Аннотация:
Рассматривается некорректно поставленная задача локализации (определения положения) линий разрыва функции двух переменных при условии, что вне линий разрыва функция удовлетворяет условию Липшица, а в каждой точке на линии имеет разрыв первого рода. Для равномерной сетки с шагом $\tau$ предполагается, что в каждом узле известны средние значения на квадрате со стороной $\tau$ от возмущенной функции, и возмущенная функция приближает точную функцию в пространстве $L_2(\mathbb{R}^2)$. Уровень возмущения $\delta$ считается известным. Предлагается новый подход к построению регуляризирующих алгоритмов локализации линий разрыва на основе сепарации исходных зашумленных данных. На классе функций с кусочно-линейными линиями разрыва построены новые алгоритмы и доказана теорема сходимости с оценками точности аппроксимации.
Ключевые слова:
некорректная задача, метод регуляризации, линии разрыва, глобальная локализация, дискретизация, порог разделимости, сепарация изображений.
УДК:517.988.68
Статья поступила: 02.10.2024 Переработанный вариант: 10.10.2024