RUS  ENG
Полная версия
ЖУРНАЛЫ // Topology and its Applications // Архив

Topology Appl., 2023, том 340, страницы 108718–11 (Mi tia4)

Extending homeomorphisms on Cantor cubes

E. Shchepina, V. Valovb

a Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina St. Moscow, 119991, Russia
b Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7, Canada

Аннотация: We discuss the question of extending homeomorphism between closed subsets of the Cantor discontinuum $D^\tau$. For every set $P\subset D^\tau$ let $L_p$ be the set of cardinality $\lambda$ such that the $\lambda$-interior of $P$ is not empty. It is established that any homeomorphism $f$ between two proper closed subsets $P$ and $K$ of $D^\tau$ can be extended to an autohomeomorphism of $D^\tau$ provided the sets $L_p$ and $L_k$ do not have so many points of discontinuity and $f$ preserves the $\lambda$-interiors of $P$ and $K$.

MSC: Primary 54C20, 54F45; Secondary 54B10, 54D30

Поступила в редакцию: 22.09.2021
Исправленный вариант: 13.01.2023
Принята в печать: 04.04.2023

Язык публикации: английский

DOI: 10.1016/j.topol.2023.108718



Реферативные базы данных:


© МИАН, 2026