RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2025, том 14(32), выпуск 3, страницы 117–126 (Mi pa435)

Analysis of Euler-Banach operator to approximate the function using its Fourier series

S. Sonkera, N. Devib, B. B. Jenac, S. K. Paikrayd

a School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067
b Department of Mathematics, National Institute of Technology Kurukshetra, Kurukshetra 136119, India
c Faculty of Science (Mathematics), Sri Sri University Cuttack 754006, India
d Department of Mathematics, Veer Surendra Sai University of Technology Burla 768018, India

Аннотация: The Fourier series, known for expressing functions as sums of sines and cosines, can be refined in various ways to improve convergence and achieve more accurate signal approximation. Utilizing a product transform increases the convergence rate, resulting in a closer representation of the original signal. In this work, we introduce the notion of Euler-Banach operator to approximate functions in the Lebesgue class through the Fourier series and its conjugate series and also to establish two approximation theorems using our proposed summation operator.

Ключевые слова: error estimation, Euler mean, Banach mean, Fourier series, Lebesgue periodic function.

УДК: 517.521, 517.443

MSC: 40D05,40A25,40G05

Поступила в редакцию: 22.02.2025
Исправленный вариант: 17.07.2025
Принята в печать: 09.09.2025

Язык публикации: английский

DOI: 10.15393/j3.art.2025.17770



© МИАН, 2026