Аннотация:
Статья посвящена развитию методов Ляпунова для анализа неустойчивости положения равновесия динамической системы в пространстве вероятностных мер, задаваемой нелокальным уравнением неразрывности. Рассматривается случай лишь барицентрически субдифференцируемой функции Ляпунова. Получены достаточные условия неустойчивости, которые являются аналогом теоремы Четаева и опираются на анализ поведения негладкой функции Ляпунова в окрестности положения равновесия. Приведен пример динамической системы, неустойчивость положения равновесия которой доказывается с использованием полученной теоремы.
Ключевые слова:
нелокальное уравнение неразрывности, второй метод Ляпунова, негладкая функция Ляпунова, неустойчивость, производные в пространстве мер