Аннотация:
Тематика исследования данной работы находится на стыке двух направлений качественной теории дифференциальных уравнений — теории показателей Ляпунова и теории колеблемости. В настоящей работе исследуются различные разновидности показателей колеблемости (строгих и нестрогих) знаков решений линейных однородных дифференциальных уравнений третьего порядка с непрерывными на положительной полуоси коэффициентами. Конструктивно в работе построено многопараметрическое семейство дифференциальных уравнений третьего порядка, на котором реализуются различные соотношения между главными значениями показателей колеблемости. При фиксированных значениях последовательности параметров получаются точки из указанного семейства уравнений, в которых все главные значения показателей колеблемости не являются инвариантными относительно бесконечно малых возмущений (то есть исчезающих на бесконечности). Кроме того, на множестве всех ненулевых решений указанного семейства уравнений все показатели колеблемости совпадают между собой. При построении указанного уравнения и доказательстве требуемых результатов использованы аналитические методы качественной теории дифференциальных уравнений и методы теории возмущений решений линейных дифференциальных уравнений, в частности, метод варьирования уравнения.