RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2024, том 21, выпуск 2, страницы 1414–1425 (Mi semr1752)

Математическая логика, алгебра и теория чисел

On definable sets in some definably complete locally o-minimal structure

M. Berraho

Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco

Аннотация: In this paper, we show that the Grothendieck ring of a definably complete locally o-minimal expansion of the set (not the field) of real numbers $\mathbb R$ is trivial. Afterwards, we will give a sufficient condition for which a definably complete locally o-minimal expansion of an ordered group has no nontrivial definable subgroups. In the last section, we study some sets that are definable in a definably complete locally o-minimal expansion of an ordered field. Finally, a decomposition theorem for a definable set into finite union of $\pi_L$-quasi-special $\mathcal{C}^r$ submanifolds is demonstrated.

Ключевые слова: Definably complete, locally o-minimal structures, Grothendieck rings.

УДК: 510.6

MSC: 03C64

Поступила 17 января 2023 г., опубликована 23 декабря 2024 г.

Язык публикации: английский

DOI: 10.33048/semi.2024.21.089



© МИАН, 2026