RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 090, 26 стр. (Mi sigma2206)

The Fefferman Metric for Twistor CR Manifolds and Conformal Geodesics in Dimension Three

Taiji Marugame

Department of Mathematics, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Аннотация: We give an explicit description of the Fefferman metric for twistor CR manifolds in terms of Riemannian structures on the base conformal $3$-manifolds. As an application, we prove that chains and null chains on twistor CR manifolds project to conformal geodesics, and that any conformal geodesic has lifts both to a chain and a null chain. By using this correspondence, we give a variational characterization of conformal geodesics in dimension three which involves the total torsion functional.

Ключевые слова: twistor CR manifold, Fefferman metric, conformal geodesic.

MSC: 53B20, 32V05, 53C18

Поступила: 3 июня 2025 г.; в окончательном варианте 16 октября 2025 г.; опубликована 24 октября 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.090


ArXiv: 2411.18961


© МИАН, 2026