RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2024, том 10, выпуск 2, страницы 69–80 (Mi umj235)

Эта публикация цитируется в 1 статье

$\mathcal{I}$-statistical convergence of complex uncertain sequences in measure

Amit Halder, Shyamal Debnath

Tripura University (A Central University)

Аннотация: The main aim of this paper is to present and explore some of properties of the concept of $\mathcal{I}$-statistical convergence in measure of complex uncertain sequences. Furthermore, we introduce the concept of $\mathcal{I}$-statistical Cauchy sequence in measure and study the relationships between different types of convergencies. We observe that, in complex uncertain space, every $\mathcal{I}$-statistically convergent sequence in measure is $\mathcal{I}$-statistically Cauchy sequence in measure, but the converse is not necessarily true.

Ключевые слова: $\mathcal{I}$-convergence, $\mathcal{I}$-statistical convergence, Uncertainty theory, Complex uncertain variable

Язык публикации: английский

DOI: 10.15826/umj.2024.2.007



Реферативные базы данных:


© МИАН, 2026