Аннотация:
Практические задачи дискретной оптимизации часто содержат многомерные массивы переменных с линейными ограничениями, что осложняет их приведение к форме QUBO (квадратичной бинарной оптимизации без ограничений). В статье предложен систематический подход к преобразованию таких задач, включающий три ключевых этапа: переход от многомерного представления переменных к одномерному с использованием произведения Кронекера матриц, приведение смешанных переменных к бинарным и введение линейных ограничений в целевую функцию через квадратичные штрафы. Для каждого этапа получены явные вычислительные формулы, упрощающие их программную реализацию. Разработанный метод проиллюстрирован на примерах задач теории графов и комбинаторной оптимизации, включая классические постановки, что подтверждает его универсальность. Результаты статьи позволяют стандартизировать процесс адаптации задач для решения на квантовых алгоритмах отжига (например, D-Wave) и классических QUBO-решателях.
Ключевые слова:
квадратичная бинарная оптимизация без ограничений (QUBO), модель Изинга, адиабатические квантовые вычисления, комбинаторная оптимизация.
УДК:
621.391 : 519.854
Поступила в редакцию: 30.04.2025 После переработки: 14.05.2025 Принята к печати: 18.08.2025