Special Issue: On the 175th Anniversary of S.V. Kovalevskaya (Issue Editors: Vladimir Dragović, Andrey Mironov, and Sergei Tabachnikov)
Contact Magnetic Geodesic and Sub-Riemannian Flows on $V_{n,2}$ and Integrable Cases of a Heavy Rigid Body with a Gyrostat
Bozidar Jovanović Mathematical Institute SANU,
Kneza Mihaila 36, 11001 Belgrade, Serbia
Аннотация:
We prove the integrability of magnetic geodesic flows of
$SO(n)$-invariant Riemannian metrics on the rank two Stefel variety
$V_{n,2}$ with respect to the magnetic field
$\eta\, d\alpha$, where
$\alpha$ is the standard contact form on
$V_{n,2}$ and
$\eta$ is a real parameter.
Also, we prove the integrability of magnetic sub-Riemannian geodesic flows for
$SO(n)$-invariant sub-Riemannian structures on
$V_{n,2}$. All statements in the limit
$\eta=0$ imply the integrability of the problems without the influence of the magnetic field. We also consider integrable pendulum-type natural mechanical systems with the kinetic energy defined by
$SO(n)\times SO(2)$-invariant Riemannian metrics. For
$n=3$, using the isomorphism
$V_{3,2}\cong SO(3)$, the obtained integrable magnetic models reduce to
integrable cases of the motion of a heavy rigid body with a gyrostat around a fixed point:
the Zhukovskiy – Volterra gyrostat, the Lagrange top with a gyrostat, and the Kowalevski
top with a gyrostat. As a by-product we obtain the Lax presentations for the Lagrange
gyrostat and the Kowalevski gyrostat in the fixed reference frame (dual Lax representations).
Ключевые слова:
magnetic geodesic and sub-Riemannian flows, Liouville and noncommutative integrability, contact structure, Zhukovskiy – Volterra gyrostat, Lagrange top, Kowalevski top
Поступила в редакцию: 09.06.2025
Принята в печать: 25.08.2025
Язык публикации: английский
DOI:
10.1134/S156035472505003X