RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика // Архив

Вестн. Астрахан. гос. техн. ун-та. Сер. управление, вычисл. техн. информ., 2024, номер 3, страницы 41–47 (Mi vagtu799)

УПРАВЛЕНИЕ, МОДЕЛИРОВАНИЕ, АВТОМАТИЗАЦИЯ

Модель процесса формирования каталога сценариев для анализа и оценки функциональной безопасности автоматизированных систем вождения автомобилей

И. Н. Фомин

Институт проблем точной механики и управления – обособленное структурное подразделение ФГБУН Федерального исследовательского центра «Саратовский научный центр Российской академии наук», Саратов, Россия

Аннотация: При разработке высокоавтоматизированных и беспилотных транспортных средств автоиндустрия столкнулась с новым комплексом проблем, связанным с необходимостью стандартизации элементов систем автоматизированного вождения и определения правил их испытаний и сертификации. В связи с ускорением научно-технического прогресса и развитием новых технологий применяемые ранее стандарты стали устаревать по мере накопления практики их применения, а иногда и до утверждения того или иного технического регламента. В этих условиях перспективным техническим и юридическим решением может стать применение нечеткой логики в инструментах агрегации и управления экспертными знаниями в процессах сертификации и испытаний высокоавтоматизированных транспортных средств и элементов систем их автоматизированного управления. В нечетких моделях принятия решений используются типовые нечеткие ситуации, которые формируют каталоги сценариев для проведения испытаний автомобилей и их систем. Таким образом может формироваться база знаний экспертной системы, в которой инженеры по знаниям применяют набор параметров сценария испытания или эксперимента, для испытаний и имитационного моделирования. Определение параметров нового сценария, их схожесть с ранее формализованными сценариями и решение о включении того или иного сценария в каталог сценариев остается за экспертами. Применяемые на современном этапе подходы к формализации знаний экспертов не приемлемы для создания баз знаний под управлением систем управления большими данными или искусственными нейронными сетями, за которыми ближайшее будущее в развитие экспертных систем. Предлагается метод, с помощью которого инженеру знаний, администрирующему экспертную систему, можно автоматизировать создание каталога «нечетких» сценариев испытаний и имитационного моделирования систем посредством автоматического поиска максимального значения принадлежности состояний этих систем к картам и каталогам сценариев, с заданной экспертом вероятностью, с использованием методов машинного обучения.

Ключевые слова: экспертная система, формализация знаний, лингвистическая переменная, каталог сценариев, нечеткое правило.

УДК: 004.853

Поступила в редакцию: 12.03.2024
Принята в печать: 09.07.2027

DOI: 10.24143/2072-9502-2024-3-41-47



© МИАН, 2026