RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 106, 23 стр. (Mi sigma2222)

Myers–Steenrod Theorems for Metric and Singular Riemannian Foliations

Diego Corroab, Fernando Galaz-Garcíac

a School of Mathematics, Cardiff University, UK
b Fakultät für Mathematik, Karlsruher Institut für Technologie, Germany
c Department of Mathematical Sciences, Durham University, UK

Аннотация: We prove that the group of isometries preserving a metric foliation on a closed Alexandrov space $X$ is a closed subgroup of the isometry group of $X$. We obtain a sharp upper bound for the dimension of this subgroup and show that, when equality holds, the foliations that realize this upper bound are induced by fiber bundles whose fibers are round spheres or projective spaces. As a corollary, singular Riemannian foliations that realize the upper bound are induced by smooth fiber bundles whose fibers are round spheres or projective spaces.

Ключевые слова: Alexandrov space, submetry, isometry group, singular Riemannian foliation, Lie group.

MSC: 53C12, 53C20, 53C21, 53C23, 53C24, 51K10

Поступила: 4 ноября 2024 г.; в окончательном варианте 1 декабря 2025 г.; опубликована 16 декабря 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.106


ArXiv: 2407.03534


© МИАН, 2026