Аннотация:
Для области $\Omega\subset\mathbb R^n$ с $s$-условием Джона О. В. Бесов недавно доказал вложение $W^m_p(\Omega)\subset L_q(\Omega)$ для пространств Соболева высшего порядка $m=2,3,\ldots$ Мы покажем, что полученный им показатель $q$ в этом вложении максимален на классе областей с $s$-условием Джона. Неулучшаемое вложение для пространств Соболева $W^1_p(\Omega)$ было ранее установлено в работах Хайлаша и Коскелы, Килпелайнена и Малы.