RUS  ENG
Полная версия
ЖУРНАЛЫ // Прикладная математика & Физика // Архив

ПМ&Ф, 2023, том 55, выпуск 3, страница 228 (Mi pmf385)

МАТЕМАТИКА

О структуре спектра и резольвентного множества оператора Теплица в счетно-нормированном пространстве гладких функций

А. Э. Пасенчук

Южно-Российский государственный политехнический университет имени М. И. Платова

Аннотация: В счетно-нормированном пространстве гладких на единичной окружности функций рассматривается оператор Теплица с гладким символом. Изучаются вопросы об ограниченности, нетеровости и обратимости таких операторов. Вводятся понятия гладкой канонической вырожденной факторизации типа минус гладких функций и связанной с ней локальной вырожденной канонической факторизации типа минус. Получены критерии в терминах символа существования канонической вырожденной факторизации типа минус. Как и в классическом случае оператора Теплица в пространствах суммируемых функций с винеровскими символами, нетеровость оператора Теплица оказалась равносильной наличию гладкой вырожденной канонической факторизации типа минус его символа. Устанавливается эквивалентность вырожденной канонической факторизуемости и аналогичной локальной факторизуемости, что позволяет при исследовании вопросов обратимости пользоваться локализацией символа на некоторых характерных дугах окружности. Получены соотношения, связывающие спектры некоторых операторов Теплица в пространствах гладких и суммируемых функций. Дается описание резольвентного множества оператора Теплица с гладким символом.

Ключевые слова: оператор Теплица, нетеровость, обратимость, гладкий оператор, вырожденный оператор, факторизация, сингулярный, индекс, спектр.

Поступила в редакцию: 30.09.2023
Принята в печать: 30.09.2023

DOI: 10.52575/2687-0959-2023-55-3-228-235


 Англоязычная версия: , 2023, 114:6, 1328–1336


© МИАН, 2026