RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки СВФУ // Архив

Математические заметки СВФУ, 2024, том 31, выпуск 2, страницы 47–59 (Mi svfu415)

Математика

Об инвариантах Лапласа двумерных нелинейных уравнений в частных производных полиномиального типа

И. В. Рахмелевич

Нижегородский государственный университет им. Н. И. Лобачевского

Аннотация: Исследуются двумерные нелинейные уравнения в частных производных второго порядка с переменными коэффициентами, левая часть которых представляет собой однородный полином второй степени по искомой функции и ее производным. Рассматривается множество линейных мультипликативных преобразований неизвестной функции, сохраняющих вид исходного уравнения. Аналогично линейным уравнениям инварианты Лапласа определяются как инварианты этого преобразования. Получены выражения для инвариантов Лапласа через коэффициенты уравнения и их первые производные. Для рассматриваемых уравнений найдены эквивалентные системы уравнений первого порядка, содержащие инварианты Лапласа. Показано, что если один из инвариантов Лапласа равен нулю, то соответствующая система сводится к одному уравнению первого порядка. Также в этом случае при выполнении некоторых дополнительных условий на коэффициенты может быть получено решение исходного уравнения в квадратурах. Исследования проведены для гиперболического уравнения со смешанной производной и для нелинейного уравнения второго порядка общего вида с однородным полиномом второй степени по искомой функции и ее производным. Для этих случаев получены выражения для инвариантов Лапласа и приведены соответствующие эквивалентные системы.

Ключевые слова: дифференциальное уравнение в частных производных, гиперболическое уравнение, инвариант Лапласа, линейное мультипликативное преобразование

УДК: 517.957

Поступила в редакцию: 15.09.2023
Принята в печать: 30.05.2024

DOI: 10.25587/2411-9326-2024-2-46-58



© МИАН, 2026