Аннотация:
Получено представление для нормы, в энергетическом пространстве, порожденном оператором дробного дифференцирования, в терминах коэффициентов Фурье дробной производной функции - элемента пространства. Доказана теорема устанавливающая полноту унитарного пространства дробно-дифференцируемых функций в случае, когда элементами унитарного пространства являются функции представимые дробным интегралом от суммируемых с квадратом функций. Доказана теорема имеющая своим результатом описание, в терминах шкалы пространств Лебега функций суммируемых в степени q, замкнутых линейных многообразий в энергетическом пространстве порожденном оператором дробного дифференцирования.