Дифференциальные уравнения, динамические системы и оптимальное управление
Optimal gyroscopic stabilization of vibrational system: algebraic approach
A. V. Chekhonadskikh Novosibirsk State Technical University, K Marx av., 20, 630073, Novosibirsk, Russia
Аннотация:
The paper deals with LTI vibrational systems with positive definite stiffness matrix
$K$ and symmetric damping matrix
$D$. Gyroscopic stabilization means the existence of gyroscopic forces with a skew-symmetric matrix
$G$, such that a closed loop system with damping matrix
$D+G$ is asymptotically stable. The feature of characteristic polynomial in the case predetermines such stabilization as a low order control design. Assuming the necessary condition of gyroscopic stabilization is fulfilled, we pose the problem of achieving relative stability maximum using a stabilizer
$G$. The stability maximum value is determined by a matrix
$D$ trace, but its reachability depends on the coincidence of all pole real parts with the corresponding minimal value, i.e. equality of characteristic and root polynomials. We illustrate a root polynomial technique application to optimal gyroscopic stabilizer design by examples of dimension 3–5.
Ключевые слова:
vibrational system, gyroscopic stabilizer, low order control, rightmost poles, relative stability, root polynomial.
УДК:
681.5.01
MSC: 93C05 Поступила 14 марта 2023 г., опубликована
16 февраля 2024 г.
Язык публикации: английский
DOI:
10.33048/semi.2024.21.006