RUS  ENG
Полная версия
ЖУРНАЛЫ // Theoretical and Applied Mechanics // Архив

Theor. Appl. Mech., 2025, том 52, выпуск 1, страницы 75–86 (Mi tam153)

On cusps of caustics by reflection in two dimensional projective Finsler metrics

Serge Tabachnikov

Department of Mathematics, Pennsylvania State University, PA, USA

Аннотация: Given a projective Finsler metric in a convex domain in the projective plane, that is, a metric in which geodesics are straight lines, consider the respective Finsler billiard system. Choose a generic point inside the table and consider the billiard trajectories that start at this point and undergo $N$ reflection off the boundary. The envelope of the resulting 1-parameter family of straight lines is the $N$th caustic by reflection. We prove that, for every $N$, it has at least four cusps, generalizing a similar result for Euclidean metric, obtained recently jointly with G. Bor.

Ключевые слова: caustic, Finsler billiards, projective Finsler metrics.

MSC: Primary 78A05; Secondary 37C83, 53A04

Поступила в редакцию: 09.01.2025

Язык публикации: английский

DOI: 10.2298/TAM250109004T



© МИАН, 2026