RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2025, том 14(32), выпуск 3, страницы 99–116 (Mi pa434)

Meir-Keeler condensing operators and a family of measures of noncompactness in Fréchet spaces

F. Soltanpoura, H. Majania, A. Shole Haghighib

a Department of Mathematics Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran
b Department of Mathematics, Karaj Branch, Islamic Azad University Karaj, Iran

Аннотация: In this paper, we propose the concept of Meir-Keeler (MK) condensing operators with respect to a family of measures of noncompactness (FMN) in a Fréchet space, and present a generalization of the Darbo theorem. Additionally, we state the notion of an $n$-variable MK condensing operator regarding an FMN and extend our findings to the $n$-variable context. To support our main results, we demonstrate the existence of solutions for a class of systems of $n$-variable functional Volterra integral equations, which can generalize many standard and couple systems.

Ключевые слова: Meir-Keeler condensing operator, family of measures of noncompactness, Fréchet space, system of functional integral equations.

УДК: 517.98

MSC: 47H10, 47H08, 39B72

Поступила в редакцию: 01.05.2025
Исправленный вариант: 09.09.2025
Принята в печать: 16.10.2025

Язык публикации: английский

DOI: 10.15393/j3.art.2025.18170



© МИАН, 2026