Аннотация:
В статье рассматриваются параболическое уравнение второго порядка и вопросы корректности обратных задач восстановления теплового потока на границе с использованием набора интегралов от решения c весами по области. Поток представим в виде конечного отрезка ряда с неизвестными коэффициентами, зависящими от времени. При определенных условиях на данные показано, что существует единственное решение задачи, которое непрерывно зависит от данных. Решение имеет все обобщенные производные, входящие в уравнение, суммируемые c некоторой степенью. Доказательство опирается на априорные оценки и принцип сжимающих отображений. Метод конструктивен и позволяет строить численные методы решения задачи. Численный алгоритм основан на методах конечных элементов и конечных разностей. Результаты численных экспериментов вполне удовлетворительны, а процедура построения решения устойчива при малых возмущениях.