.4. Горизонтам соответствуют
координатные линии 𝑈 = 0 и 𝑉 = 0.

На плоскости 𝑈, 𝑉 можно ввести координаты 𝑇,𝑋:

𝑈 := 𝑇 +𝑋, 𝑉 := 𝑇 −𝑋, (8.23)

где 𝑇 – глобальное время и 𝑋 – глобальная пространственная координата.
Для того, чтобы из метрики Шварцшильда в координатах Крускала–Секереша

получить диаграмму Картера–Пенроуза, необходимо отобразить конусные коорди-
наты 𝑈 ∈ R и 𝑉 ∈ R на конечные интервалы вещественной оси (−𝑎, 𝑎) ⊂ R. Это
можно сделать, например, с помощью преобразования координат

𝑢 := arctg𝑈 ∈
(
−𝜋
2
,
𝜋

2

)
, 𝑣 := arctg 𝑉 ∈

(
−𝜋
2
,
𝜋

2

)
.

Тогда на плоскости 𝑢, 𝑣 мы получим диаграмму Картера–Пенроуза. Для полного
счастья функции 𝑢(𝑈) и 𝑣(𝑉 ) нужно подобрать таким образом, чтобы гиперболы
𝑈𝑉 = 8𝑀 отображались в горизонтальные прямые на плоскости 𝑢, 𝑣. Ясно, что это
всегда можно сделать.

8.4 Мост Эйнштейна–Розена
В 1935 году Эйнштейн и Розен предложили следующую модификацию решения
Шварцшильда (8.1) [?]. Если решение Шварцшильда рассматривать вне горизон-
та 𝜌 > 2𝑀 , то можно ввести новую “радиальную” координату 𝜌 ↦→ 𝑢(𝜌) с помощью
уравнения

1

2
𝑢2 = 𝜌− 2𝑀 > 0. (8.24)

Прямые вычисления приводят к следующей метрике в новых координатах

𝑑𝑠2 =
𝑢2

𝑢2 + 4𝑀
𝑑𝑡2 − (𝑢2 + 4𝑀)𝑑𝑢2 − 1

4
(𝑢2 + 4𝑀)2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2). (8.25)

Преобразование радиальной координаты (8.24) проведено таким образом, что если 𝜌
увеличивается от 2𝑀 до бесконечности, то новая координата либо увеличивается от
0 до ∞, либо уменьшается от 0 до −∞.

Поскольку метрика (8.25) получена преобразованием координат из решения
Шварцшильда, то она также удовлетворяет уравнениям Эйнштейна по крайней мере
в областях 𝑢 > 0 и 𝑢 < 0. Эта метрика определена для всех значений 𝑢 ∈ R. При этом
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два экземпляра внешнего решения Шварцшильда, которым соответствуют положи-
тельные и отрицательные значения 𝑢 сшиты на гиперповерхности 𝑢 = 0, которая
представляет собой топологическое произведение прямой 𝑡 ∈ R на сферу 𝜃, 𝜙 ∈ S2.
Компоненты метрики (8.25) являются гладкими функциями, поэтому можно предпо-
ложить, что уравнения Эйнштейна удовлетворяются при всех значениях 𝑢. Однако
здесь надо проявить осторожность. Дело в том, что при 𝑢 = 0 метрика Эйнштейна–
Розена вырождена, ее обратная не определена, и поэтому сами уравнения Эйнштейна
требуют доопределения. Мы отложим этот вопрос до конца раздела.

Метрика (8.25), очевидно, инвариантна относительно инверсии 𝑢 ↦→ −𝑢.
В своей оригинальной работе Эйнштейн и Розен дали следующую физическую

интерпретацию метрики (8.25). Они предположили, что точечная массивная частица
массы 𝑀 покоится в “центре” сферической системы координат 𝑢 = 0, а пространство-
время вокруг нее описывается двумя листами 𝑢 < 0 и 𝑢 > 0 с метрикой (8.25). При
этом оба листа описывают одну и ту же вселенную.

В настоящее время мосту Эйнштейна–Розена принято давать другую физическую
интерпретацию. С этой целью проведем следующее построение. Мы видим, что мет-
рика (8.25) описывает два внешних решения Шварцшильда, которые гладко сшиты
вдоль гиперповерхности 𝑢 = 0. Поэтому рассмотрим движение пробных частиц в эк-
ваториальной плоскости 𝜃 = 𝜋/2. Они движутся в трехмерном пространстве-времени
с метрикой

𝑑𝑠2 =

(
1− 2𝑀

𝜌

)
𝑑𝑡2 − 𝑑𝜌2

1− 2𝑀

𝜌

− 𝜌2𝑑𝜙2, 𝜌 > 2𝑀,

которую мы записали в координатах Шварцшильда. Для таких пробных частиц про-
странством являются сечения 𝑡 = const. То есть в данном случае пространство – это
двумерное многообразие (поверхность) с метрикой

𝑑𝑙2 =
𝑑𝜌2

1− 2𝑀

𝜌

+ 𝜌2𝑑𝜙2, 𝜌 > 2𝑀, (8.26)

где мы, для наглядности, изменили знак метрики. Будем считать, что 𝜌 и 𝜙 – это
обычные полярные координаты на евклидовой плоскости.

Для того, чтобы лучше представить себе поверхность с метрикой (8.26) вложим ее
в трехмерное евклидово пространство [?]. Пусть 𝜌, 𝜙, 𝑧 – цилиндрические координаты
в R3 с евклидовой метрикой

𝑑𝑠2
0 := 𝑑𝜌2 + 𝜌2𝑑𝜙2 + 𝑑𝑧2.

Допустим, что вращательно симметричное вложение задается некоторой функцией
𝑧(𝜌). Тогда индуцированная метрика на вложенной поверхности будет иметь вид

𝑑𝑙2 =

[
1 +

(
𝑑𝑧

𝑑𝜌

)2
]
𝑑𝜌2 + 𝜌2𝑑𝜙2.

Для того, чтобы эта метрика совпала с метрикой (8.26) необходимо положить(
𝑑𝑧

𝑑𝜌

)2

=
1

ρ
2M

− 1
.
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Это уравнение может быть выполнено только для внешнего решения Шварцшильда
𝜌 > 2𝑀 . Его общее решение имеет вид

𝑧 =

∫
𝑑𝜌√
ρ

2M
− 1

= 4𝑀

√
𝜌

2𝑀
− 1 + const. (8.27)

Постоянная интегрирования соответствует сдвигу координаты 𝑧, и мы положим ее
равной нулю. Отсюда следует, что поверхность с метрикой (8.26) можно вложить в
трехмерное евклидово пространство R3, которая задана уравнением

𝜌

2𝑀
= 1 +

( 𝑧

4𝑀

)2

.

Это – параболоид вращения, который называется параболоидом Фламма и изобра-
жен на рис.8.5a. При этом вложении верхняя (𝑧 > 0) и нижняя (𝑧 < 0) части па-
раболоида изометричны экваториальным сечениям (𝜃 = 𝜋/2, 𝑡 = const) внешнего
решения Шварцшильда. Эти сечения гладко сшиты вдоль горловины 𝑧 = 0, которая
соответствует горизонту 𝜌s = 2𝑀 .

Рис. 8.5: Параболоид Фламма в координатах 𝜌2 = 𝑥2 + 𝑦2 (a). Та же поверхность в
координатах 𝑢2 = 𝑥2 + 𝑦2 (b).

Параболоид Фламма глобально изометричен экваториальным сечениям 𝜃 = 𝜋/2,
𝑡 = const моста Эйнштейна–Розена. В координатах 𝑢, 𝜙 (8.24) вложение задается
уравнением

𝑧2 = 4𝑀𝑢2 ⇔ 𝑧 = ±
√
4𝑀𝑢.

То есть параболоид превращается в два конуса, и горловина моста стягивается в
точку (см. рис.8.5b).

Проведенное построение позволяет дать следующую физическую интерпретацию
моста Эйнштейна–Розена. Мы имеем две вселенные, которые соответствуют положи-
тельным и отрицательным значениям координаты 𝑧. Обе вселенные являются асимп-
тотически плоскими на больших расстояниях 𝜌 → ∞. В “центре” 𝜌 = 2𝑀 ⇔ 𝑢 = 0
вселенные склеены. Такую конфигурацию называют кротовой норой, поскольку че-
рез нее мы имеем возможность попасть из одной вселенной в другую.

Теперь рассмотрим как ведет себя тензор кривизны для моста Эйнштейна–Розена.
Матрица Якоби преобразования координат (𝑡, 𝑢, 𝜃, 𝜙) ↦→ (𝑡, 𝜌, 𝜃, 𝜙) диагональна,

𝜕(𝑡, 𝜌, 𝜃, 𝜙)

𝜕(𝑡, 𝑢, 𝜃, 𝜙)
=


1 0 0 0
0 𝑢 0 0
0 0 1 0
0 0 0 1

 .
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Поэтому при преобразовании координат Шварцшильда к координатам Эйнштейна–
Розена меняются только те компоненты тензора кривизны, которые содержат индекс
1 = “𝑢”. Из формул (8.3) следуют явные выражения для компонент тензора кривизны
моста Эйнштейна–Розена:

𝑅0u0u = − 2𝑀𝑢2(
1
2
𝑢2 + 2𝑀

)3 , 𝑅u2u2 = −2𝑀,

𝑅0202 =
𝑀𝑢2

2
(

1
2
𝑢2 + 2𝑀

)2 , 𝑅u3u3 = −2𝑀 sin 2𝜃, (8.28)

𝑅0303 =
𝑀𝑢2

2
(

1
2
𝑢2 + 2𝑀

)2 sin
2𝜃, 𝑅2323 = 2𝑀

(
1

2
𝑢2 + 2𝑀

)
sin 2𝜃.

Квадрат тензора кривизны (=тензора Вейля) для моста Эйнштейна–Розена имеет
вид

𝑅αβγδ𝑅
αβγδ =

48𝑀2(
1
2
𝑢2 + 2𝑀

)6 .

Отметим, что и компоненты тензора кривизны, и квадрат тензора кривизны явля-
ются гладкими функциями при 𝑢 = 0, где сшиваются два внешних решения Шварц-
шильда.

Мы видим, что, несмотря на то, что метрика (8.25) вырождена при 𝑢 = 0 и ком-
понента обратной метрики 𝑔00 в этой точке имеет полюс, компоненты ковариантного
тензора кривизны определены (полюс сокращается). Сокращение полюса происходит
также в тензоре Риччи и скалярной кривизне. Поэтому можно считать, что вакуум-
ные уравнения Эйнштейна

𝑅αβ = 0

выполнены во всем пространстве-времени R2 × S2, где 𝑡, 𝑢 ∈ R2.
В заключение раздела отметим, что аналогичным образом можно сшить два внут-

ренних решения Шварцшильда. При 0 < 𝜌 < 2𝑀 совершим преобразование коорди-
наты

1

2
𝑢2 := 2𝑀 − 𝜌 > 0. (8.29)

В новых координатах метрика примет вид

𝑑𝑠2 =
𝑢2

𝑢2 − 4𝑀
𝑑𝑡2 − (𝑢2 − 4𝑀)𝑑𝑢2 − 1

4
(𝑢2 − 4𝑀)(𝑑𝜃2 + sin 2𝜃𝑑𝜙2). (8.30)

При этом два внутренних решения Шварцшильда отображаются на положительные
и отрицательные значения координаты 𝑢:

0 < 𝜌 < 2𝑀 ⇔ 0 < |𝑢| < 2
√
𝑀.

Для метрики (8.30) координата 𝑡 является пространственноподобной, а 𝑢 – времени-
подобной.

8.5 Изотропные координаты
Приведем пространственную часть метрики Шварцшильда

𝑑𝑠2 = − 𝑑𝜌2

1− 2M
ρ

− 𝜌2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)
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к конформно плоскому виду. С этой целью совершим преобразование радиальной
координаты 𝜌 ↦→ 𝜌(𝑟). Тогда пространственная часть метрики примет вид

𝑑𝑠2 = − 𝜌′2𝑑𝑟2

1− 2M
ρ

− 𝜌2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2),

где штрих обозначает дифференцирование по 𝑟. Для того, чтобы эта метрика была
конформно плоской необходимо и достаточно, чтобы функция 𝜌(𝑟) удовлетворяла
уравнению

𝜌2

𝑟2
=

𝜌′2

1− 2M
ρ

.

Рассмотрим область вне горизонта 2𝑀 < 𝜌 < ∞ и предположим, что 𝜌′ > 0, т.е. ра-
диальные координаты возрастают одновременно. Тогда функция 𝜌(𝑟) удовлетворяет
уравнению

𝜌

𝑟
=

𝜌′√
1− 2M

ρ

.

Общее решение этого уравнения имеет вид

𝐶𝑟 =
√
𝜌2 − 2𝑀𝜌+ 𝜌−𝑀 ⇔ 𝜌 =

(𝐶𝑟 +𝑀)2

2𝐶𝑟
,

где 𝐶 > 0 – постоянная интегрирования.
Пространственная часть метрики Шварцшильда в новых координатах является

конформно евклидовой:

𝑑𝑠2 = −Φ
[
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]
,

где

Φ(𝑟) :=
(𝐶𝑟 +𝑀)4

4𝐶2𝑟4

– конформный множитель. Потребуем, чтобы полученная метрика была асимптоти-
чески евклидовой, т.е.

lim
r→∞

Φ(𝑟) → 1.

Отсюда находится постоянная интегрирования: 𝐶 = 2, что мы и предположим. Тогда
преобразование радиальной координаты примет вид

𝜌 := 𝑟

(
1 +

𝑀

2𝑟

)2

. (8.31)

Теперь нетрудно вычислить компоненту 𝑔00 метрики Шварцшильда:

1− 2𝑀

𝜌
=

(
1− M

2r

1 + M
2r

)2

.

Таким образом, метрика Шварцшильда в новой системе координат принимает
вид

𝑑𝑠2 =

(
1− M

2r

1 + M
2r

)2

𝑑𝑡2 −
(
1 +

𝑀

2𝑟

)4 [
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]
. (8.32)
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Если перейти к декартовой системе координат на пространственных сечениях 𝑡 =
const, то при 𝑀 > 0 эта метрика определена всюду в R4 за исключением мировой
линии начала сферической системы координат,

−∞ < 𝑡 <∞, 0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋.

Очевидно, что полученная метрика является гладкой в остальной части R4.
Поскольку данная метрика получена из решения Шварцшильда преобразованием

координат (8.31), то она удовлетворяет вакуумным уравнениям Эйнштейна всюду в
R4 за исключением мировой линии начала сферической системы координат.

Каждое сечение постоянного времени 𝑡 = const является конформно плоским и,
следовательно, изотропным. Поэтому координаты 𝑡, 𝑟, 𝜃, 𝜙 называют изотропными.
Изотропные координаты для метрики Шварцшильда давно и хорошо известны (см.,
например, [?], §100, задача 4).

Определитель метрики (8.32) равен

det 𝑔αβ = −
(
1− 𝑀

2𝑟

)2(
1 +

𝑀

2𝑟

)10

𝑟4 sin 2𝜃. (8.33)

Следовательно, эта метрика вырождена на сфере радиуса

𝑟∗ :=
𝑀

2
, (8.34)

который соответствует горизонту 𝜌s = 2𝑀 в решении Шварцшильда, и на оси 𝑧
(𝜃 = 0, 𝜋). Вырождение на оси 𝑧 связано со сферической системой координат при
𝑧 ̸= 0.

Мы уже показали, что все геометрические инварианты для метрики Шварцшиль-
да, построенные из тензора кривизны, не имеют особенностей на горизонте, и, сле-
довательно, на сфере радиуса 𝑟∗ в изотропных координатах.

Преобразование координат (8.31) показано на рис.8.6. Когда радиус 𝑟 убывает
от бесконечности до критического значения 𝑟∗ := 𝑀/2, то радиальная координата
Шварцшильда 𝜌 убывает от ∞ до горизонта 𝜌s := 2𝑀 . Затем, по мере убывания 𝑟 от
𝑟∗ до нуля, радиус 𝜌 возрастает от 𝜌s до ∞. Таким образом два экземпляра метрики
Шварцшильда вне горизонта 2𝑀 < 𝜌 <∞ отображаются на две различные области
в R4: 0 < 𝑟 < 𝑟∗ и 𝑟∗ < 𝑟 < ∞. На сфере 𝑟 = 𝑟∗ они гладко сшиваются. При этом
пространственная часть метрики невырождена. Заметим, что площадь поверхности
сферы при приближении к началу координат стремится к бесконечности. Это связано
с тем, что компоненты пространственной части метрики (8.32) расходятся при 𝑟 → 0.

Легко вычислить пространственную асимптотику нулевой компоненты метрики
(8.32)

𝑔00 ≈ 1− 2𝑀

𝑟
, 𝑟 → ∞.

Она такая же, как и у метрики Шварцшильда в координатах Шварцшильда. Это
неудивительно, т.к. 𝜌→ 𝑟 при 𝑟 → ∞. Это означает, что с законом тяготения Ньюто-
на для метрики (8.32) все в порядке, поскольку он определяется асимптотикой при
𝑟 → ∞.

Метрика Шварцшильда в изотропных координатах (8.32) инвариантна относи-
тельно следующего преобразования радиальной координаты

𝑟 ↦→ 𝑟′ :=
𝑀2

4𝑟
⇔ 2𝑟′

𝑀
=
𝑀

2𝑟
. (8.35)
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Рис. 8.6: Преобразование от координат Шварцшильда к изотропным координатам.

Это утверждение легко проверяется. При таком преобразовании координат точки
пространства-времени отражаются относительно критической сферы. Сама крити-
ческая сфера 𝑟∗ =𝑀/2 остается неподвижной. Начало координат 𝑟 = 0 отображает-
ся в бесконечно удаленную точку 𝑟′ = ∞, и, наоборот, бесконечно удаленная точка
𝑟 = ∞ отображается в начало координат 𝑟′ = 0.

Заметим, что шварцшильдовская радиальная координата (8.31) при преобразова-
нии (8.35) не меняется:

𝜌 = 𝑟

(
1 +

𝑀

2𝑟

)2

= 𝑟′
(
1 +

𝑀

2𝑟′

)2

.

То есть одной и той же точке внешнего решения Шварцшильда соответствует две
точки пространства-времени с метрикой (8.32): одна – внутри критической сферы, а
другая – снаружи. Преобразование координат (8.35) меняет эти точки местами.

Метрика Шварцшильда в изотропных координатах глобально изометрична мет-
рике моста Эйнштейна–Розена. Изометрия задается преобразованием

𝑢 =
√
2𝑟

(
1− 𝑀

2𝑟

)
, 𝑟 > 0. (8.36)

При этом два внешних решения Шварцшильда, соответствующих положительным
и отрицательным значениям 𝑢, отображаются во внешность и внутренность сферы
критического радиуса 𝑟∗ :=𝑀/2:

𝑢 > 0, 𝑟∗ < 𝑟 <∞,

𝑢 = 0, 𝑟 = 𝑟∗,

𝑢 < 0, 0 < 𝑟 < 𝑟∗.

Качественное поведение функции 𝑢(𝑟) показано на рис.8.7.
Инвариантности метрики Эйнштейна–Розена относительно инверсии 𝑢 ↦→ 𝑢′ :=

−𝑢 соответствует инвариантность метрики Шварцшильда в изотропных координатах
относительно преобразования радиальной координаты (8.35), поскольку справедлива
формула

𝑢 =
√
2𝑟

(
1− 𝑀

2𝑟

)
= −

√
2𝑟′
(
1− 𝑀

2𝑟′

)
,

в чем можно убедиться прямой проверкой.
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Рис. 8.7: Качественное поведение функции 𝑢(𝑟).



Глава 9

Космология

В настоящей главе мы рассмотрим простейшие космологические модели в рамках
общей теории относительности. Это направление исследований составляет классиче-
ский раздел теории гравитации и в настоящее время стало очень актуальным в связи
с накоплением большого количества наблюдательных данных.

Основные космологические модели основаны на космологическом принципе, со-
гласно которому вселенная однородна и изотропна. При этом обычно предполагают,
что вся вселенная заполнена сплошной средой (жидкостью или газом).

Заметим, что если евклидово пространство R3 заполнено веществом с однородной
плотностью, то ньютонов гравитационный потенциал равен нулю. Это значит, что
при отсутствии других взаимодействий однородная модель вселенной в механике
Ньютона является статической. В общей теории относительности, как мы увидим
ниже, ситуация другая: однородные и изотропные модели вселенной не статичны,
что хорошо согласуется с наблюдательными данными.

9.1 Вселенная Фридмана

Во вселенной очень много объектов, типичными представителями которых являют-
ся звезды, вокруг которых вращаются планеты. Звезды объединены в галактики,
которые, в свою очередь, образуют скопления галактик. Кроме этого во вселенной
присутствует электромагнитное излучение, метеориты, кометы и множество других
объектов, о которых мы в настоящее время, вполне возможно, и не догадываемся. К
настоящему времени человечество накопило довольно много данных, полученных в
результате наблюдений за звездным небом.

Согласно современным наблюдательным данным трехмерное пространство, кото-
рое нас окружает, в каждый момент времени 𝑡 := 𝑥0 в крупном масштабе является
однородным и изотропным. Правильнее сказать, что современные данные не проти-
воречат предположению об однородности и изотропии вселенной, которые являются
естественными с физической точки зрения по крайней мере в главном приближении.
Физически однородность пространства означает, что свойства вселенной не зависят
от того, какая точка выбрана в качестве начала системы координат, а изотропия –
что свойства вселенной не зависят от направления, выбранного в каждой точке про-
странства. Однородность и изотропию вселенной часто называют космологическим
принципом. Слова “в крупном масштабе” следует понимать по аналогии с однород-
ностью газа: нельзя говорить об однородности в малых областях вселенной; она од-
нородна только после усреднения по достаточно большим областям пространства,
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включающим много скоплений галактик.
Об изотропии вселенной говорит изотропия реликтового микроволнового излуче-

ния, которое было открыто А. Пензиасом и Р. Вилсоном в 1965 году [?]. За это откры-
тие они получили Нобелевскую премию. Впоследствии реликтовое излучение было
измерено в широком диапазоне частот. С высокой степенью точности оно является
изотропным и неполяризованным, а его спектр соответствует излучению абсолютно
черного тела с температурой около 2, 7◦𝐾.

Для построения модели вселенной в рамках общей теории относительности слов
“однородная и изотропная вселенная” недостаточно. Определение и математический
смысл этим словам был дан в разделе 4.3. Там было доказано, что однородное и изо-
тропное многообразие является пространством постоянной кривизны. Верно также
обратное утверждение: если (псевдо)риманово многообразие является пространством
постоянной кривизны в смысле определения (4.23) при 𝑅 = const, то оно является
однородным и изотропным. Для построения космологической модели мы требуем,
чтобы все сечения пространства-времени, соответствующие постоянному времени,
и которые мы предполагаем пространственноподобными, были однородными и изо-
тропными, т.е. пространствами постоянной кривизны, которые имеют максимально
возможное число (шесть) векторов Киллинга. При этом в каждой точке простран-
ства три векторных поля Киллинга генерируют группу вращений O(3) (изотропия
вселенной) и три векторных поля Киллинга – симметрию относительно “трансляций”
(однородность вселенной).

9.1.1 Метрика однородной и изотропной вселенной

При рассмотрении моделей вселенных Фридмана мы предполагаем, что пространст-
во-время с топологической точки зрения представляет собой топологическое произ-
ведение M = R × S, где 𝑡 ∈ R – временна́я ось и 𝑥 = (𝑥µ) ∈ S, 𝜇 = 1, 2, 3, – трех-
мерное пространство постоянной кривизны с отрицательно определенной метрикой.
Это требование означает, в частности, что все пространственные сечения M, соот-
ветствующие постоянному времени 𝑡 = const, являются пространствами постоянной
кривизны S. Мы также предполагаем, что пространство-время является геодезически
полным, т.е. любую геодезическую (экстремаль) можно продолжить до бесконечно-
го значения канонического параметра. Это требование необходимо для того, чтобы,
например, рассматривать в качестве пространства постоянной кривизны всю сферу
целиком, а не какую-либо ее часть.

В дальнейшем мы увидим, что космологические решения уравнений Эйнштейна
часто имеют сингулярности, и решение определено не на всей оси времени, а на полу-
оси или на конечном интервале. Для таких решений пространство-время не является
геодезически полным. В настоящем разделе мы рассматриваем только кинематиче-
ские свойства метрики, т.е. без учета уравнений движения, и, для простоты, будем
считать, что метрика определена на всей вещественной оси 𝑡 ∈ R.

Прежде чем дать определение однородной и изотропной вселенной, напомним
некоторые свойства пространств постоянной кривизны. В рассматриваемом случае
под пространством постоянной кривизны мы понимаем пару (S, ◦𝑔), где S – трехмерное
многообразие и ◦𝑔 – заданная на нем метрика, которая удовлетворяет равенству

◦
𝑅µνρσ =

◦
𝐾
(
◦
𝑔µρ
◦
𝑔νσ −

◦
𝑔µσ

◦
𝑔νρ

)
, (9.1)

где
◦
𝑅µνρσ – тензор кривизны для метрики ◦𝑔µν и

◦
𝐾 ∈ R – некоторая постоянная (нор-
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мированная скалярная кривизна). Напомним, что на пространственных сечениях мы
выбираем отрицательно определенную метрику, и поэтому для пространств положи-
тельной кривизны

◦
𝐾 < 0. Соответствующий тензор Риччи и скалярная кривизна

имеют вид
◦
𝑅µν = 2

◦
𝐾
◦
𝑔µν ,

◦
𝑅 = 6

◦
𝐾. (9.2)

Координаты на S можно масштабировать таким образом, что гауссова кривизна
◦
𝐾 будет принимать только три значения:

◦
𝐾 = 1, 0,−1. Следовательно, возможны

три случая:
◦
𝐾 = −1, S ≈ S3 – трехмерная сфера (пространство положительной кри-

визны, замкнутая вселенная);
◦
𝐾 = 0, S ≈ R3 – трехмерное евклидово пространство

(пространство нулевой кривизны, открытая вселенная) и
◦
𝐾 = 1, S ≈ H3 – трех-

мерное гиперболическое пространство или псевдосфера (пространство отрицатель-
ной кривизны, открытая вселенная). При этом под пространством H3 мы понимаем
верхнюю полу́ двуполостного гиперболоида, вложенного в пространство Минковско-
го: H3 →˓ R1,3. Все три пространства постоянной кривизны S = {S3,R3,H3} являются
связными и односвязными.

Если кривизна пространственных сечений равна нулю или отрицательна, то все-
ленная также может быть замкнута, если евклидово R3 или гиперболическое H3 про-
странства факторизовать по группе преобразований, действующей свободно и соб-
ственно разрывно. Например, для евклидова пространства R3 после факторизации
мы получим трехмерный цилиндр или тор. Дальнейшее рассмотрение мы, для опре-
деленности, ограничим только универсальными накрывающими S = {S3,R3,H3}.

Любое пространство постоянной кривизны является однородным и изотропным
(см. раздел 4.3). Это значит, что на пространственных сечениях определена шести-
параметрическая группа преобразований

G =


SO(4), S = S3 – сфера,
ISO(3), S = R3 – евклидово пространство,
SO(3, 1), S = H3 – гиперболоид.

(9.3)

Следовательно, на каждом трехмерном пространстве постоянной кривизны S опре-
делены шесть линейно независимых векторных полей Киллинга 𝐾i = 𝐾µ

i (𝑥)𝜕µ, 𝑖 =
1, . . . , 6. В каждой точке 𝑥 ∈ S три векторных поля Киллинга соответствуют транс-
ляциям (однородность), а три – вращениям (изотропия).

Поскольку пространство-время четырехмерно, а группа преобразований опреде-
лена только на пространственных сечениях S →˓ M, то ее действие надо доопределить
на всем M. Будем считать, что группа преобразований не действует на время (см.
раздел 4.5):

𝑡 ↦→ 𝑡′ = 𝑡,

𝑥µ ↦→ 𝑥′µ = 𝑥µ + 𝜖i𝐾µ
i + o(𝜖), 𝜖i ≪ 1.

(9.4)

Тогда соответствующие векторные поля Киллинга на M имеют равную нулю вре-
менну́ю компоненту, (𝐾α

i ) = (0, 𝐾µ
i ), где пространственные компоненты 𝐾µ

i (𝑡, 𝑥) в
общем случае зависят от времени. Ясно, что алгебра Ли группы преобразований
осталась прежней, т.к. время 𝑡 входит в компоненты векторных полей Киллинга 𝐾i

как параметр.
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Теперь у нас есть пространство-время (M, 𝑔), на котором определена группа пре-
образований, порожденная инфинитезимальными преобразованиями (9.4), и мы в
состоянии дать

Определение. Вселенная (M, 𝑔) называется однородной и изотропной, если
1) многообразие M представляет собой топологическое произведение M = R × S,

где 𝑡 ∈ R – время и S – трехмерное пространство постоянной кривизны с отри-
цательно определенной метрикой;

2) метрика 𝑔 на M инвариантна относительно преобразований (9.4), порожденных
преобразованиями симметрии для S.

Из теорем 4.5.1 и 4.5.2 вытекает, что с точностью до преобразования координат
наиболее общий вид метрики однородной и изотропной вселенной следующий

𝑑𝑠2 = 𝑑𝑡2 + 𝑎2 ◦𝑔µν𝑑𝑥
µ𝑑𝑥ν , (9.5)

где ◦𝑔µν(𝑥) – отрицательно определенная метрика на S, не зависящая от времени. Вы-
ражение “наиболее общий” означает, что любая метрика однородной и изотропной
вселенной приводится к виду (9.5) с помощью преобразования координат. Функция
времени 𝑎(𝑡) > 0 предполагается достаточно гладкой и называется масштабным
множителем. При этом векторные поля Киллинга не зависят от времени. Как ви-
дим, требование однородности и изотропии вселенной приводит к тому, что вся за-
висимость метрики от времени содержится в масштабном множителе, который опре-
деляется уравнениями Эйнштейна.

Впервые метрику вида (9.5) для космологических моделей вселенных рассмотрел
А. Фридман [?, ?], и она называется метрикой Фридмана.

Замечание. Напомним, что из изотропии вселенной следует ее однородность (тео-
рема 4.3.1), поэтому можно было бы просто говорить об изотропной вселенной. Тем
не менее мы будем употреблять термин “однородная и изотропная вселенная”, по-
скольку эпитет “однородная” отражает важные физические свойства вселенной, и
это также принято в современной литературе.

Из вида метрики (9.5) следует, что однородная и изотропная вселенная являет-
ся сплетенным произведением вещественной прямой R и пространства постоянной
кривизны S, которое было определено в разделе 7.1.

Метрика (9.5) имеет блочно диагональный вид, и, в соответствии с результатами
раздела 6.12.2, часы во всей вселенной можно синхронизировать. Поэтому система
координат (𝑡, 𝑥µ) является синхронной, и координата 𝑡 называется космологическим
временем. Ситуация здесь аналогична тому, что имеет место в механике Ньютона:
наблюдаемое время 𝑡 едино для всех точек вселенной. Сравнение наблюдательных
космологических данных с теорией проводится, как правило, с использованием мет-
рики в виде (9.5). К сожалению, эта процедура не является инвариантной, т.к. вид
метрики зависит от выбора системы отсчета.

Метрика Фридмана (9.5) допускает по крайней мере шестипараметрическую груп-
пу симметрии (9.3), которая действует на пространственных сечениях 𝑡 = const.
Масштабный множитель находится из уравнений Эйнштейна, и в некоторых случа-
ях группа симметрии пространства-времени может быть шире.

Вычислим геометрические характеристики метрики (9.5), не фиксируя коорди-
нат на пространствах постоянной кривизны. Простые вычисления показывают, что
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только четыре символа Кристоффеля отличны от нуля:

Γ0µ
ν = Γµ0

ν =
𝑎̇

𝑎
𝛿νµ,

Γµν
0 = −𝑎𝑎̇◦𝑔µν ,

Γµν
ρ =

◦
Γµν

ρ,

(9.6)

где
◦
Γµν

ρ – символы Кристоффеля для метрики ◦
𝑔µν и точка обозначает дифферен-

цирование по 𝑡. Тензор кривизны имеет только две отличные от нуля независимые
компоненты:

𝑅0µ0ν = 𝑎𝑎̈
◦
𝑔µν ,

𝑅µνρσ = 𝑎2
◦
𝑅µνρσ + 𝑎2𝑎̇2(

◦
𝑔µρ
◦
𝑔νσ −

◦
𝑔µσ

◦
𝑔νρ),

(9.7)

где
◦
𝑅µνρσ – тензор кривизны (9.1) трехмерных пространственных сечений для мет-

рики ◦𝑔µν . Теперь вычислим тензор Риччи и скалярную кривизну:

𝑅00 = 3
𝑎̈

𝑎
, 𝑅0µ = 𝑅µ0 = 0,

𝑅µν =

(
𝑎𝑎̈+ 2𝑎̇2 + 2

◦
𝐾

)
◦
𝑔µν ,

𝑅 =
6

𝑎2
(𝑎𝑎̈+ 𝑎̇2 +

◦
𝐾),

(9.8)

где мы воспользовались выражением для тензора Риччи пространства постоянной
кривизны (9.2).

Заметим, что скалярная кривизна (9.8), которая является геометрическим ин-
вариантом, не зависит от пространственных координат. Это находится в согласии с
требованием инвариантности скалярных полей относительно действия транзитивных
групп преобразований.

Конкретный вид метрики пространства постоянной кривизны ◦
𝑔µν зависит от си-

стемы координат, выбранной на S. Часто используются безразмерные сферические
координаты 𝜒, 𝜃, 𝜙, в которых метрика (положительно определенная) имеет вид

◦
𝑔µν𝑑𝑥

µ𝑑𝑥ν =


𝑑𝜒2 + sin 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2), S3,

𝑑𝜒2 + 𝜒2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2), R3,

𝑑𝜒2 + sh 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2), H3.

(9.9)

В стереографических координатах на сечениях 𝑡 = const метрика Фридмана при-
мет вид

𝑔αβ =

1 0

0
𝑎2𝜂µν(

1 + 𝑏𝑥2
)2

 , (9.10)

где 𝜂µν := diag (−−−) – отрицательно определенная евклидова метрика, и постоян-

ная 𝑏 связана с нормированной скалярной кривизной простым соотношением
◦
𝐾 = 4𝑏

(напомним, что, поскольку метрика 𝜂µν на пространственных сечениях отрицательно
определена, то 𝑥2 := 𝑥µ𝑥ν𝜂µν ≤ 0). Метрике (9.10) соответствует интервал

𝑑𝑠2 = 𝑑𝑡2 + 𝑎2𝜂µν𝑑𝑥
µ𝑑𝑥ν(

1 + 𝑏𝑥2
)2 .
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Для пространств положительной (𝑏 < 0) и нулевой (𝑏 = 0) кривизны стереогра-
фические координаты определены во всем евклидовом пространстве 𝑥 ∈ R3. Для
пространств отрицательной кривизны (𝑏 > 0) координаты определены внутри шара
|𝑥2| < 1/𝑏.

Стереографические координаты удобны для проведения вычислений. Поэтому
вычислим геометрические характеристики для метрики Фридмана в виде (9.10). От-
личные от нуля символы Кристоффеля равны

Γ0µ
ν = Γµ0

ν =
𝑎̇

𝑎
𝛿νµ,

Γµν
0 = − 𝑎̇𝑎(

1 + 𝑏𝑥2
)2𝜂µν ,

Γµν
ρ =

◦
Γµν

ρ.

(9.11)

Прямые вычисления показывают, что только две независимые компоненты тензора
кривизны отличны от нуля:

𝑅0µ0ν =
𝑎̈𝑎(

1 + 𝑏𝑥2
)2𝜂µν ,

𝑅µνρσ = 𝑎2
◦
𝑅µνρσ +

𝑎̇2𝑎2(
1 + 𝑏𝑥2

)2 (𝜂µρ𝜂νσ − 𝜂µσ𝜂νρ),

(9.12)

где
◦
𝑅µνρσ – тензор кривизны (9.1), построенный по метрике ◦𝑔µν .
Выпишем отличные от нуля компоненты тензора Риччи и скалярную кривизну в

стереографических координатах:

𝑅00 = 3
𝑎̈

𝑎
, 𝑅0µ = 𝑅µ0 = 0,

𝑅µν =
𝑎̈𝑎+ 2𝑎̇2 − 8𝑏(

1 + 𝑏𝑥2
)2 𝜂µν ,

𝑅 =
6𝑎̈𝑎+ 6𝑎̇2 − 24𝑏

𝑎2
.

(9.13)

В дальнейшем метрика Фридмана, как правило, будет использоваться в общем
виде (9.5) без использования конкретной системы координат на пространственных
сечениях. Этого оказывается достаточно для анализа уравнений Эйнштейна.

Для исследования свойств метрики Фридмана часто используется другая система
координат в пространстве-времени, в которой метрика Фридмана конформно экви-
валентна некоторой статической метрике. А именно, совершим преобразование вре-
менно́й координаты 𝑡 ↦→ 𝜂, где монотонная функция 𝑡 = 𝑡(𝜂) определяется диффе-
ренциальным уравнением

𝑑𝑡 = 𝑎(𝑡)𝑑𝜂. (9.14)

Это уравнение при достаточно общих предположениях имеет единственное решение
с точностью до сдвига новой временно́й координаты: 𝜂 ↦→ 𝜂 + const. После преобра-
зования временно́й координаты интервал принимает вид

𝑑𝑠2 = 𝑎2
(
𝑑𝜂2 +

◦
𝑔µν𝑑𝑥

µ𝑑𝑥ν
)
, (9.15)
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где 𝑎 = 𝑎
(
𝑡(𝜂)

)
– функция нового времени 𝜂. Метрика, стоящая в скобках, статична,

и вся зависимость от времени вынесена в общий конформный множитель. В таком
виде удобно исследовать причинную структуру пространства-времени, т.к. световые
конусы для метрики 𝑔αβ те же, что и для статической метрики, стоящей в скобках.

9.1.2 Космологическое красное смещение

Если масштабный множитель меняется со временем, 𝑎̇ ̸= 0, то расстояние между
двумя наблюдателями, имеющими фиксированные пространственные координаты,
скажем, 𝑥1 и 𝑥2, также меняется со временем. Это приводит к смещению частот
световых сигналов. Если вселенная расширяется, 𝑎̇ > 0, то, как мы увидим, возникает
красное смещение спектральных линий.

Свет распространяется вдоль нулевых экстремалей
(
𝑡(𝜏), 𝑥µ(𝜏)

)
, 𝜏 ∈ R, при этом

4-вектор скорости (𝑡′, 𝑥µ ′), где штрих обозначает дифференцирование по канониче-
скому параметру 𝜏 (точка зарезервирована для дальнейших обозначений), представ-
ляет собой 4-импульс фотона. Нулевая компонента импульса является энергией фо-
тона и, следовательно, пропорциональна частоте фотона 𝜔:

𝑡′ = ~𝜔,

где ~ – постоянная Планка. При этом длина волны фотона 𝜆 связана с частотой
равенством

𝜆𝜔 = 2𝜋𝑐,

где 𝑐 – скорость света.
Допустим, что мы находимся в точке 𝑥0 и наблюдаем световой сигнал, испущен-

ный кем-то в точке 𝑥1. Тогда величина красного смещения 𝑧 определяется относи-
тельным смещением длин волн

𝑧 :=
𝜆0 − 𝜆1

𝜆1

,

что можно выразить через нулевую компоненту скорости:

𝑧 =
𝜔1 − 𝜔0

𝜔0

=
𝑡′1 − 𝑡′0
𝑡′0

. (9.16)

Фотоны распространяются в пространстве-времени вдоль нулевых экстремалей
𝑡(𝜏), 𝑥µ(𝜏). Уравнения для экстремалей определяются символами Кристоффеля (9.6)
и имеют вид

𝑡′′ = 𝑎𝑎̇
◦
𝑔µν𝑥

µ ′𝑥ν ′,

𝑥µ ′′ = −2
𝑎̇

𝑎
𝑥µ ′𝑡′ −

◦
Γνρ

µ𝑥ν ′𝑥ρ ′,
(9.17)

где точка обозначает дифференцирование по 𝑡. Поскольку фотоны распространяются
вдоль нулевых экстремалей, то для них выполнено равенство

𝑡′2 + 𝑎2 ◦𝑔µν𝑥
µ ′𝑥ν ′ = 0.

Подстановка этого выражения в правую часть первого уравнения (9.17) приводит к
равенству

𝑡′′ +
𝑎̇

𝑎
𝑡′2 = 0.
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Разделим полученное соотношение на 𝑡′ и проинтегрируем вдоль экстремали. В ре-
зультате получим условие на нулевую компоненту 4-скорости фотона:

𝑎𝑡′ = const.

Отсюда следует, что красное смещение можно выразить через масштабный множи-
тель:

𝑧 =
𝑎0 − 𝑎1

𝑎1

. (9.18)

Это – универсальная и точная формула для красного смещения. Она определяется
масштабным множителем 𝑎1 в момент испускания света и 𝑎0 в момент наблюдения,
и не зависит от истории сигнала в промежуточные моменты времени. Из получен-
ной формулы вытекает, что относительное смещение длин волн положительно, если
вселенная расширяется, и отрицательно – если сжимается.

Другое важное следствие из вида метрики Фридмана – это связь красного сме-
щения с расстоянием до объекта. Для света, испущенного и полученного в близких
пространственно-временны́х точках, справедливо равенство

𝑑𝑠2 = 0 ⇔ 𝑑𝑡2 = 𝑑𝑙2, 𝑐 = 1,

где 𝑑𝑙 – пространственное расстояние между событиями:

𝑑𝑙2 := −𝑎2 ◦𝑔µν𝑑𝑥
µ𝑑𝑥ν .

Поэтому из формулы (9.18) следуют равенства:

𝑧 :=
𝑑𝜆

𝜆
=
𝑑𝑎

𝑎
=
𝑎̇𝑑𝑡

𝑎
=
𝑎̇

𝑎
𝑑𝑙.

Введем параметр Хаббла

𝐻 :=
𝑎̇

𝑎

∣∣∣∣
t=t0

. (9.19)

Тогда красное смещение спектральных линий в настоящее время 𝑡0 определяется
законом Хаббла

𝑑𝜆

𝜆
= 𝐻𝑑𝑙. (9.20)

Содержание этого закона состоит в том, что относительное красное смещение спек-
тральных линий прямо пропорционально расстоянию до объекта. Этот закон получен
для бесконечно близких событий. На практике он приближенно справедлив для ко-
нечных расстояний, 𝑑𝑙 ↦→ △𝑙. Ранее точность измерений была невысока, и считалось,
что параметр Хаббла является постоянным. Поэтому до сих пор его часто называют
постоянной Хаббла. Современные наблюдательные данные показывают, что пара-
метр Хаббла зависит от времени и “постоянная Хаббла” не является постоянной.

Если параметр Хаббла является постоянным, как долго считалось в середине 20-
го века, то из уравнения (9.19) следует экспоненциальное поведение масштабного
множителя

𝑎 = 𝐶 eHt, 𝐶 > 0.

Если 𝐻 > 0, то происходит экспоненциальный рост. Для решения некоторых космо-
логических проблем, которые мы обсуждать не будем, предполагают, что масштаб-
ный множитель, по крайней мере на ранних этапах эволюции вселенной, экспонен-
циально растет. Такой экспоненциальный рост масштабного множителя называется
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инфляцией. Предположение об инфляционной стадии развития вселенной в насто-
ящее время широко распространено. Космологических моделей, приводящих к ин-
фляции, не так много. Позже мы увидим, что это происходит, например, в решении
де Ситтера (9.62).

Наша интуиция основана на механике Ньютона. Поэтому посмотрим на наблюда-
емое красное смещение спектральных линий с другой точки зрения. Пусть галактики
движутся в плоском пространстве-времени Минковского R1,3. Если галактика удаля-
ется, то наблюдаемая длина волны светового сигнала будет увеличиваться, а частота
– уменьшаться (красное смещение). Это явление известно как эффект Доплера. В
нерелятивистском пределе 𝑉/𝑐≪ 1 частота в первом порядке меняется по правилу

𝜔1 = 𝜔0

(
1 +

𝑉

𝑐

)
,

где 𝑉 – скорость галактики, и 𝑐 – скорость света. Подстановка этого выражения в
формулу для красного смещения (9.16) приводит к равенству

𝑧 =
𝑉

𝑐
. (9.21)

Дальнейшее сравнение с законом Хаббла позволяет найти скорость галактики

𝑉 = 𝑐𝐻△𝑙,

где △𝑙 – расстояние между галактиками. Мы видим, что наблюдаемая скорость раз-
бегания галактик прямо пропорциональна расстоянию.

В заключение вычислим наблюдаемую скорость разбегания галактик из других
соображений. Согласно предложению 9.1.1, которое будет доказано в следующем раз-
деле, в однородной и изотропной вселенной частицы среды (галактики) движутся
вдоль экстремалей, совпадающих с координатными линиями времени. То есть про-
странственные координаты галактик 𝑥µ остаются неизменными. Поэтому наблюдае-
мое расстояние до галактики примерно равно

△𝑙 = 𝑎(𝑡)

√
−◦𝑔µν△𝑥µ△𝑥ν ,

где △𝑥µ := 𝑥µ1−𝑥
µ
0 – разность пространственных координат галактик. Это расстояние

меняется только благодаря наличию масштабного множителя. Вычислим наблюдае-
мую скорость

𝑉 :=
𝑑

𝑑𝑡
△𝑙 = 𝑐𝑎̇

√
−◦𝑔µν△𝑥µ△𝑥ν = 𝑐

𝑎̇

𝑎
△𝑙 = 𝑐𝐻△𝑙, (9.22)

где мы восстановили скорость света, 𝑥0 := 𝑐𝑡, и 𝑎̇ := 𝑑𝑎/𝑑𝑥0. Как видим, полученная
формула совпадает с той, что была получена из закона Хаббла.

9.1.3 Уравнения движения

Масштабный множитель, входящий в метрику Фридмана, находится из уравнений
Эйнштейна и зависит от выбора модели для полей материи. В дальнейшем мы рас-
смотрим несколько моделей вселенной, для которых масштабный множитель имеет
явное аналитическое выражение.
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Прежде всего получим уравнения Эйнштейна. Из компонент тензора Риччи и
скалярной кривизны (9.8) составляем тензор Эйнштейна. Он имеет следующие ком-
поненты:

𝐺0
0 = −3

𝜖+ 𝑎̇2

𝑎2
,

𝐺0
µ = 0, 𝐺µ

0 = 0,

𝐺µ
ν = −2𝑎𝑎̈+ 𝑎̇2 + 𝜖

𝑎2
𝛿νµ,

(9.23)

где постоянная 𝜖, которая введена для удобства, равна нормированной скалярной
кривизне с обратным знаком, что соответствует положительно, а не отрицательно
определенной метрике на пространственных сечениях:

𝜖 := −
◦
𝐾 = −4𝑏. (9.24)

Постоянная 𝑏 была определена стереографическими координатами (9.10). Простран-
ственные сечения 𝑡 = const при этом являются сферой S3 (𝜖 > 0), евклидовым про-
странством R3 (𝜖 = 0) или гиперболоидом H3 (𝜖 < 0).

Мы записываем компоненты тензора Эйнштейна (9.23) с одним ковариантным и
одним контравариантным индексом. Это удобно, т.к. в этом случае тензор энергии-
импульса полей материи, как мы увидим, является диагональным.

Следующий шаг состоит в выборе тензора энергии-импульса материи. При по-
строении моделей вселенной мы используем космологический принцип, который со-
стоит из двух независимых требований:

∙ Метрика пространства-времени должна быть однородна и изотропна.

∙ Тензор энергии-импульса материи должен быть однороден и изотропен.

Первому требованию мы уже удовлетворили, выбрав метрику Фридмана (9.5).
Наиболее общий вид однородных и изотропных функций, векторов и тензоров

второго ранга был установлен в разделе 4.4. В общей теории относительности тен-
зор энергии-импульса 𝑇αβ является четырехмерным симметричным тензором второго
ранга. Группа изометрий действует только на пространственных сечениях, и по от-
ношению к ее действию тензор энергии-импульса разлагается на три неприводимые
компоненты:

𝑇00 − скаляр,
𝑇µ0 = 𝑇0µ − вектор,

𝑇µν − симметричный тензор второго ранга.
(9.25)

Из результатов, полученных в разделе 4.4, следует, что наиболее общий вид инвари-
антных компонент следующий

𝑇00 = ℰ(𝑡), 𝑇0µ = 𝑇µ0 = 0, 𝑇µν = −𝒫(𝑡)
◦
𝑔µν ,

где ℰ и 𝒫 – некоторые функции (скалярные поля). Сравнение этих компонент с
тензором энергии-импульса сплошной среды

𝑇αβ = (ℰ + 𝒫)𝑢α𝑢β − 𝒫𝑔αβ, (9.26)

показывает, что ℰ и 𝒫 есть ни что иное как плотность энергии и давление мате-
рии, соответственно, и тензор энергии-импульса записан в сопутствующей системе
координат 𝑢 = (1, 0, 0, 0).
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Предложение 9.1.1. Если и метрика, и тензор энергии-импульса среды однородны
и изотропны, то линии тока непрерывной среды являются геодезическими (экстре-
малями).

Доказательство. Зафиксируем систему координат так, чтобы метрика была метри-
кой Фридмана (9.5) и тензор энергии-импульса имел вид (9.25). Символы Кристоф-
феля были вычислены ранее (9.6), и уравнения для экстремалей имеют вид (9.17).
Ясно, что координатные линии 𝑥0 = 𝜏, 𝑥µ = const являются экстремалями, где 𝜏 ∈ R
– канонический параметр. С другой стороны, эти координатные линии представляют
собой линии тока для векторного поля скорости 𝑢 = (1, 0, 0, 0).

Таким образом, в рассматриваемой космологической модели выбрана синхронная
система координат, в которой метрика имеет вид (9.5), и каждая точка сплошной сре-
ды движется вдоль экстремали, которая совпадает с координатной линией 𝑥0 := 𝑡.
Точки среды покоятся в том смысле, что пространственные координаты имеют по-
стоянные значения 𝑥µ = const. При этом наблюдаемое расстояние между частицами
среды может увеличиваться или уменьшаться в зависимости от поведения масштаб-
ного множителя.

Здесь возникает вопрос. Если присутствует давление, то в общем случае частицы
среды не будут двигаться по экстремалям, т.к. присутствуют не только гравита-
ционные силы. Тем не менее рассматриваемая модель является самосогласованной.
Действительно, поскольку давление зависит только от времени, то градиент давле-
ния параллелен вектору скорости. Следовательно, согласно уравнениям релятивист-
ской гидродинамики (6.79), (6.80), движение частиц происходит вдоль экстремалей.
Причиной этого является требование однородности и изотропии тензора энергии-
импульса полей материи.

Приведенные выше аргументы однозначно фиксируют однородный и изотропный
тензор энергии-импульса материи. С одним контра- и одним ковариантным индексом
он всегда диагонален:

𝑇α
β =


ℰ 0 0 0
0 −𝒫 0 0
0 0 −𝒫 0
0 0 0 −𝒫

 . (9.27)

Уравнения релятивистской гидродинамики ∇β𝑇α
β = 0, выполнение которых необ-

ходимо для разрешимости уравнений Эйнштейна, для метрики Фридмана (9.10) при-
нимают вид

ℰ̇ +
3𝑎̇

𝑎
(ℰ + 𝒫) = 0. (9.28)

Если подставить выражение для тензора энергии-импульса (9.27) в уравнения
Эйнштейна c космологической постоянной Λ,

Φα
β := 𝐺α

β + 𝛿βαΛ +
1

2
𝑇α

β = 0,

где мы для простоты положили гравитационную постоянную равной единице, 𝜅 = 1,
и учесть явный вид тензора Эйнштейна (9.23), то получим два уравнения:

−3
𝑎̇2 + 𝜖

𝑎2
+ Λ+

1

2
ℰ = 0, (9.29)

−2𝑎𝑎̈+ 𝑎̇2 + 𝜖

𝑎2
+ Λ− 1

2
𝒫 = 0. (9.30)
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Продифференцируем уравнение (9.29) по времени 𝑡 и учтем уравнение совместно-
сти (9.28). В результате получим, что уравнение (9.30) тождественно удовлетворяет-
ся. Можно проверить, что это свойство является следствием линейной зависимости
уравнений Эйнштейна (вторая теорема Нетер)

∇βΦα
β = 0,

вытекающей из ковариантности (см. раздел 6.5).
Таким образом, у нас есть два независимых обыкновенных дифференциальных

уравнения (9.29) и (9.28) на три неизвестные функции 𝑎(𝑡), ℰ(𝑡) и 𝒫(𝑡). Чтобы за-
мкнуть систему уравнений будем считать, что давление среды связано с плотно-
стью энергии уравнением состояния. Для баротропной жидкости уравнение состоя-
ния имеет вид

𝒫 = 𝒫(ℰ), (9.31)

где 𝒫(ℰ) – некоторая достаточно гладкая функция. Это равенство корректно, т.к.
плотность энергии и давление – скалярные поля (функции).

Следовательно, для вселенной Фридмана мы имеем два независимых обыкно-
венных дифференциальных уравнения на две независимые функции: масштабный
множитель 𝑎 и плотность энергии ℰ , которые мы запишем в следующем виде

𝑎̇2 =
𝑎2

3

(
1

2
ℰ + Λ

)
− 𝜖, (9.32)

𝑑ℰ
ℰ + 𝒫(ℰ)

= −3
𝑑𝑎

𝑎
. (9.33)

Это и есть полная система уравнений для космологических моделей Фридмана.
Таким образом, при заданном уравнении состояния (9.31), решая уравнение (9.33),

мы находим зависимость плотности энергии от масштабного множителя: ℰ = ℰ(𝑎).
Подставляя эту функцию в уравнение (9.32), мы получаем одно обыкновенное диф-
ференциальное уравнение первого порядка на масштабный множитель. Это уравне-
ние является основным в стандартных моделях однородной и изотропной вселенной.

Для интегрирования уравнения (9.32) удобно ввести временну́ю координату 𝜂 =
𝜂(𝑡), определенную равенством (9.14). Тогда уравнение (9.32) можно формально про-
интегрировать

𝜂 = ±
∫

𝑑𝑎

𝑎
√

1
6
ℰ𝑎2 + 1

3
Λ𝑎2 − 𝜖

. (9.34)

Постоянная интегрирования соответствует сдвигу временно́й координаты 𝜂 ↦→ 𝜂 +
const и является несущественной. Знак ± соответствует выбору направления течения
времени: если функция 𝑎(𝑡) является решением уравнений Фридмана, то 𝑎(−𝑡) –
также решение. Зависимость плотности энергии от масштабного множителя, ℰ =
ℰ(𝑎), находится из уравнения (9.33). Это решает поставленную задачу в общем виде.
На практике, уравнения (9.33) и (9.34) решаются в явном виде далеко не всегда.

Не смотря на то, что одно из уравнений Эйнштейна (9.30) было отброшено как
следствие остальных, из него можно сделать важные выводы. Перепишем уравнение
(9.30) в виде

𝑎̈ = − 𝑎

12
(ℰ + 3𝒫) +

𝑎Λ

3
, (9.35)

где мы использовали уравнение (9.29) для исключения 𝑎̇2 + 𝜖. Пусть Λ = 0 и ℰ >
0 и 𝒫 ≥ 0, что соответствует обычной материи. По предположению, масштабный
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множитель положителен, 𝑎 > 0, и, следовательно, 𝑎̈ < 0. Это означает, что функция
𝑎(𝑡) вогнутая. Допустим, что в настоящее время 𝑡0 вселенная расширяется, 𝑎̇(𝑡0) > 0,
что соответствует современным наблюдательным данным. Качественное поведение
масштабного множителя в этом случае показано на рис. 9.1. Мы видим, что при

Рис. 9.1: Качественное поведение масштабного множителя 𝑎(𝑡) в предположении, что
вселенная в настоящее время расширяется, 𝑎̇(𝑡0) > 0.

конечном значении времени 𝑡 масштабный множитель должен обратиться в нуль,
что соответствует большому взрыву. Этот вывод является довольно общим, т.к. не
зависит от уравнения состояния материи и не использует какое-либо из решений
уравнений Эйнштейна. В космологии принято отсчитывать наблюдаемое время 𝑡 от
большого взрыва при 𝑡 = 0.

Из уравнений Эйнштейна (9.29), (9.30) следует, что наличие космологической по-
стоянной можно трактовать как поля материи с диагональным тензором энергии-
импульса

𝑇Λα
β := 2Λ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Эта материя необычна, т.к. при Λ > 0 плотность энергии положительна, а давление
отрицательно. Материя, обладающая таким свойством, называется темной энергией.

Понятие темной энергии играет важную роль в космологии. В 1998 году Сол
Перлмуттер [?], Брайан П. Шмидт и Адам Рисс [?] открыли, что в настоящее время
вселенная не просто расширяется, а расширяется с ускорением. За это открытие они
получили Нобелевскую премию в 2011 году. Если принять модель вселенной Фрид-
мана за основу, то из уравнения (9.35) вытекает, что обычная материя, ℰ > 0 и 𝒫 > 0,
приводит к замедлению, а положительная космологическая постоянная – к ускоре-
нию. Таким образом, к ускорению приводит либо положительная космологическая
постоянная, либо какая то другая материя с отрицательным давлением (плотность
энергии всегда считается положительной), которая была названа темной энергией.
В настоящее время к темной энергии относят положительную космологическую по-
стоянную и (или) другие модели материи, обсуждение которых выходит за рамки
тех ограничений, которые поставил перед собой автор этих строк. Наличие темной
энергии приводит к антигравитации: отталкиванию вместо притяжения. Это оттал-
кивание и приводит к ускоренному расширению вселенной.

Существующие в настоящее время наблюдательные данные не противоречат пред-
ставлению о темной энергии, как о положительной космологической постоянной. По-
этому данная точка зрения считается стандартной в современной космологии.

Замечание. Помимо темной энергии в космологии используется понятие темной
материи. Это – гипотетическая материя, которая не взаимодействует с электромаг-
нитным полем и, следовательно, не видна, т.к. не излучает и не отражает фотонов.
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Понятие темной материи стало обсуждаться с 1922 года, когда Джеймс Джинс [?] и
Якобус Каптейн [?] пришли к выводу, что бо́льшая часть вещества в нашей галактике
(Млечный Путь) невидима, т.к. гравитационного поля всех видимых звезд явно недо-
статочно для удержания звезд, находящихся на периферии. Впоследствии нехватка
видимого вещества была подтверждена для многих других галактик. Кандидатов на
роль темной материи много, и мы их обсуждать не будем.

В настоящее время наблюдательные данные указывают на то, что темная энергия
составляет более 70% всего вещества вселенной, а темная материя – более 20%. Если
учесть еще межгалактический газ, то на нашу долю (звезды, планеты и др.) остается
меньше половины процента всего вещества вселенной.

9.1.4 Вселенная Эйнштейна

Одну из первых космологических моделей в рамках общей теории относительности
предложил А. Эйнштейн [?] в 1917 году задолго до статей А. Фридмана. Он нашел
точное статической решение для однородной и изотропной замкнутой вселенной, все
пространственные сечения которой являются сферами, S = S3. Это решение укла-
дывается в общую схему однородной и изотропной вселенной с метрикой Фридмана.

Космологические уравнения Фридмана (9.28)–(9.30) допускают статические ре-
шения. Положим

𝑎 = const, ℰ = const, 𝒫 = const.

Тогда уравнения (9.29) и (9.30) определяют равновесное значение плотности энергии
и давления:

ℰ = 2
(
3
𝜖

𝑎2
− Λ

)
,

𝒫 = 2
(
− 𝜖

𝑎2
+ Λ

)
.

Отметим, что для статических решений уравнение (9.30) является независимым, т.к.
при выводе зависимости уравнений движения из второй теоремы Нетер проводилось
дифференцирование. Полученные уравнения имеют много решений в зависимости от
значений постоянных 𝜖 и Λ (для замкнутых вселенных 𝜖 > 0). Для обычной материи
𝒫 ≤ ℰ/3. Отсюда вытекает ограничение сверху на космологическую постоянную

Λ ≤ 3𝜖

2𝑎2
.

С другой стороны, давление обычной среды положительно, 𝒫 ≥ 0. Это дает оценку
снизу

𝜖

𝑎2
≤ Λ.

Вместе получаем получаем ограничение на значение космологической постоянной
при заданных кривизне 𝜖 и масштабном множителе 𝑎:

𝜖

𝑎2
≤ Λ ≤ 3

2

𝜖

𝑎2
. (9.36)

Как видим, для обычной материи это неравенство имеет нетривиальные решения
только при 𝜖 > 0 (замкнутая вселенная) и положительной космологической постоян-
ной Λ.



9.1. ВСЕЛЕННАЯ ФРИДМАНА 193

Метрику вселенной Эйнштейна можно записать в виде

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2

[
𝑑𝑟2

1− 𝜖𝑟2
+ 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]
. (9.37)

Из формул (9.7) и (9.1) вытекает, что у полного тензора кривизны для модели Эйн-
штейна отличны от нуля только пространственные компоненты

𝑅µνρσ = 𝑎2
◦
𝑅µνρσ = 𝑎2𝜖

(
◦
𝑔µρ
◦
𝑔νσ −

◦
𝑔µσ

◦
𝑔νρ

)
.

В своей статье [?] А. Эйнштейн нашел решение для пыли, 𝒫 = 0, в замкнутой
вселенной, 𝜖 > 0. В этом случае 𝜖 = 𝑎2Λ, и была отмечена необходимость введения
положительной космологической постоянной.

Наблюдательные данные последних лет говорят о том, что вселенная расширяет-
ся. Это не укладывается в статическую модель, которая рассмотрена выше. Поэтому
статическая модель вселенной Эйнштейна в настоящее время носит теоретический
характер: необходимо знать, что уравнения общей теории относительности допуска-
ют такие решения.

9.1.5 Линейное уравнение состояния

Согласно современным наблюдательным данным вселенная расширяется. Это при-
водит к необходимости построения нестационарных моделей вселенных.

Для того, чтобы построить конкретную космологическую модель и решить урав-
нения Фридмана (9.32), (9.33), необходимо задать уравнение состояния 𝒫 = 𝒫(ℰ).
Важный класс космологических моделей описывается линейным уравнением состоя-
ния. Например, когда вселенная заполнена идеальным газом с уравнением состояния
(6.75), пылью или излучением (6.71). Для упрощения некоторых последующих фор-
мул запишем линейное уравнение состояние в виде

𝒫 = (𝛾 − 1)ℰ , 𝛾 = const. (9.38)

Для обычной материи 1 ≤ 𝛾 ≤ 4/3. Граничное значение 𝛾 = 1 соответствует пыли
(𝒫 = 0), а 𝛾 = 4/3 – излучению (𝒫 = ℰ/3).

Часто говорят, что в случае пыли вселенная заполнена холодной материей. Это
значит, что вселенная состоит из массивных частиц, которые движутся с нереляти-
вистскими скоростями, а безмассовыми частицами (излучением) можно пренебречь.
В противоположном случае излучения, 𝛾 = 4/3, мы говорим, что вселенная запол-
нена горячей материей. Частицы горячей материи движутся с околосветовыми ско-
ростями и ведут себя так же, как и безмассовые. В настоящее время в качестве стан-
дартной космологической модели рассматривается так называемая ΛCDM-модель.
Эта модель содержит космологическую постоянную Λ и холодную материю (от ан-
глийского сокращения CDM = Cold Dark Matter). ΛCDM-модель экономна, и ее след-
ствия хорошо согласуются с современными наблюдательными данными.

Для линейного уравнения состояния (9.38) уравнение (9.33) легко интегрируется

ℰ =
𝐶

𝑎3γ
, (9.39)

где 𝐶 > 0 – постоянная интегрирования. Полученное решение имеет простой фи-
зический смысл: плотность энергии обратно пропорциональна объему вселенной в
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данный момент времени, 𝑎3, в степени 𝛾. Для пыли (𝒫 = 0, 𝛾 = 1) плотность энер-
гии просто пропорциональна плотности числа частиц.

Для сопоставления предсказаний теории с наблюдательными данными, необхо-
димо фиксировать постоянные интегрирования в решениях уравнений Фридмана.
Обычно полагают, что в настоящее время 𝑡 = 𝑡0 масштабный множитель равен еди-
нице, 𝑎(𝑡0) = 1. Тогда постоянная интегрирования в (9.39) равна плотности энергии
(плотности числа частиц) в настоящий момент времени, 𝐶 = ℰ0.

Теперь запишем уравнение Фридмана (9.32) в виде

𝑎̇2 + 𝑉 (𝑎) = −𝜖, (9.40)

где
𝑉 (𝑎) := −𝑀𝑎−3γ+2 − 𝐿𝑎, (9.41)

и
𝑀 :=

ℰ0

6
= const, 𝐿 :=

Λ

3
= const. (9.42)

Напомним, что 𝜖 := −
◦
𝐾, где

◦
𝐾 – нормированная скалярная кривизна пространствен-

ных сечений 𝑡 = const с отрицательно определенной метрикой. Уравнение (9.40) име-
ет тот же вид, что и закон сохранения энергии в механике Ньютона при одномерном
движении точечной частицы в потенциальном поле 𝑉 (𝑎) с полной энергией −𝜖. По-
этому, нарисовав потенциал для фиксированных значений постоянных 𝑀 , 𝐿 и 𝛾,
можно определить точки поворота и понять качественное поведение решений.

Продемонстрируем интегрирование уравнений модели Фридмана в простейшем
случае пыли, когда давление равно нулю, 𝒫 = 0. В этом случае плотность энергии
пропорциональна плотности частиц

ℰ =
ℰ0

𝑎3
. (9.43)

Положим, для простоты, космологическую постоянную равной нулю, Λ = 0. Тогда
подстановка решения (9.43) в уравнение (9.40) дает простое уравнение на масштаб-
ный множитель

𝑎̇2 − 𝑀

𝑎
= −𝜖. (9.44)

Решение данного уравнения удобно записать, используя вместо космологического
времени 𝑡 координату 𝜂, определенную уравнением (9.14). Уравнение (9.44) имеет
различные решения в зависимости от знака 𝜖, т.е. в зависимости от знака кривизны
пространственных сечений:

𝑎 =


𝑀
2𝜖

[
1− cos (

√
𝜖 𝜂)
]
, 𝜖 > 0,

𝑀𝜂2

4
, 𝜖 = 0,

𝑀
2|𝜖|
[
ch (
√

|𝜖| 𝜂)− 1
]
, 𝜖 < 0.

(9.45)

Постоянная интегрирования соответствует сдвигу 𝜂 ↦→ 𝜂 + const и положена равной
нулю. Параметр 𝜂 связан с космологическим временем следующими соотношениями:

𝑡 =


𝑀
2𝜖3/2

[√
𝜖 𝜂 − sin (

√
𝜖 𝜂)
]
, 𝜖 > 0,

𝑀𝜂3

12
, 𝜖 = 0,

𝑀
2|𝜖|3/2

[
sh (
√

|𝜖| 𝜂)−
√

|𝜖| 𝜂
]
, 𝜖 < 0,

(9.46)
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где постоянная интегрирования, соответствующая сдвигу времени, положена равной
нулю.

Поскольку уравнение (9.44) инвариантно относительно инверсии времени, 𝑡 ↦→ −𝑡,
то каждому решению 𝑎(𝑡) соответствует также решение 𝑎(−𝑡).

Таким образом, равенства (9.45) и (9.46) определяют масштабный множитель 𝑎(𝑡)
в параметрическом виде. Качественное поведение масштабного множителя для про-
странственных сечений положительной, нулевой и отрицательной кривизны для пы-
ли показано на рис. 9.2. Во всех случаях масштабный множитель равен нулю в мо-

Рис. 9.2: Качественное поведение масштабного множителя для пространственных
сечений положительной, нулевой и отрицательной кривизны для пыли и излучения.

мент большого взрыва при 𝑡 = 0. В настоящее время при 𝑡 = 𝑡0 он положителен. Даль-
нейшая эволюция масштабного множителя зависит от кривизны пространственных
сечений. Для открытых моделей вселенных 𝜖 ≤ 0 и масштабный множитель моно-
тонно возрастает. Для замкнутых моделей вселенных 𝜖 > 0, масштабный множитель
возрастает, достигает своего максимального значения и затем начинает убывать до
нулевого значения, которое соответствует большому сжатию.

Для излучения 𝛾 = 4/3 при нулевой космологической постоянной уравнение
Фридмана (9.40) принимает вид

𝑎̇2 − 𝑀

𝑎2
= −𝜖.

Это уравнение легко решается

𝑎 =

√
𝑡
(
2
√
𝑀 − 𝜖𝑡

)
. (9.47)

Качественное поведение масштабного множителя для излучения такое же, как и для
пыли, и показано на рис. 9.2 для трех случаев: 𝜖 < 0, 𝜖 = 0 и 𝜖 > 0. Если вселенная
замкнута, 𝜖 > 0, то большой взрыв заканчивается большим сжатием. При этом время
меняется в конечном интервале 0 < 𝑡 < 2

√
𝑀/𝜖. Для открытой вселенной, 𝜖 < 0 или

𝜖 = 0, после большого взрыва происходит бесконечное расширение вселенной.
Как уже упоминалось, качественное поведение решений можно понять, анализи-

руя “потенциал” (9.41). При нулевой космологической постоянной, 𝐿 = 0, для пыли,
𝛾 = 1, и излучения, 𝛾 = 4/3, он изображен на рис. 9.3. Если “энергия” −𝜖 отрицатель-
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Рис. 9.3: Качественное поведение “потенциала” для пыли, 𝛾 = 1, и излучения, 𝛾 = 3/4.

на, т.е. 𝜖 > 0, масштабный множитель меняется в конечных интервалах 0 < 𝑎 < 𝑎max.
Максимальное значение масштабного множителя определяется из условия

𝑎̇ = 0 ⇔ 𝑉 (𝑎) = 𝜖.

Для пыли и излучения получаем следующие значения

𝑎max =

 𝑀/𝜖, 𝛾 = 1,√
𝑀/𝜖, 𝛾 = 4/3.

Для открытой вселенной 𝜖 ≤ 0, и масштабный множитель меняется в бесконечном
полуинтервале 0 < 𝑎 <∞, что соответствует бесконечному расширению.

Для уравнения Фридмана (9.40) аналитические решения известны в следующих
случаях: 1) при 𝜖 = 0 для всех 𝛾; 2) при 𝐿 = 0 для 𝛾 = 1 и 𝛾 = 4/3 и 3) при 𝛾 = 4/3
для всех 𝐿 и 𝜖. Детальный анализ приведен в [?], глава 5. Некоторые решения не
имеют космологических особенностей, но они неприемлемы с других точек зрения.

В заключение проанализируем более детально космологическую особенность для
пыли и излучения. Уравнение Фридмана для пыли в общем случае имеет вид

𝑎̇2 =
𝑀

𝑎
+ 𝐿𝑎2 − 𝜖. (9.48)

Космологическая особенность возникает в решениях этого уравнения при 𝑎 → 0.
Вблизи особенности уравнение принимает вид

𝑎̇2 =
𝑀

𝑎
,

независимо от значений космологической постоянной Λ и 𝜖. Поэтому асимптотика
масштабного множителя вблизи космологической особенности следующая

𝑎 ≈
(
9𝑀

4

) 1
3

𝑡
2
3 , (9.49)

где мы положили постоянную интегрирования равной нулю. Подстановка получен-
ной асимптотики в выражение для скалярной кривизны (9.13) приводит к следующей
асимптотике при 𝑡→ 0

𝑅 ≈ 2

𝑡
4
3

(
2

3
𝑡−

2
3 +𝐾0

)
≈ 4

3𝑡2
.
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Мы видим, что при конечном значении наблюдаемого времени 𝑡 = 0 масштабный
множитель обращается в нуль, метрика вырождается, и кривизна обращается в бес-
конечность. Отметим, что асимптотика скалярной кривизны не зависит от постоян-
ных 𝑀 , 𝐿 и 𝜖, входящих в уравнение Фридмана.

Для излучения уравнение Фридмана вблизи особенности имеет вид

𝑎̇2 =
𝑀

𝑎2
,

также независимо от значения космологической постоянной Λ и кривизны простран-
ственных сечений 𝜖. Его решение имеет вид

𝑎 ≈𝑀
1
4

√
2𝑡. (9.50)

Для скалярной кривизны (9.13) получаем следующую асимптотику

𝑅 ≈
◦
𝐾√
𝑀 𝑡

.

Мы видим, что для излучения сингулярность скалярной кривизны возникает только
при отличной от нуля кривизне пространственных сечений. Тем не менее кривизна
имеет особенность и при

◦
𝐾 = 0. Для этого достаточно вычислить квадрат тензора

Риччи, который является геометрическим инвариантом,

𝑅αβ𝑅αβ =
9𝑎̈2

𝑎2
+

3

𝑎4

(
𝑎̈𝑎+ 2𝑎̇2 +

2

3

◦
𝐾

)2

,

где мы использовали явный вид компонент тензора Риччи (9.13). Подстановка в
это выражение асимптотики масштабного множителя (9.50) приводит к следующему
ответу

𝑅αβ𝑅αβ ≈ 3

4𝑡4
.

Следовательно, квадрат тензора Риччи имеет особенность при 𝑡→ 0, которая не за-
висит от кривизны пространственных сечений. Интересно отметить, что асимптотика
квадрата тензора Риччи не зависит также от 𝑀 и 𝐿.

Таким образом, кривизна имеет неустранимую особенность при 𝑎(0) = 0, и, сле-
довательно, соответствующие космологические решения непродолжаемы. Поскольку
координатные линии времени являются геодезическими (экстремалями) и время 𝑡
является каноническим параметром, то построенные космологические решения гео-
дезически неполны.

9.2 Вакуумные решения

Вакуумные решения уравнений Фридмана, хотя, возможно, и менее реалистичны,
но представляют значительный интерес. В настоящем разделе мы покажем, что все
вакуумные космологические решения для однородной и изотропной вселенной – это
плоское пространство Минковского R1,3 (Λ = 0), пространство де Ситтера dS (Λ > 0)
и анти-де Ситтера AdS (Λ < 0).
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9.2.1 Пространство-время Минковского

Докажем, что плоское пространство-время Минковского является единственным ре-
шением вакуумных уравнений Фридмана для однородной и изотропной вселенной
при нулевой космологической постоянной.

Положим Λ = 0 и предположим, что материя отсутствует, ℰ = 𝒫 = 0. Тогда
уравнение (9.48) принимает вид

𝑎̇2 = −𝜖.

Оно имеет решение только при 𝜖 ≤ 0. Следовательно, в отсутствие материи (ваку-
умное решение) и космологической постоянной пространственные сечения должны
иметь неположительную кривизну, т.е. представляют собой либо трехмерное гипер-
болическое пространство H3, либо трехмерное евклидово пространство R3. Это соот-
ветствует открытой модели вселенной.

Если 𝜖 = 0, то 𝑎 = const и метрика Фридмана переходит в метрику Лоренца.
Поэтому пространство-время становится плоским пространством Минковского R1,3.

При 𝜖 < 0 масштабный множитель линеен по времени:

𝑎 =
√
−𝜖 𝑡, (9.51)

где мы отбросили несущественную постоянную интегрирования и выбрали знак плюс
у квадратного корня. Это вакуумное решение имеет особенность, поскольку при 𝑡 = 0
масштабный множитель обращается в нуль, и метрика вырождается. Если вычислить
компоненты тензора кривизны (9.7), то они окажутся тождественно равными нулю.
Поэтому линейный масштабный множитель (9.51) в метрике Фридмана описывает
плоское пространство Минковского R1,3.

Полученный вывод можно подтвердить явным преобразованием координат. Ин-
тервал для вакуумного решения (9.51) после растяжки пространственных координат
можно записать в виде

𝑑𝑠2 = 𝑑𝑡2 − 𝑡2
[
𝑑𝜒2 + sh 2𝜒(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]
, (9.52)

где мы выбрали сферические координаты (9.9) на пространственных сечениях 𝑡 =
const. Если теперь совершить преобразование координат 𝑡, 𝜒 ↦→ 𝜏, 𝑟, где

𝜏 := 𝑡 ch𝜒, 𝑟 := 𝑡 sh𝜒,

то метрика (9.52) станет лоренцевой:

𝑑𝑠2 = 𝑑𝜏 2 − 𝑑𝑟2 − 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2).

Якобиан преобразования координат 𝑡, 𝜒 ↦→ 𝜏, 𝑟 равен 𝐽 = 𝑡 и вырожден при 𝑡 = 0.
Если масштабный множитель 𝑎(𝑡) определен при положительных временах 𝑡 > 0, то
временна́я координата 𝜏 в пространстве Минковского также положительна 𝜏 > 0.

Таким образом, вакуумное решение при 𝜖 < 0, сводится к плоскому пространству
Минковского R1,3, которое никаких особенностей не имеет. Отсюда вытекает, что
особенность в метрике (9.52) при 𝑡 = 0 является координатной.

То, что мы получили одно и то же пространство Минковского R1,3 и при 𝜖 = 0, и
при 𝜖 < 0 связано с различным выбором пространственных сечений в пространстве
Минковского.

Полученное космологическое решение для вакуума следовало ожидать. Действи-
тельно, метрика (9.10) является блочно диагональной и сферически симметричной.
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Это очевидно в безразмерных сферических координатах. Следовательно, должна
быть выполнена теорема Бирхгоффа, утверждающая, что единственным сфериче-
ски симметричным решением вакуумных уравнений Эйнштейна является решение
Шварцшильда, которое при нулевой массе дает пространство Минковского. При этом
решение Шварцшильда с отличной от нуля массой возникнуть не может, т.к. оно не
является однородным.

9.2.2 Пространство-время де Ситтера dS
Одну из первых моделей вселенных предложил де Ситтер [?, ?]. Эта модель описы-
вает пустую вселенную и является максимально симметричной. Она представляет
самостоятельный интерес, хотя и не является реалистичной с современной точки
зрения.

Пусть Λ > 0 ⇔ 𝐿 > 0 и материя отсутствует, ℰ = 𝒫 = 0. Тогда уравнения
Фридмана (9.35) и (9.40) принимают вид

𝑎̈ = 𝐿𝑎, (9.53)
𝑎̇2 = 𝐿𝑎2 − 𝜖. (9.54)

Конечно, первое уравнение (9.53) есть следствие второго уравнения (9.54). Однако в
данном случае проще их совместное рассмотрение. Первое уравнение имеет решение,
зависящее от двух постоянных интегрирования:

𝑎 = 𝑐+ et/R + 𝑐− e
−t/R, 𝑐± = const, (9.55)

где введено обозначение

𝑅 :=
1√
𝐿
> 0.

Подстановка этого решения в уравнение (9.54) приводит к связи между постоянными
интегрирования

𝑐+𝑐− =
𝜖

4𝐿
=
𝑅2𝜖

4
. (9.56)

Таким образом, решение уравнений Фридмана зависит только от одной постоянной
интегрирования. Эту постоянную интегрирования можно фиксировать, используя
инвариантность уравнения (9.54) относительно сдвига времени 𝑡 ↦→ 𝑡+ const.

При растяжке пространственных координат постоянная 𝜖 умножается на поло-
жительный множитель. Поэтому, не ограничивая общности, рассмотрим последова-
тельно три случая 𝜖 = 1, 𝜖 = 0 и 𝜖 = −1.

Сфера S3

Если пространственные сечения являются сферами, 𝜖 = 1, положим

𝑐+ = 𝑐− =
𝑅

2
.

Тогда масштабный множитель будет равен

𝑎 = 𝑅 ch (𝑡/𝑅),
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и метрика примет вид

𝑑𝑠2 = 𝑑𝑡2 −𝑅2 ch 2(𝑡/𝑅)

[
𝑑𝑟2

1− 𝑟2
+ 𝑟2

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)]
. (9.57)

Эта метрика называется метрикой де Ситтера и определена при

−∞ < 𝑡 <∞, 0 < 𝑟 < 1, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋. (9.58)

Как видим, она определена при всех временах и никакой космологической особенно-
сти не имеет.

Из формулы (9.57) не видно, что метрика де Ситтера описывает пространство-
время постоянной кривизны и инвариантна относительно группы Лоренца SO(1, 4).
Тем не менее это так. Для доказательства построим пространство постоянной кри-
визны и укажем необходимое преобразование координат.

Рассмотрим пятимерное пространство Минковского R1,4 с декартовой системой
координат 𝑣, 𝑤, 𝑥, 𝑦, 𝑧. По определению метрика пространства-времени имеет вид

𝑑𝑠2 := 𝑑𝑣2 − 𝑑𝑤2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2. (9.59)

Пусть в него вложен однополостный гиперболоид dS →˓ R1,4:

𝑣2 − 𝑤2 − 𝑥2 − 𝑦2 − 𝑧2 = −𝑅2, 𝑅 > 0. (9.60)

Будем считать, что топология, дифференцируемая структура и метрика на гипербо-
лоиде индуцированы вложением. Тогда уравнение (9.60) определяет связное четырех-
мерное псевдориманово многообразие, вложенное в пространство Минковского R1,4

(см. рис. 9.4, на котором показаны сечения гиперболоида плоскостями 𝑦 = 𝑧 = 0). В
выбранной системе координат пространство-время де Ситтера является топологиче-
ским произведением гиперболоида, изображенного на рисунке, на двумерную сферу,
соответствующую координатам 𝑦, 𝑧. Это и есть пространство де Ситтера dS.

Рис. 9.4: Двумерные сечения пространства-времени де Ситтера dS.

И метрика (9.59), и уравнение гиперболоида (9.60) инвариантны относительно
группы Лоренца SO(1, 4). Поэтому она является группой изометрий построенного
гиперболоида. Для четырехмерного многообразия эта группа максимальна, и, сле-
довательно, однополостный гиперболоид (9.60) является пространством постоянной
кривизны (теорема 4.3.2).
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Каждое сечение гиперболоида 𝑣 = const определяет трехмерную сферу S3 →˓ R4,
определенную уравнением

𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 + 𝑣2.

При 𝑣 = 0 радиус сферы минимален и равен 𝑅. Условимся считать, что значения
0 < 𝑤 <

√
𝑅2 + 𝑣2 покрывают верхнюю (северную) полусферу, а −

√
𝑅2 + 𝑣2 < 𝑤 < 0

– нижнюю (южную).
Теперь совершим преобразование координат 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ↦→ 𝑅, 𝑟, 𝑡, 𝜃, 𝜙:

𝑣 := 𝑅 sh (𝑡/𝑅),

𝑤 := ±𝑅
√
1− 𝑟2 ch (𝑡/𝑅),

𝑥 := 𝑅𝑟 ch (𝑡/𝑅) sin 𝜃 cos𝜙,

𝑦 := 𝑅𝑟 ch (𝑡/𝑅) sin 𝜃 sin𝜙,

𝑧 := 𝑅𝑟 ch (𝑡/𝑅) cos 𝜃.

(9.61)

Знак ± в преобразовании координаты 𝑤 соответствует выбору либо верхней полу-
сферы S3, либо нижней. Тогда уравнение гиперболоида (9.60) сведется к тождеству
𝑅2 = 𝑅2. Таким образом, в новой системе координат гиперболоид задается равен-
ством 𝑅 = const, и координаты 𝑡, 𝑟, 𝜃, 𝜙 можно выбрать в качестве координат на ги-
перболоиде. Для получения явного вида метрики, индуцированной на гиперболоиде,
необходимо просто выразить дифференциалы 𝑑𝑣, 𝑑𝑤, 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 через 𝑑𝑡, 𝑑𝑟, 𝑑𝜃, 𝑑𝜙, ис-
пользуя формулы (9.61), и подставить их в исходную метрику (9.59). Для упрощения
вычислений, вспомним, что для сферической системы координат в подпространстве
R3 ⊂ R1,4, натянутом на координатные оси 𝑥, 𝑦, 𝑧, справедлива формула

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
[
𝑑
(
𝑅𝑟 ch (𝑡/𝑅)

)]2
+𝑅2𝑟2 ch 2(𝑡/𝑅)

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)
.

С учетом этого равенства после несложных вычислений получим в точности метрику
де Ситтера (9.57).

Мы видим, что область значений координат (9.58) при 0 < 𝑡 < ∞ покрывают
либо верхнюю полусферу (знак + в уравнениях (9.61)), либо нижнюю (знак −).
Если зафиксировать знак в преобразовании координат (9.61) и разрешить времени
меняться на всей вещественной прямой −∞ < 𝑡 < ∞, то метрика де Ситтера (9.57)
покроет дважды либо верхнюю, либо нижнюю полусферы S3 →˓ R4.

Пространственные сечения метрики де Ситтера (9.57) задаются сечениями 𝑡 =
const. В исходном пространстве Минковского R1,4 время параметризует гиперплос-
кости R4, которые задаются уравнением

𝑣 = 𝑅 sh (𝑡/𝑅) = const.

Это значит, что пространственные сечения метрики де Ситтера соответствуют сече-
ниям гиперболоида гиперплоскостями R4, которые определяются условием 𝑣 = const.

Для решения де Ситтера в виде (9.57) параметр Хаббла равен

𝐻 =
𝑎̇

𝑎
=

th(𝑡/𝑅)

𝑅

и не является постоянным.
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Евклидово пространство R3

Зафиксируем 𝜖 = 0 и положим 𝑐− = 0 и 𝑐+ = 𝑅. Тогда масштабный множитель равен

𝑎 = 𝑅 et/R. (9.62)

Метрика де Ситтера теперь примет вид

𝑑𝑠2 = 𝑑𝑡2 −𝑅2 e2t/R
[
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin 2𝜃𝑑𝜙2)

]
. (9.63)

Она соответствует слоению однополостного гиперболоида евклидовыми гиперплос-
костями R3. Полученная метрика определена при

−∞ < 𝑡 <∞, 0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋. (9.64)

Для того, чтобы доказать, что метрика (9.63) действительно является метрикой
де Ситтера, вернемся к вложению dS →˓ R1,4, рассмотренному в предыдущем раз-
деле. Совершим преобразование координат 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ↦→ 𝑅, 𝑟, 𝑡, 𝜃, 𝜙, которое задано
следующими формулами:

𝑣 := ±𝑅
[
1

2
𝑟2 et/R + sh (𝑡/𝑅)

]
,

𝑤 := ±𝑅
[
1

2
𝑟2 et/R − ch (𝑡/𝑅)

]
,

𝑥 := 𝑅𝑟 et/R sin 𝜃 cos𝜙,

𝑦 := 𝑅𝑟 et/R sin 𝜃 sin𝜙,

𝑧 := 𝑅𝑟 et/R cos 𝜃.

(9.65)

Нетрудно проверить, что уравнение (9.60), задающее вложение гиперболоида, сво-
дится к тождеству 𝑅2 = 𝑅2. Это означает, что в новых координатах уравнение гипер-
болоида задается уравнением 𝑅 = const. Чтобы получить метрику, индуцированную
на гиперболоиде, в координатах 𝑡, 𝑟, 𝜃, 𝜙, необходимо подставить дифференциалы 𝑑𝑣,
𝑑𝑤, 𝑑𝑥, 𝑑𝑦 и 𝑑𝑧 из уравнений (9.65) в исходную метрику Лоренца (9.59). Чтобы упро-
стить вычисления, заметим что

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
[
𝑑(𝑅𝑟 et/R)

]2
+𝑅2𝑟2 e2t/R

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)
.

Теперь нетрудно проверить, что индуцированная метрика равна метрике де Ситтера
в форме (9.63).

Пространственные сечения R3 для метрики (9.63) задаются сечениями 𝑡 = const.
Эти сечения в объемлющем пространстве R1,4 задают нулевые гиперплоскости

𝑣 − 𝑤 = ±𝑅 et/R.

Таким образом, пространственные сечения в метрике де Ситтера (9.63) получаются
при сечении гиперболоида нулевыми гиперплоскостями.

Нетрудно вычислить параметр Хаббла для решения де Ситтера в виде (9.63):

𝑎̇

𝑎
=

1

𝑅
.

Как видим, при таком выборе координат параметр Хаббла является постоянным.
Тем самым пространство-время де Ситтера при 𝜖 = 0 дает один из примеров инфля-
ционного развития вселенной.
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Гиперболоид H3

При 𝜖 = −1 пространственными сечениями пространства-времени являются двупо-
лостные гиперболоиды H3, описанные в разделе ??. В этом случае выберем

𝑐+ = −𝑐− =
𝑅

2
.

Тогда масштабный множитель равен

𝑎 = 𝑅 sh (𝑡/𝑅),

и метрика де Ситтера принимает вид

𝑑𝑠2 = 𝑑𝑡2 −𝑅2 sh 2(𝑡/𝑅)

[
𝑑𝑟2

1 + 𝑟2
+ 𝑟2

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)]
. (9.66)

Эта метрика определена при следующих значениях координат

−∞ < 𝑡 <∞, 0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋, (9.67)

и вырождена при 𝑡 = 0.
Для того, чтобы доказать, что это действительно метрика де Ситтера, снова вер-

немся к вложению dS →˓ R1,4. Cовершим преобразование координат 𝑤, 𝑣, 𝑥, 𝑦, 𝑧 ↦→
𝑅, 𝑟, 𝑡, 𝜃, 𝜙:

𝑣 := 𝑅
√
1 + 𝑟2 sh (𝑡/𝑅),

𝑤 := 𝑅 ch (𝑡/𝑅),

𝑥 := 𝑅𝑟 sh (𝑡/𝑅) sin 𝜃 cos𝜙,

𝑦 := 𝑅𝑟 sh (𝑡/𝑅) sin 𝜃 sin𝜙,

𝑧 := 𝑅𝑟 sh (𝑡/𝑅) cos𝜙.

(9.68)

Если подставить эти выражения в определяющее уравнение гиперболоида (9.60), то
получим тождество 𝑅2 = 𝑅2. Следовательно, в исходном пространстве Минковского
R1,4 гиперболоид задается равенством 𝑅 = const.

Для получения явного вида метрики, индуцированной на гиперболоиде, необхо-
димо подставить дифференциалы 𝑑𝑣, 𝑑𝑤, 𝑑𝑥, 𝑑𝑦 и 𝑑𝑧 из (9.68) в исходную метрику
(9.59). Учтем равенство

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
[
𝑑
(
𝑅𝑟 sh (𝑡/𝑅)

)]2
+𝑅2𝑟2 sh 2(𝑡/𝑅)

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)
.

Теперь нетрудно проверить, что в новых координатах метрика действительно при-
нимает вид (9.66).

Пространственные сечения метрики де Ситтера (9.66) задаются равенством 𝑡 =
const. В исходном пространстве Минковского R1,4 время 𝑡 параметризует гиперплос-
кости R1,3, которые задаются уравнением

𝑤 = 𝑅 ch (𝑡/𝑅) = const.

Это значит, что пространственные сечения метрики де Ситтера задаются сечениями
гиперболоида гиперплоскостями 𝑤 = const.

Параметр Хаббла в данной системе координат равен

𝐻 =
cth (𝑡/𝑅)

𝑅
и вовсе не является постоянным.
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Координаты Шварцшильда

Снова рассмотрим вложение пространства де Ситтера dS →˓ R1,4. Еще одна важная
система координат 𝑅, 𝜌, 𝜏, 𝜃, 𝜙 для пространства де Ситтера задается следующими
уравнениями:

𝑣 := 𝑅
√
1− 𝜌2 sh 𝜏,

𝑤 := 𝑅
√

1− 𝜌2 ch 𝜏,

𝑥 := 𝑅𝜌 sin 𝜃 cos𝜙,

𝑦 := 𝑅𝜌 sin 𝜃 sin𝜙,

𝑧 := 𝑅𝜌 cos 𝜃.

(9.69)

Как и ранее, гиперболоид (9.60) задается уравнением 𝑅 = const. Индуцированная
метрика на гиперболоиде в координатах Шварцшильда 𝜏, 𝜌, 𝜃, 𝜙 принимает вид

𝑑𝑠2 = 𝑅2

[
(1− 𝜌2)𝑑𝜏 2 − 𝑑𝜌2

1− 𝜌2
− 𝜌2

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)]
. (9.70)

Данная метрика определена при

−∞ < 𝜏 <∞, 0 < 𝜌 < 1, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋. (9.71)

В этих координатах метрика де Ситтера статична.
Таким образом, при положительной космологической постоянной Λ и в отсут-

ствие полей материи, для всех значений кривизны пространственных сечений: 𝜖 = 1,
𝜖 = 0 и 𝜖 = −1 мы получили пространство-время де Ситтера. Это космологическое
решение не имеет никаких особенностей и после максимального продолжения вдоль
экстремалей (геодезических) описывает пространство постоянной кривизны (симмет-
рическое пространство). В целом пространство-время де Ситтера представляет собой
фактор пространство

dS ≈ SO0(1, 4)

SO0(1, 3)
.

Его группа изометрий SO(1, 4) максимальна. Мы видим, что метрика пространства
де Ситтера может быть записана в форме метрики Фридмана со всеми возможны-
ми пространственными сечениями: S3, R3 или H3. Кроме этого, параметр Хаббла
в различных системах координат разный. Пример метрики де Ситтера показывает
насколько сильно космологические выводы зависят от выбора системы координат.
Даже ответ на вопрос о том, является ли вселенная замкнутой или открытой, может
зависеть от выбора системы координат. Это является существенным недостатком
всех космологических моделей.

9.2.3 Пространство-время анти-де Ситтера AdS
Рассмотрим случай отрицательной космологической постоянной, Λ < 0, в пустом
пространстве-времени, ℰ = 𝒫 = 0. Уравнения Фридмана по-прежнему имеют вид
(9.53), (9.54), где 𝐿 = Λ/3 < 0. Из второго уравнения следует, что решения суще-
ствуют только при 𝜖 = −1, т.е. пространственными сечениями метрики Фридмана
являются двуполостные гиперболоиды H3. При отрицательной космологической по-
стоянной решение (9.55) является вещественным только если 𝑐− = 𝑐∗+. Положим
теперь

𝑅 :=
1√
−𝐿
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и выберем 𝑐+ = 1/2. Тогда масштабный множитель (9.55) примет вид

𝑎 = 𝑅 cos (𝑡/𝑅) > 0 (9.72)

и метрика вселенной равна

𝑑𝑠2 = 𝑑𝑡2 −𝑅2 cos 2(𝑡/𝑅)

[
𝑑𝑟2

1 + 𝑟2
+ 𝑟2

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)]
. (9.73)

Эта метрика называется метрикой анти-де Ситтера и определена при

− 𝜋𝑅/2 < 𝑡 < 𝜋𝑅/2, 0 < 𝑟 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 𝜋. (9.74)

При 𝑡 = ±𝜋𝑅/2 метрика вырождается.
Опять, из вида метрики анти-де Ситтера (9.73) совершенно не видно, что эта

метрика описывает пространство-время постоянной кривизны. Чтобы доказать это,
совершим следующее построение.

Рассмотрим плоское пятимерное пространство R2,3 с декартовыми координатами
𝑣, 𝑤, 𝑥, 𝑦, 𝑧. По определению его метрика имеет вид

𝑑𝑠2 := 𝑑𝑣2 + 𝑑𝑤2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2. (9.75)

Рассмотрим однополостный вложенный гиперболоид AdS →˓ R2,3, который определен
уравнением

𝑣2 + 𝑤2 − 𝑥2 − 𝑦2 − 𝑧2 = 𝑅2. (9.76)

На рис. 9.5 изображены двумерные сечения пространства анти-де Ситтера, соответ-
ствующие 𝑦 = 𝑧 = 0. В выбранной системе координат пространство-время анти-де
Ситтера является топологическим произведением гиперболоида, изображенного на
рисунке, на двумерную сферу, соответствующую координатам 𝑦, 𝑧.

Рис. 9.5: Двумерные сечения пространства-времени анти-де Ситтера AdS.

Поскольку уравнения (9.75) и (9.76) инвариантны относительно действия группы
SO(2, 3), то эта группа является группой изометрий пространства анти-де Ситтера.
Для четырехмерного пространства-времени она максимальна, и ее алгебра Ли содер-
жит 10 независимых векторных полей Киллинга. Согласно теореме 4.3.2 простран-
ство-время анти-де Ситтера является однородным и изотропным и представляет со-
бой пространство постоянной кривизны. Группа SO(2, 3) называется группой анти-де
Ситтера.
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Чтобы доказать, что метрика (9.73) описывает пространство постоянной кривиз-
ны, совершим преобразование координат 𝑣, 𝑤, 𝑥, 𝑦, 𝑧 ↦→ 𝑅, 𝑟, 𝑡, 𝜃, 𝜙, определяемое фор-
мулами:

𝑣 := 𝑅 sin (𝑡/𝑅),

𝑤 := ±𝑅
√
1 + 𝑟2 cos (𝑡/𝑅),

𝑥 := 𝑅𝑟 cos (𝑡/𝑅) sin 𝜃 cos𝜙,

𝑦 := 𝑅𝑟 cos (𝑡/𝑅) sin 𝜃 cos𝜙,

𝑧 := 𝑅𝑟 cos (𝑡/𝑅) cos 𝜃.

(9.77)

В новой системе координат гиперболоид задается равенством 𝑅 = const.
Для получения индуцированной метрики используем равенство

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 =
[
𝑑
(
𝑅𝑟 cos (𝑡/𝑅)

)]2
+𝑅2𝑟2 cos 2(𝑡/𝑅)(𝑑𝜃2 + sin 2𝜃𝑑𝜙2).

Прямые вычисления показывают, что индуцированная метрика принимает вид (9.73),
что и следовало доказать.

Пространственные сечения метрики анти-де Ситтера соответствуют постоянному
времени 𝑡 = const. В исходном пространстве R2,3 время 𝑡 параметризует гиперплос-
кости R1,3, которые задаются уравнением

𝑣 = 𝑅 sin (𝑡/𝑅) = const.

Это значит, что пространственные сечения метрики анти-де Ситтера (9.73) задаются
сечениями гиперболоида гиперплоскостями 𝑣 = const.

Параметр Хаббла для метрики анти-де Ситтера в рассматриваемой системе ко-
ординат равен

𝐻 = − tg (𝑡/𝑅)

𝑅
и не является постоянным.

Таким образом, метрика анти-де Ситтера (9.73) представляет собой метрику про-
странства постоянной кривизны. Однако однополостный гиперболоид (9.76) не явля-
ется пространством-временем анти-де Ситтера. Дело в том, что сечения гиперболо-
ида двумерными плоскостями, определяемыми постоянными значениями простран-
ственных координат 𝑥, 𝑦, 𝑧 = const, представляют собой окружности

𝑣2 + 𝑤2 = 𝑅2 + 𝑥2 + 𝑦2 + 𝑧2.

Эти окружности являются замкнутыми времениподобными кривыми и приводят к
нарушению причинности (машина времени). Чтобы исправить ситуацию необходимо
от однополостного гиперболоида (9.76) перейти к его универсальной накрывающей.
Для этого гиперболоид нужно “развернуть” вдоль времениподобной координаты 𝑣.
Это достигается путем перехода к новым координатам 𝑡, 𝑟 ↦→ 𝜏, 𝜒, оставляя коорди-
наты 𝜃, 𝜙 прежними. Зададим преобразование координат неявными формулами:

𝑣 := 𝑅
sin 𝜏

cos𝜒
, 𝑤 := 𝑅

cos 𝜏

sin𝜒
,

где
0 < 𝜏 < 2𝜋, −𝜋

2
< 𝜒 <

𝜋

2
.
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Тогда

𝑣2 + 𝑤2 =
𝑅2

cos 2𝜒
,

и из уравнения гиперболоида следует равенство

𝑟 cos (𝑡/𝑅) = tg𝜒.

В новых координатах

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑅2 𝑑𝜒2

cos 4𝜒
+𝑅2 tg 2𝜒

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)
.

Теперь нетрудно вычислить метрику пространства-времени анти-де Ситтера

𝑑𝑠2 =
𝑅2

cos 2𝜒

[
𝑑𝜏 2 − 𝑑𝜒2 − sin 2𝜒

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)]
. (9.78)

Мы видим, что координата 𝜏 является временем. Эта метрика статична и ее про-
странственная часть вейлевски (конформно) эквивалентна метрике трехмерной сфе-
ры S3. Важно, что она определена при всех −∞ < 𝜏 < ∞. При этом гиперболоид
возникает после отождествления 𝜏 ∼ 𝜏 + 2𝜋. Под пространством анти-де Ситтера
AdS понимается именно универсальная накрывающая однополостного гиперболоида
с метрикой (9.78). В этом пространстве-времени замкнутые времениподобные кривые
отсутствуют.

Координаты Шварцшильда

Рассмотрим вложение AdS →˓ R2,3 из предыдущего раздела. Метрику анти-де Сит-
тера можно записать в координатах Шварцшильда. Для этого в объемлющем про-
странстве введем координаты

𝑣 := 𝑅
√
1 + 𝜌2 sin 𝜏,

𝑤 := 𝑅
√
1 + 𝜌2 cos 𝜏,

𝑥 := 𝑅𝜌 sin 𝜃 cos𝜙,

𝑦 := 𝑅𝜌 sin 𝜃 sin𝜙,

𝑧 := 𝑅𝜌 sin 𝜃 sin𝜙.

(9.79)

Нетрудно проверить, что гиперболоид задается равенством 𝑅 = const. Метрика,
индуцированная на гиперболоиде, в координатах Шварцшильда 𝜏, 𝜌, 𝜃, 𝜙 принимает
вид

𝑑𝑠2 = 𝑅2

[
(1 + 𝜌2)𝑑𝜏 2 − 𝑑𝜌2

1 + 𝜌2
− 𝜌2

(
𝑑𝜃2 + sin 2𝜃𝑑𝜙2

)]
. (9.80)

Эта метрика определена при

−∞ < 𝜏 <∞, 0 < 𝜌 <∞, 0 < 𝜃 < 𝜋, 0 < 𝜙 < 2𝜋. (9.81)

В координатах Шварцшильда метрика де Ситтера статична.
Таким образом, при отрицательной космологической постоянной Λ и в отсутствие

полей материи подходит только одно значение 𝜖 = −1, и мы получили пространство-
время анти-де Ситтера. Это космологическое решение не имеет никаких особенно-
стей и после максимального продолжения вдоль экстремалей (геодезических) опи-
сывает пространство постоянной кривизны (симметрическое пространство). В целом
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пространство-время анти-де Ситтера представляет собой фактор пространство

AdS ≈ SO0(2, 3)

SO0(1, 3)
,

Его группа изометрий SO(2, 3) максимальна.

9.3 Экстремали во вселенной Фридмана
Рассмотрим однородное и изотропное пространство-время M = R × S с метрикой
Фридмана (9.5). Эта метрика определяет символы Кристоффеля (9.6), которые за-
дают уравнения экстремалей (геодезических). Оказывается, что, если масштабный
множитель известен, то уравнения экстремалей во вселенной Фридмана интегриру-
ются в квадратурах в общем виде [?].

Сначала рассмотрим экстремали на пространственных сечениях S, по которым
будут строиться экстремали во вселенной Фридмана M = R × S. На пространстве
постоянной кривизны S уравнения экстремалей

(
𝑥µ(𝑢)

)
, 𝜇 = 1, 2, 3, имеют вид

𝑑2𝑥µ

𝑑𝑢2
= −

◦
Γνρ

µ𝑑𝑥
ν

𝑑𝑢

𝑑𝑥ρ

𝑑𝑢
, (9.82)

где 𝑢 – канонический параметр вдоль экстремали. Для определенности, выберем
длину экстремали в качестве канонического параметра:

𝑑𝑢2 := −◦𝑔µν𝑑𝑥µ𝑑𝑥ν > 0. (9.83)

Поскольку S – пространство постоянной кривизны, то все экстремали просто описы-
ваются. Для евклидова пространства R3 все прямые и только они являются экстре-
малями. Для сферы, вложенной в четырехмерное евклидово пространство S3 →˓ R4,
все экстремали – это сечения сферы трехмерными плоскостями, проходящими через
начало координат. Аналогично, сечения гиперболоида H3 →˓ R3,1 трехмерными вре-
мениподобными плоскостями, проходящими через начало координат, определяют все
экстремали. Таким образом, все экстремали

(
𝑥µ(𝑢)

)
на пространственных сечениях

S можно считать известными.
Теперь исследуем экстремали в пространстве-времени Фридмана. Уравнения (9.17)

для экстремалей
(
𝑥α(𝑠)

)
, 𝛼 = 0, 1, 2, 3, вселенной Фридмана, где 𝑠 – канонический

параметр, уже были выписаны при рассмотрении красного смещения спектральных
линий.

Покажем, что знание экстремалей на пространствах постоянной кривизны S, поз-
воляет описать все экстремали во вселенной Фридмана. Для этой цели запишем
уравнение экстремалей на M = R × S не в канонической, а в произвольной пара-
метризации. Пусть 𝑢 – произвольный параметр вдоль экстремали 𝑥α(𝑢) и 𝑠 – длина
экстремали (канонический параметр). Тогда параметры связаны равенством(

𝑑𝑠

𝑑𝑢

)2

= 𝑔αβ
𝑑𝑥α

𝑑𝑢

𝑑𝑥β

𝑑𝑢
, (9.84)

и уравнение экстремалей принимает вид (3.12)

𝑑2𝑥α

𝑑𝑢2
= −Γβγ

α𝑑𝑥
β

𝑑𝑢

𝑑𝑥γ

𝑑𝑢
+
𝑑𝑥α

𝑑𝑢

𝑑2𝑠

𝑑𝑢2

𝑑𝑢

𝑑𝑠
. (9.85)
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Отметим, что это уравнение инвариантно относительно линейного преобразования
канонического параметра 𝑠 ↦→ 𝑘𝑠, 𝑘 ̸= 0. Важно также, что при получении уравнения
(9.85) было использовано условие 𝑑𝑠/𝑑𝑢 ̸= 0.

Теперь отождествим параметр 𝑢 вдоль экстремали на M с каноническим пара-
метром вдоль экстремали на S (9.83). Тогда для метрики Фридмана справедливы
равенства:

𝑑𝑠2 = 𝑑𝑡2 + 𝑎2 ◦𝑔µν𝑑𝑥
µ𝑑𝑥ν = 𝑑𝑡2 − 𝑎2𝑑𝑢2 ⇔

(
𝑑𝑠

𝑑𝑢

)2

=

(
𝑑𝑡

𝑑𝑢

)2

− 𝑎2. (9.86)

Последнее равенство справедливо только для времениподобных экстремалей.
Уравнения для экстремали (9.85) разбиваются на временну́ю и пространственные

компоненты:

𝑑2𝑡

𝑑𝑢2
= −𝑎𝑑𝑎

𝑑𝑡
+
𝑑𝑡

𝑑𝑢

𝑑2𝑠

𝑑𝑢2

𝑑𝑢

𝑑𝑠
, (9.87)

𝑑2𝑥µ

𝑑𝑢2
= −

◦
Γνρ

µ𝑑𝑥
ν

𝑑𝑢

𝑑𝑥ρ

𝑑𝑢
+
𝑑𝑥µ

𝑑𝑢

(
𝑑2𝑠

𝑑𝑢2

𝑑𝑢

𝑑𝑠
− 2

𝑎

𝑑𝑎

𝑑𝑢

)
, (9.88)

где мы учли явный вид символов Кристоффеля (9.6).
По построению системы координат, в которой метрика имеет блочно диагональ-

ный вид (9.5), координатные линии 𝑥µ = const, перпендикулярные пространствен-
ным сечениям S, являются экстремалями. Для них уравнение (9.88) тождественно
удовлетворяется. Поскольку для этих экстремалей 𝑑𝑢 = 0, то вместо уравнения (9.87)
следует использовать первое из уравнений (9.17), которое сводится к равенству

𝑑2𝑡

𝑑𝑠2
= 0 ⇔ 𝑡 = 𝑏𝑠+ 𝑐, 𝑏, 𝑐 = const. (9.89)

Предложение 9.3.1. Экстремали на пространственных сечениях S являются экс-
тремалями вселенной Фридмана M = R×S тогда и только тогда, когда масштаб-
ный множитель постоянен, 𝑎 = const.

Доказательство. Экстремали, целиком лежащие в S, определяются условием 𝑡 =
const. В этом случае уравнение (9.87) приводит к равенству 𝑎̇ = 0.

Теперь проанализируем времениподобные экстремали общего положения. Про-
дифференцируем по 𝑢 последнее равенство (9.86) и подставим в него вторую произ-
водную 𝑑2𝑡/𝑑𝑢2 из уравнения (9.87):

2
𝑑𝑠

𝑑𝑢

𝑑2𝑠

𝑑𝑢2
= 2

(
𝑑𝑡

𝑑𝑢

)2
𝑑2𝑠

𝑑𝑢2

𝑑𝑢

𝑑𝑠
− 4𝑎

𝑑𝑎

𝑑𝑢
.

Отсюда вытекает, что
𝑑2𝑠

𝑑𝑢2

𝑑𝑢

𝑑𝑠
=

2

𝑎

𝑑𝑎

𝑑𝑢
, (9.90)

где учтено равенство (9.86). Полученное соотношение сводит уравнение (9.88) к урав-
нению (9.82). Таким образом, уравнения (9.82) для времениподобных экстремалей
𝑥µ(𝑢) на S вытекают из уравнений (9.87), (9.88) для экстремалей 𝑥α(𝑢) на M. При
доказательстве мы использовали одну и ту же параметризацию экстремалей, которая
является канонической только для экстремалей на S.



210 ГЛАВА 9. КОСМОЛОГИЯ

В обратную сторону утверждение также верно. Действительно, вместо уравне-
ния (9.87) в системе уравнений для экстремалей (9.87), (9.88) можно использовать
уравнение (9.90), которое легко интегрируется:

𝑑𝑠

𝑑𝑢
= 𝐶𝑎2, 𝐶 = const ̸= 0. (9.91)

Знак постоянной интегрирования 𝐶 определяет взаимную ориентацию параметров
𝑠 и 𝑢. Поэтому, не ограничивая общности, положим 𝐶 > 0. С учетом полученного
решения равенство (9.86) для времениподобных экстремалей принимает вид(

𝑑𝑡

𝑑𝑢

)2

= 𝑎2(1 + 𝐶2𝑎2) ⇔ 𝑢 = ±
∫

𝑑𝑡

𝑎
√
1 + 𝐶2𝑎2

. (9.92)

Последний интеграл определяет функцию 𝑡(𝑢) в квадратурах. Знак ± определяет
взаимную ориентацию оси времени 𝑡 и параметра 𝑢, и является несущественным.

При желании можно получить экстремаль, как функцию канонического парамет-
ра. Из уравнений (9.91) и (9.92) следуют равенства:

𝑑𝑠 = 𝐶𝑎2𝑑𝑢 = ± 𝐶𝑎𝑑𝑡√
1 + 𝐶2𝑎2

⇔ 𝑠 = ±𝐶
∫

𝑑𝑡 𝑎√
1 + 𝐶2𝑎2

. (9.93)

Тем самым функция 𝑡(𝑠) задана в квадратурах.
Длина касательного вектора к экстремалям равна

𝑔αβ
𝑑𝑥α

𝑑𝑢

𝑑𝑥β

𝑑𝑢
=

(
𝑑𝑡

𝑑𝑢

)2

− 𝑎2 = 𝐶2𝑎4 > 0

и в общем случае не является постоянной. Если параметр канонический, то длина
касательного вектора постоянна:

𝑔αβ
𝑑𝑥α

𝑑𝑢

𝑑𝑥β

𝑑𝑢
= const.

Таким образом, проекции времениподобных экстремалей общего положения на про-
странственные сечения являются экстремалями на S, а зависимость временно́й ко-
ординаты 𝑡(𝑢) задается интегралом (9.92), где 𝐶 > 0. В пределе 𝐶 → ∞ возникают
экстремали, перпендикулярные S.

Светоподобные (нулевые) экстремали определяются теми же формулами, что и
времениподобные экстремали общего положения при 𝐶 = 0.

Для пространственноподобных экстремалей уравнение (9.86) необходимо заме-
нить на следующее равенство (

𝑑𝑠

𝑑𝑢

)2

= 𝑎2 −
(
𝑑𝑡

𝑑𝑢

)2

.

Дальнейший анализ проводится так же, как и в предыдущем случае. При этом за-
висимости 𝑡(𝑢) и 𝑡(𝑠) даются интегралами:

𝑢 = ±
∫

𝑑𝑡

𝑎
√
1− 𝐶2𝑎2

, 𝑠 = ±𝐶
∫

𝑑𝑡 𝑎√
1− 𝐶2𝑎2

𝐶 > 0. (9.94)

При этом надо следить, чтобы подкоренное выражение было неотрицательно.
Таким образом, мы нашли все экстремали вселенной Фридмана.
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Теорема 9.3.1. Экстремали вселенной Фридмана M = R×S делятся на два класса.
1) Экстремали (9.89), перпендикулярные всем пространственным сечениям и про-

ходящие через каждую точку S.
2) Экстремали

(
𝑡(𝑢), 𝑥µ(𝑢)

)
, где 𝑥µ(𝑢) – экстремали на S и функция 𝑡(𝑢) определена

либо интегралом (9.92) для времениподобных (𝐶 > 0) и светоподобных (𝐶 = 0)
экстремалей, либо интегралом (9.94) для пространственноподобных экстрема-
лей. Параметр 𝑢 является каноническим параметром только для экстремалей
на S.

Пример 9.3.1. Рассмотрим вселенную де Ситтера (см. раздел 9.2.2), представлен-
ную в виде топологического произведения M = R×R3. В этом случае экстремали на
S = R3 – это все возможные прямые:

𝑥µ = 𝑛µ𝑢+ 𝑥µ0 ,

где 𝑥µ0 – координаты точки, через которую проходит прямая, и 𝑛µ – компоненты
единичного направляющего вектора.

Масштабный множитель имеет вид (9.62)

𝑎 = 𝑅 et/R, 𝑅 = const,

и соответствует инфляционной вселенной. Зависимость временно́й координаты 𝑡 от
параметра 𝑢 для времениподобных экстремалей задается интегралом (9.92)

𝑢 = ±
∫

𝑑𝑡

𝑅 et/R
√
1 + 𝐶2𝑅2 e2t/R

= ∓
√
𝐶2𝑅2 + e−2t/R.

Канонический параметр вдоль экстремалей определяется интегралом (9.94), который
также легко берется:

𝑠 = ±𝐶
∫

𝑑𝑡𝑅 et/R√
1 + 𝐶2𝑅2 e2t/R

= ±

[
𝑡+𝑅 ln

(
1 +

√
1 +

e−2t/R

𝐶2𝑅2

)]
.

Формулы, полученные в настоящем разделе, дают общую схему анализа экстре-
малей для вселенной Фридмана. При построении конкретной космологической моде-
ли сначала нужно найти масштабный множитель из уравнений Эйнштейна, а затем
провести анализ экстремалей.
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