Аннотация:
Cтатья посвящена применению авторской процедуры ортогонализации финитных функций, не разрушающей их конечные носители, к сплайнам Шенберга третьей степени. Описывается общий алгоритм модификации материнского сплайна Шенберга в рамках этой процедуры ортогонализации. Показано, что в случае использования восьми ступенчатых функций для модификации материнского сплайна Шенберга третьей степени достигается ортогонализация порождаемого им сеточного набора сплайнов без изменения конечных носителей сплайнов. Найдены шестнадцать вариантов ортогонализации сплайнов Шенберга третьей степени ступенчатыми функциями. В первой группе восьми вариантов все коэффициенты модифицирующих ступенчатых функций имеют действительные значения, но сплайны Шенберга после такой модификации не являются четными или нечетными функциями. В каждом из восьми вариантов второй группы два коэффициента являются комплексными, а остальные шесть коэффициентов имеют действительные значения. Модифицированные сплайны Шенберга второй группы представляют собой суммы четной и нечетной функций. Доказана теорема о порядке аппроксимации любой функции пространства Соболева линейными комбинациями построенных ортогональных сплайнов Шенберга.