Аннотация:
Исследуются свойства $f$–квазиметрического пространства $(X,\rho).$ Расстояние $\rho$ в таком пространстве удовлетворяет аксиоме тождества и обобщенному неравенству треугольника: $\rho(x,z) \leq f(\rho(x,y),\rho(y,z))$ для любых $x,y,z\in X.$ Здесь функция $f$ положительна при положительных аргументах, непрерывна в точке $(0,0)$ и $f(0,0)=0.$ Симметричность расстояния не предполагается. Стандартно определяется топология на $X,$ порождаемая расстоянием $\rho.$ Исследуются свойства сходящихся последовательностей и секвенциально компактных множеств. Получены условия, при которых сходимость в себе (фундаментальность) необходима для сходимости последовательности. Рассмотрена связь скоростей сходимости фундаментальной последовательности и ее сходимости в себе. Введено понятие секвенциально предкомпактного множества. Получены условия, при которых замыкание секвенциально предкомпактного множества является секвенциально компактным.