RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2024, том 21, выпуск 2, страницы 1578–1593 (Mi semr1763)

Эта публикация цитируется в 2 статьях

Дифференциальные уравнения, динамические системы и оптимальное управление

Задача о Т-образном сопряжении тонкого жесткого включения и включения Тимошенко в двумерном упругом теле

Т. С. Попова

North-Eastern Federal University, ul. Kulakovskogo, 48, 677008, Yakutsk, Russia

Аннотация: In this paper, we study the problem of equilibrium of a two-dimensional elastic body containing two contacting thin inclusions. One of the inclusions is elastic and is modeled within the Timoshenko beam theory. The other inclusion is rigid and is characterized by a given structure of displacement functions. The inclusions intersect, forming a T-shaped system in an elastic matrix. Two cases of junction are considered: in the absence of a connection between the inclusions and for the case of perfect adhesion between them. It is assumed that the elastic inclusion delaminates from the elastic matrix forming a crack. Due to the presence of a crack, the elastic body occupies a domain with a cut, while on the cut edges, as on a part of the boundary, boundary conditions of the form of inequalities are set. The problem is posed as a variational one, and a complete differential formulation in the form of a boundary value problem is also obtained, including the junction conditions at a common point of inclusions. The equivalence of the variational and differential formulations of the problem is proved under the condition of sufficient smoothness of the solutions.

Ключевые слова: variational inequality, Timoshenko inclusion, thin elastic inclusion, thin rigid inclusion, crack, non-penetration conditions, nonlinear boundary conditions, junction problem.

УДК: 517.9

MSC: 74E05

Поступила 18 июня 2023 г., опубликована 31 декабря 2024 г.

DOI: 10.33048/semi.2024.21.100



© МИАН, 2026