RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика» // Архив

Вестн. ЮУрГУ. Сер. Выч. матем. информ., 2023, том 12, выпуск 4, страницы 94–109 (Mi vyurv308)

Возможности параллелизма при идентификации квазилинейного рекуррентного уравнения

М. С. Аботалеб, Т. А. Макаровских, А. В. Панюков

Южно-Уральский государственный университет (454080 Челябинск, пр. Ленина, д. 76)

Аннотация: Анализ временных рядов и прогнозирование являются одной из широко исследуемых областей. Идентификация с помощью различных статистических методов, нейронных сетей или математических моделей уже давно используется в различных областях исследований от промышленности, до медицины, социальной сферы, аграрной среды. В статье рассматривается параллельный вариант алгоритма идентификации параметров квазилинейного рекуррентного уравнения для решения задачи регрессионного анализа с взаимозависимыми наблюдаемыми переменными, основанный на обобщенном методе наименьших модулей (GLDM). В отличие от нейронных сетей, широко используемых в настоящее время в различных системах прогнозирования, данный подход позволяет в явном виде получать качественные квазилинейные разностные уравнения, адекватно описывающие рассматриваемый процесс. Это позволяет повысить качество анализа изучаемых процессов. Существенным преимуществом модели, использующей обобщенный метод наименьших модулей, по сравнению с многочисленными нейросетевыми подходами является возможность интерпретации коэффициентов модели с точки зрения задачи исследования и использование полученного уравнения в качестве модели динамического процесса. Проведенные вычислительные эксперименты с использованием временных рядов показывают, что максимальное ускорение алгоритма происходит при использовании количества потоков, равного половине возможных потоков для данного устройства.

Ключевые слова: параллелизм, квазилинейное рекуррентное уравнение, прогнозирование, моделирование, авторегрессионная модель.

УДК: 51.77

Поступила в редакцию: 12.08.2022

DOI: 10.14529/cmse230404



© МИАН, 2026