aBukhara Branch of the Institute of Mathematics named after V.I. Romanovskiy at the Academy of Sciences of the Republic of Uzbekistan, Bukhara, 705018, Uzbekistan bBukhara State University, Bukhara, 705018, Uzbekistan
Аннотация:
Исследуется обратная задача для уравнений дробно-временной диффузии с периодическими граничными условиями и интегральными условиями переопределения на прямоугольной области. Сначала вводится определение классического решения задачи. Затем с использованием метода Фурье прямая задача сводится к эквивалентному интегральному уравнению. Существование и единственность решения прямой задачи устанавливаются с помощью оценок для функции Миттаг–Леффлера и обобщенных сингулярных неравенств Гронвалля.
Во второй части работы рассматривается обратная задача, которая переформулируется в виде эквивалентного интегрального уравнения, а затем решается с использованием принципа сжимающих отображений. Строго доказываются локальное существование и глобальная единственность решения. Кроме того, получена оценка устойчивости решения.
Данное исследование вносит вклад в теорию обратных задач для дробных дифференциальных уравнений, предоставляя основу для анализа задач с периодическими граничными условиями и интегральными условиями переопределения. Разработанные в работе методы могут быть применены к широкому кругу задач в математической физике и инженерии, где дробно-временные модели диффузии всё чаще используются для описания сложных явлений.