Аннотация:
Трижды периодические поверхности (ТПП) и их минимальные аналоги (ТПМП) в настоящее время активно применяются в различных областях, таких как механика, биомеханика, аэродинамика, гидродинамика и радиофизика. В связи с этим возникает задача установления корреляций между тополого-геометрическими свойствами поверхностей и их физическими характеристиками. Для решения данной задачи необходимо ввести меру сходства между поверхностями, обладающими различными тополого-геометрическими свойствами. Настоящая работа посвящена описанию ТПП и ТПМП в терминах метрического пространства дескрипторов. Решение задачи осуществляется с использованием математического аппарата теории распознавания изображений. Построен дескриптор на основе совокупности собственных векторов и собственных значений оператора Бельтрами–Лапласа, а также совместной байесовской модели. В пространстве дескрипторов введена метрика, основанная на вероятностной мере сходства поверхностей. Работоспособность разработанного метода проверена на 51 поверхности класса P. Точность предсказания типа поверхности составила 92.8 %. Разработанная модель машинного обучения позволяет определить принадлежность произвольной поверхности к классу P-поверхностей.
Ключевые слова:
топологическая структура, дискретный аналог уравнения Лапласа–Бельтрами, собственные векторы, собственные значения, байесовские вероятности, вероятностная мера сходства