Аннотация:
В статье рассматривается многосеточный метод с полной аппроксимацией для разрывного метода Галёркина с неявной дискретизацией по времени. Целью исследования является применение данного метода для эффективного решения задач, описываемых нелинейными уравнениями в частных производных. Разработан вычислительный алгоритм, который реализует многосеточный метод с полной аппроксимацией с применением метода Ньютона и усовершенствованного метода Ньютона-Крылова для решения возникающих нелинейных уравнений на каждом уровне сетки многосеточного метода. Такой подход позволяет существенно повысить эффективность алгоритма и сократить количество необходимых вычислительных ресурсов. Проведены численные эксперименты с применением обоих подходов к уравнению Хопфа. Исследовано влияние регуляризирующего параметра и числа Куранта на скорость сходимости внешних итераций метода Ньютона. Экспериментально показано, что использование метода Ньютона-Крылова значительно улучшает общую производительность вычислительного процесса по сравнению с традиционным методом Ньютона, хотя оба подхода демонстрируют схожий порядок сходимости, приближающийся ко второму порядку при применении квадратичных базисов.
Ключевые слова:
многосеточный метод, FAS, разрывный метод Галёркина, неявная дискретизация по времени, h-мультигрид, p-мультигрид, метод Ньютона-Крылова