RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2007, том 13(29), выпуск 1, страницы 144–151 (Mi thsp193)

On the asymptotic normality of the number of false solutions of a system of nonlinear random boolean equations

Volodymyr Masol, Svitlana Slobodyan

Department of Probability Theory and Mathematical Statistics, Kyiv National Taras Shevchenko University, Kyiv, Ukraine.

Аннотация: The theorem on a normal limit ($n\to\infty$) distribution of the number of false solutions of a system of nonlinear Boolean equations with independent random coefficients is proved. In particular, we assume that each equation has coefficients that take value 1 with probability that varies in some neighborhood of the point $\frac{1}{2};$ the system has a solution with the number of ones equals $\rho(n), \rho(n)\to\infty$ as $n\to\infty.$ The proof is constructed on the check of auxiliary statement conditions which in turn generalizes one well-known result.

Ключевые слова: The nonlinear random Boolean equations, normal limit distribution, number of false solutions.

MSC: 60C05, 15A52, 15A03

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2026