RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2010, том 16(32), выпуск 2, страницы 106–119 (Mi thsp79)

On the asymptotics of moments of linear random recurrences

Alexander Marynych

Faculty of Cybernetics, T. Shevchenko National University of Kiev, 01033 Kiev, Ukraine

Аннотация: We propose a new method of analyzing the asymptotics of moments of certain linear random recurrences which is based on the technique of iterative functions. By using the method, we show that the moments of the number of collisions and the absorption time in the Poisson–Dirichlet coalescent behave like the powers of the "log star" function which grows slower than any iteration of the logarithm, and thereby we prove a weak law of large numbers. Finally, we discuss merits and limitations of the method and give several examples related to beta coalescents, recursive algorithms, and random trees.

Ключевые слова: Moments, Poisson–Dirichlet coalescent, linear recurrence.

MSC: Primary 60F05; Secondary 60C05

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2026