Аннотация:
В конечномерном пространстве рассматривается линейное стохастическое дифференциальное уравнение в форме Ито, у которого в левой части стоит вырожденная постоянная матрица. Принимая во внимание различные экономические приложения данных уравнений, их относят к уравнениям леонтьевского типа, поскольку при некоторых дополнительных предположениях детерминированным аналогом рассматриваемого уравнения описывается знаменитая балансовая модель «затраты-выпуск» В. Леонтьева с учетом запасов. В литературе данные системы чаще называют алгебро-дифференциальные, дескрипторные. В общем случае, для исследования данного типа уравнений необходимо рассмотрение производных высших порядков от правой части. А значит, необходимо рассматривать и производные винеровского процесса, существующие в обобщенном смысле. В предыдущих работах были исследованы данные уравнения с привлечением аппарата производных в среднем по Нельсону от случайных процессов, для описания которых не используются обобщенные функции. Известно, что производные в среднем зависят от того, какая сигма-алгебра используется для их нахождения. В работе исследование данного уравнения проведено с применением производных в среднем относительно новой сигма-алгебры, которая не рассматривалась в предыдущих работах.
Ключевые слова:
производная в среднем, текущая скорость, винеровский процесс, стохастическое уравнение леонтьевского типа.
Поступила в редакцию: 30.12.2023 Принята в печать: 30.12.2023