RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2024, том 64, номер 5, страницы 918–940 (Mi zvmmf11759)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

A Shannon wavelet-based approximation scheme for Thomas–Fermi models of confined atoms and ions

Sharda Kumari, Pratik Majhi, M. M. Panja

Department of Mathematics, Visva-Bharati (A central University), 731235, Santiniketan, West Bengal, India

Аннотация: An efficient numerical scheme based on the Shannon wavelet basis has been presented here for obtaining highly accurate approximate solutions of Thomas–Fermi equations (TFE) in the finite domain with various initial/boundary conditions (IC/BCs). A point transformation followed by a finite Whittaker Cardinal function approximation (FWCFA) is employed here. The formula relating exponent $n$ in the desired order of accuracy $(O(10^{-n}))$ with the resolution $J$, the lower and upper limits in the sum of FWCFA have been provided. Examples of TFE with various IC/BCs have been exercised to exhibit the elegance and efficiency of the present scheme.

Ключевые слова: Thomas–Fermi equations in the finite domain, compressed or confined atoms, statistical model for charge densities, Dirichlet’s, Neumann’s, Robin’s boundary conditions, Shannon wavelets, Whittaker Cardinal function approximation.

Поступила в редакцию: 02.11.2023
Исправленный вариант: 02.11.2023
Принята в печать: 13.06.2023

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2024, 64:5, 918–940


© МИАН, 2026