Deformation Families of Quasi-Projective Varieties and Symmetric Projective K3 Surfaces
Fan Xu Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, Japan
Аннотация:
The main aim of this paper is to construct a complex analytic family of symmetric projective K3 surfaces through a compactifiable deformation family of complete quasi-projective varieties from $\operatorname{CP}^2 \#9\overline{\operatorname{CP}}^2$. Firstly, for an elliptic curve
$C_0$ embedded in
$\operatorname{CP}^2$, let $S \cong \operatorname{CP}^2 \#9\overline{\operatorname{CP}}^2$ be the blow up of
$\operatorname{CP}^2$ at nine points on the image of
$C_0$ and
$C$ be the strict transform of the image. Then if the normal bundle satisfies the Diophantine condition, a tubular neighborhood of the elliptic curve
$C$ can be identified through a toroidal group. Fixing the Diophantine condition, a smooth compactifiable deformation of
$S\backslash C$ over a 9-dimensional complex manifold is constructed. Moreover, with an ample line bundle fixed on
$S$, complete Kähler metrics can be constructed on the quasi-projective variety
$S\backslash C$. So complete Kähler metrics are constructed on each quasi-projective variety fiber of the smooth compactifiable deformation family. Then a complex analytic family of symmetric projective K3 surfaces over a 10-dimensional complex manifold is constructed through the smooth compactifiable deformation family of complete quasi-projective varieties and an analogous deformation family.
Ключевые слова:
blow up, complete quasi-projective varieties, symmetry projective K3 surfaces, deformation families.
MSC: 14J28,
32G05 Поступила: 31 октября 2024 г.; в окончательном варианте
16 июля 2025 г.; опубликована
28 июля 2025 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2025.062