RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки СВФУ // Архив

Математические заметки СВФУ, 2024, том 31, выпуск 1, страницы 71–81 (Mi svfu408)

Математика

Structured pseudospectrum and structured essential pseudospectrum of closed linear operator pencils on ultrametric Banach spaces

J. Ettayb

Sidi Mohamed Ben Abdellah University, Fez

Аннотация: We introduce and study the structured pseudospectrum and the essential pseudospectrum of closed linear operator pencils on ultrametric Banach spaces. We establish a characterization of the structured pseudospectrum of closed linear operator pencils and relationship between the structured pseudospectrum and the structured pseudospectrum of closed linear operator pencils on ultrametric Banach spaces. Many characterizations of structured essential pseudospectra of operators, such as the structured essential pseudospectrum of closed linear operator pencils, is invariant under perturbation of completely continuous linear operators on ultrametric Banach spaces over Qp. Finally, we give some illustrative examples.

Ключевые слова: ultrametric Banach spaces, pseudospectra, closed Fredholm operators, closed linear operators

УДК: 517.983.28+517.984.3+511.255

Поступила в редакцию: 19.01.2024
Принята в печать: 29.02.2024

Язык публикации: английский

DOI: 10.25587/2411-9326-2024-1-70-80



© МИАН, 2026