RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 4, страницы 620–653 (Mi rcd1273)

Эта публикация цитируется в 3 статьях

Special Issue: 70 Years of KAM Theory (Issue Editors: Alessandra Celletti, Luigi Chierchia, and Dmitry Treschev)

Biasymptotically Quasi-Periodic Solutions for Time-Dependent Hamiltonians

Donato Scarcella

Departament de Matemàtiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

Аннотация: We consider time-dependent perturbations of integrable and near-integrable Hamiltonians. Assuming the perturbation decays polynomially fast as time tends to infinity, we prove the existence of biasymptotically quasi-periodic solutions. That is, orbits converging to some quasi-periodic solutions in the future (as $t \rightarrow +\infty$) and the past (as $t \rightarrow -\infty$).
Concerning the proof, thanks to the implicit function theorem, we prove the existence of a family of orbits converging to some quasi-periodic solutions in the future and another family of motions converging to some quasi-periodic solutions in the past. Then, we look at the intersection between these two families when $t = 0$. Under suitable hypotheses on the Hamiltonian’s regularity and the perturbation’s smallness, it is a large set, and each point gives rise to biasymptotically quasi-periodic solutions.

Ключевые слова: dynamical systems, Hamiltonian systems, KAM tori, time dependence

MSC: 37J25, 37J40

Поступила в редакцию: 03.04.2023
Принята в печать: 08.02.2024

Язык публикации: английский

DOI: 10.1134/S1560354724510026



© МИАН, 2026