RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2025, том 65, номер 4, страницы 825–839 (Mi zvmmf11965)

Эта публикация цитируется в 8 статьях

Статьи, опубликованные в английской версии журнала

Analytical study on the generalized $q$-deformed Sinh–Gordon (Eleuch) equation

Ulviye Demirbilek

Mersin University, Department of Mathematics, Mersin, Turkey

Аннотация: The mathematical definition and analysis of many physical events depend heavily on nonlinear models. These models are recognized as indispensable tools for understanding the intricacies of complex systems and predicting their future behaviors. These equations are mathematical models that hold significant importance in theoretical physics, mechanics, and quantum field theory. Solving these equations is crucial for understanding complex structures and discovering new phenomena. In this study, we investigate the exact solutions of a new form of the generalized $q$-deformed Sinh–Gordon (Eleuch) equation. To obtain solutions not found in the current literature for this equation, we apply a new auxiliary equation method that generates more solutions compared to other methods. Additionally, we demonstrate 3D, 2D, contour, and density plots to showcase different soliton propagation patterns. Through the solutions of this equation, we provide more options in the literature for simulating physical systems with broken symmetry.

Ключевые слова: new auxiliary equation method, $q$-deformed Sinh–Gordon equation, wave equation, exact solution.

Поступила в редакцию: 05.12.2024
Исправленный вариант: 20.12.2024
Принята в печать: 05.02.2025

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2025, 65:4, 825–839


© МИАН, 2026