RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2016, том 21(37), выпуск 2, страницы 84–90 (Mi thsp163)

A representation for the Kantorovich–Rubinstein distance defined by the Cameron–Martin norm of a Gaussian measure on a Banach space

G. V. Riabov

01004, Ukraine, Kiev–4, 3, Tereschenkivska st.

Аннотация: A representation for the Kantorovich–Rubinstein distance between probability measures on a separable Banach space $X$ in the case when this distance is defined by the Cameron–Martin norm of a centered Gaussian measure $\mu$ on $X$ is obtained in terms of the extended stochastic integral (or divergence) operator.

Ключевые слова: Gaussian measure, extended stochastic integral, optimal transport.

MSC: Primary 60G15; Secondary 60H07

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2026