RUS  ENG
Полная версия
ЖУРНАЛЫ // Проблемы анализа — Issues of Analysis // Архив

Пробл. анал. Issues Anal., 2025, том 14(32), выпуск 2, страницы 120–144 (Mi pa427)

On HK-Sobolev space over hypergroup Gelfand pair

P. Sahaa, H. Kalitab, B. Hazarikac

a Department of Mathematics, Sipajhar College, Sipajhar, Darrang-784145, Assam, India
b Mathematics Division, VIT Bhopal University, Bhopal-Indore Highway, India
c Department of Mathematics, Gauhati University, Guwahati-781014, Assam, India

Аннотация: In this article, we introduce the HK-Sobolev space $HK^{\alpha, \natural}_\zeta(\mathbf{G})$ over a Gelfand pair within the framework of a second countable hypergroup, employing the Fourier transform on the hypergroup. We discuss Kuelbs-Steadman space $KS^p$ in Hypergroup and prove that $KS^p(\mathbf{G})$ is a Banach algebra under a suitable convolution. Additionally, we also address the dominated convergence theorem in the $KS^p$ space over the hypergroup. Several Sobolev embedding-type results are discussed in the HK-Sobolev space $HK^{\alpha, \natural}_\zeta(\mathbf{G})$. Finally, we explore Rellich-Kondrashov theorem within this specific context.

Ключевые слова: Sobolev space, Kuelbs-Steadman space, HK-Sobolev space, hypergroup, Gelfand Pair, Rellich-Kondrachov theorem.

УДК: 517.98, 517.44

MSC: 43A15, 43A62, 43A70, 43A75.

Поступила в редакцию: 02.12.2024
Исправленный вариант: 18.05.2025
Принята в печать: 23.05.2025

Язык публикации: английский

DOI: 10.15393/j3.art.2025.17210



© МИАН, 2026