RUS  ENG
Полная версия
ЖУРНАЛЫ // Теория вероятностей и ее применения // Архив

Теория вероятн. и ее примен., 2026, том 71, выпуск 1, страницы 3–17 (Mi tvp5797)

Аппроксимация универсальными ядерными оценками гладких регрессионных функций нескольких переменных

Ю. Ю. Линке, И. С. Борисов

Институт математики им. С. Л. Соболева Сибирского отделения Российской академии наук, Новосибирск, Россия

Аннотация: В работе исследуются универсальные локально постоянные ядерные оценки в классической задаче непараметрической регрессии, состоящей в восстановлении регрессионной функции нескольких переменных по наблюдениям ее зашумленных значений в некотором известном наборе детерминированных или случайных точек (наборе регрессоров). Ранее эти ядерные оценки исследовались лишь в случае непрерывной регрессионной функции нескольких переменных. Отличительной особенностью универсальных ядерных оценок являются весьма слабые, достаточно простые и, по существу, минимальные условия на регрессоры, универсальные относительно стохастической природы этих величин. В частности, в случае непрерывной регрессионной функции для равномерной состоятельности этих ядерных оценок относительно регрессоров достаточно требовать лишь свойство асимптотически (с ростом объема наблюдений) плотного заполнения ими области определения регрессионной функции. В работе показано, что при дополнительном условии гладкости функции точность равномерной аппроксимации может быть улучшена, при этом от регрессоров, как и ранее, требуется лишь вышеупомянутое достаточно общее и простое условие в терминах плотных данных.

Ключевые слова: непараметрическая регрессия, ядерные оценки, равномерная состоятельность, фиксированные и случайные регрессоры, сильно зависимые регрессоры.

Поступила в редакцию: 05.03.2025

DOI: 10.4213/tvp5797



© МИАН, 2026