RUS  ENG
Полная версия
ЖУРНАЛЫ // Владикавказский математический журнал // Архив

Владикавк. матем. журн., 2021, том 23, номер 2, страницы 78–86 (Mi vmj766)

Эта публикация цитируется в 1 статье

Свойства характеристик колеблемости Сергеева периодического уравнения второго порядка

А. Х. Сташ

Кавказский математический центр АГУ, Россия, 385000, Майкоп, ул. Первомайская, 208

Аннотация: В данной работе изучаются свойства характеристик колеблемости Сергеева решений линейных однородных дифференциальных уравнений второго порядка с непрерывными периодическими коэффициентами. Известно, что верхние (слабые и сильные) показатели колеблемости нулей, корней, гиперкорней, строгих и нестрогих смен знаков совпадают с верхними частотами Сергеева нулей, корней и строгих смен знаков. Аналогичное свойство имеет место и для всех перечисленных нижних характеристик колеблемости Сергеева. Однако верхние характеристики решений линейных однородных дифференциальных уравнений второго порядка с ограниченными коэффициентами не всегда совпадают с нижними. В настоящей работе установлено равенство между всеми характеристиками колеблемости Сергеева на множестве решений уравнения Хилла. Более того, найдена эффективная формула, позволяющая их находить и проводить исследование на устойчивость уравнения Хилла. Кроме того, получена формула, связывающая мультипликаторы уравнения Хилла с нецелой частотой Сергеева. Найдены необходимые и достаточные условия устойчивости частоты уравнения Хилла. При доказательстве результатов настоящей работы осуществлялся переход от декартовых координат к полярным, благодаря чему для полярного угла получаем уравнение, которое можно трактовать как уравнение на торе. В качестве вспомогательного результата установлено равенство между числом вращения и частотой уравнения Хилла.

Ключевые слова: уравнение Хилла, дифференциальное уравнение на торе, колеблемость, число нулей, показатель колеблемости, число вращения, частота Сергеева, мультипликатор.

УДК: 517.955.8

MSC: 34C10, 34D05, 34D08

Поступила в редакцию: 28.07.2020

DOI: 10.46698/n2399-6862-7231-a



© МИАН, 2026