RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2007, том 13(29), выпуск 1, страницы 77–85 (Mi thsp186)

Asymptotically optimal estimator of the parameter of semi-linear autoregression

Dmytro Ivanenko

Department of Mathematics and Theoretical Radiophysic, Kyiv National Taras Shevchenko University, Kyiv, Ukraine

Аннотация: The difference equations $\xi_k=af(\xi_{k-1})+\varepsilon_k,$ where$\varepsilon_k$ is a square integrable difference martingale, and the differential equation $d\xi=-af(\xi)dt+d\eta,$ where $\eta$ is a square integrable martingale, are considered. A family of estimators depending, besides the sample size n (or the observation period, if time is continuous) on some random Lipschitz functions is constructed. Asymptotic optimality of this estimators is investigated.

Ключевые слова: Martingale, estimator, optimization, convergence.

MSC: Primary 62F12; Secondary 60F05

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2026