Аннотация:
Исследованы вопросы однозначной разрешимости задачи Коши для линейного регулярного интегро–дифференциального уравнения типа Герасимова в банаховом пространстве. Это позволило получить критерий корректности для соответствующей линейной обратной задачи с постоянным неизвестным коэффициентом в правой части. Абстрактные результаты использованы при рассмотрении прямой и обратной начально–краевых задач для класса уравнений с интегро–дифференциальным оператором типа Герасимова по времени и полиномами от оператора Лапласа по пространственным переменным, а также при изучении однозначной разрешимости задачи Коши и линейной обратной задачи для системы обыкновенных интегро–дифференциальных уравнений. Регулярное ядро интегрального оператора в рассмотренной системе является существенно операторнозначным и задает в уравнениях системы линейные комбинации различных интегро–дифференциальных операторов.
Ключевые слова:
интегро–дифференциальное уравнение типа Герасимова, регулярное интегральное ядро, задача Коши, обратная коэффициентная задача, начально–краевая задача.