RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2025, том 65, номер 9, страницы 2235–2244 (Mi zvmmf12075)

Статьи, опубликованные в английской версии журнала

A parameterized block splitting iteration method for double saddle point problems arising from liquid crystal director modeling

Jun Liab, Lingsheng Mengb, Xiangtuan Xiongb

a School of Science, Lanzhou University of Technology, 730050, Lanzhou, Gansu, China
b College of Mathematics and Statistics, Northwest Normal University, 730070, Lanzhou, Gansu, China

Аннотация: Using the idea in [Cao Y., Jiang M.-Q., Zheng Y.-L., A splitting preconditioner for saddle point problems, Numer. Linear Algebra Appl. 18, 875–895 (2011)], we present a parameterized block splitting (PBS) iteration method for solving the double saddle point problems arising from liquid crystal director modeling. We prove that the iteration method is unconditionally convergent. Then the induced preconditioner is used to accelerate the convergence of the Krylov subspace methods for solving the systems. Furthermore, spectral properties of the PBS preconditioned matrix are discussed and analyzed in detail. Numerical experiments not only verify the correctness of the theoretical results, but also show the efficiency of the proposed preconditioner.

Ключевые слова: double saddle point problems, matrix splitting, iteration method, preconditioning, Krylov subspace methods.

Поступила в редакцию: 09.05.2024
Исправленный вариант: 10.06.2024
Принята в печать: 17.11.2025

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2025, 65:9, 2235–2244


© МИАН, 2026