Аннотация:
Статья посвящена исследованию поля напряжений у вершины острой трещины в анизотропном материале с тремя взаимно ортогональными осями симметрии четвертого порядка (с кубической сингонией). Рассмотрен плоский случай, когда одна из осей симметрии ортогональна пластине, а оставшиеся две оси лежат в плоскости пластины. Приведен асимптотический анализ вклада высших приближений в обобщенном асимптотическом разложении механических полей вблизи вершины трещины в линейно-упругом анизотропном материале с кубической симметрией его упругих свойств. В статье на основании полученного решения Неджети с соавторами для бесконечной анизотропной пластины с центральной трещиной найдены и проанализированы угловые распределения составляющих тензора напряжений вблизи вершины острой трещины на различных расстояниях от кончика трещины, что позволяет оценить вклад неособых (регулярных) слагаемых в общее асимптотическое представление механических полей, генерированных острой трещиной. В работе Неджети проанализирован вклад исключительно Т-напряжений, тогда, как показано в настоящей статье, следующие за Т-напряжением слагаемые играют значимую роль в описании полей, индуцированных трещиной. Сравнение угловых зависимостей компонент тензора напряжений, построенных на различных расстояниях от вершины трещины, индикативно показывает, что с увеличением расстояния от вершины дефекта требуется сохранение в асимптотических рядах, представляющих напряжения, перемещения и деформации вблизи кончика разреза, слагаемых высокого порядка малости. Сохранение слагаемых высокого порядка малости может быть использовано для расширения области, в которой справедливо асимптотическое решение в рядах.
Ключевые слова:
асимптотическое разложение, поля напряжений, кубическая сингония, слагаемые высокого порядка малости.
УДК:519.6
Поступила в редакцию: 16.02.2023 Исправленный вариант: 22.03.2023 Принята в печать: 30.06.2023