RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2024, том 10, выпуск 2, страницы 81–91 (Mi umj236)

Tauberian theorem for general matrix summability method

Bidu Bhusan Jenaa, Priyadarsini Paridab, Susanta Kumar Paikrayc

a Sri Sri University
b Department of Mathematics, Kuntala Kumari Sabat Women’s College
c Veer Surendra Sai University of Technology

Аннотация: In this paper, we prove certain Littlewood–Tauberian theorems for general matrix summability method by imposing the Tauberian conditions such as slow oscillation of usual as well as matrix generated sequence, and the De la Vallée Poussin means of real sequences. Moreover, we demonstrate $(\bar{N},p_{n})$ and $(C,1)$ — summability methods as the generalizations of our proposed general matrix method and establish an equivalence relation connecting them. Finally, we draw several remarks in view of the generalizations of some existing well-known results based on our results.

Ключевые слова: Matrix summability, Weighted mean, Cesàro mean, Slow oscillation, Tauberian theorem

Язык публикации: английский

DOI: 10.15826/umj.2024.2.008



Реферативные базы данных:


© МИАН, 2026