RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 076, 20 стр. (Mi sigma2192)

Prolongation of $(8,15)$-Distribution of Type $F_4$ by Singular Curves

Goo Ishikawaa, Yoshinori Machidab

a Department of Mathematics, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
b Department of Mathematics, Faculty of Science, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka 422-8529, Japan

Аннотация: Cartan gives the model of $(8, 15)$-distribution with the exceptional simple Lie algebra $F_4$ as its symmetry algebra in his paper (1893), which is published one year before his thesis. In the present paper, we study abnormal extremals (singular curves) of Cartan's model from viewpoints of sub-Riemannian geometry and geometric control theory. Then we construct the prolongation of Cartan's model based on the data related to its singular curves, and obtain the nilpotent graded Lie algebra which is isomorphic to the negative part of the graded Lie algebra $F_4$.

Ключевые слова: exceptional Lie algebra, singular curve, constrained Hamiltonian equation.

MSC: 53C17, 58A30, 17B25, 34H05, 37J37, 49K15, 53D25

Поступила: 30 января 2025 г.; в окончательном варианте 12 сентября 2025 г.; опубликована 18 сентября 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.076


ArXiv: 2501.02789


© МИАН, 2026