RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2024, том 10, выпуск 2, страницы 131–143 (Mi umj240)

Integral analogue of Turán-type inequalities concerning the polar derivative of a polynomial

Mayanglambam Singhajit Singh, Barchand Chanam

National Institute of Technology Manipur

Аннотация: If $w(\zeta)$ is a polynomial of degree $n$ with all its zeros in $|\zeta|\leq \Delta,$ $\Delta\geq 1$ and any real $\gamma\geq 1$, Aziz
proved the integral inequality [1]

\begin{equation*} \left\lbrace\int_{0}^{2\pi}\left|1+\Delta^ne^{i\theta}\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}\max_{|\zeta|=1}|w^{\prime}(\zeta)|\geq n\left\lbrace\int_{0}^{2\pi}\left|w\left(e^{i\theta}\right)\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}. \end{equation*}

In this article, we establish a refined extension of the above integral inequality by using the polar derivative instead of the ordinary derivative consisting of the leading coefficient and the constant term of the polynomial. Besides, our result also yields other intriguing inequalities as special cases.

Ключевые слова: Polar derivative, Turán-type inequalities, Integral inequalities

Язык публикации: английский

DOI: 10.15826/umj.2024.2.012



Реферативные базы данных:


© МИАН, 2026