An Algebra of Elliptic Commuting Variables and an Elliptic Extension of the Multinomial Theorem
Michael J. Schlosser Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
Аннотация:
We introduce an algebra of elliptic commuting variables involving a base
$q$, nome
$p$, and
$2r$ noncommuting variables. This algebra, which for
$r=1$
reduces to an algebra considered earlier by the author, is an elliptic extension of the well-known algebra of
$r$ $q$-commuting variables. We present a multinomial theorem valid as an identity in this algebra, hereby extending the author's previously obtained elliptic binomial theorem to higher rank. Two essential ingredients are a consistency relation satisfied by the elliptic weights and the Weierstraß type
$\mathsf A$ elliptic partial fraction decomposition. From the elliptic multinomial theorem we obtain, by convolution, an identity equivalent to Rosengren's type
$\mathsf A$ extension of the Frenkel–Turaev
${}_{10}V_9$ summation. Interpreted in terms of a weighted counting of lattice paths in the integer lattice
$\mathbb Z^r$, this derivation of Rosengren's
$\mathsf A_r$ Frenkel–Turaev summation constitutes the first combinatorial proof of that fundamental identity.
Ключевые слова:
multinomial theorem, commutation relations, elliptic weights, elliptic hypergeometric series.
MSC: 05A10,
11B65,
33D67,
33D80,
33E90 Поступила: 26 декабря 2024 г.; в окончательном варианте
23 июня 2025 г.; опубликована
6 июля 2025 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2025.052